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A remark on low rank matrix recovery

and noncommutative Bernstein type

inequalities

Vladimir Koltchinskii∗

School of Mathematics, Georgia Institute of Technology

Abstract: A problem of estimation of a large Hermitian nonnegatively defi-
nite matrix of trace 1 (a density matrix of a quantum system) motivated by
quantum state tomography is studied. The estimator is based on a modified
least squares method suitable in the case of models with random design with
known design distributions. The bounds on Hilbert-Schmidt error of the es-
timator, including low rank oracle inequalities, have been proved. The proofs
rely on Bernstein type inequalities for sums of independent random matrices.

1. Introduction

Denote Mm(C) the set of all m×m matrices with complex entries and Hm the set
of all m×m Hermitian matrices. Let

S := {S : S ∈ Hm : S ≥ 0, tr(S) = 1}

be the set of density matrices. Here and in what follows S ≥ 0 means that S is a
nonnegatively definite matrix and tr(S) denotes the trace of S. Density matrices are
used in quantum statistics to represent the states of quantum systems. Given a state
ρ ∈ S and a Hermitian matrix X ∈ Hm (an observable) with spectral representation
X =

∑
j λjPj (λj being the eigenvalues of X and Pj the corresponding spectral

projections), the outcomes of a measurement of X in the state ρ are the numbers
λj with probabilities pj = tr(ρPj). In what follows, this probability distribution
will be denoted μρ,X . Clearly, the mean of μρ,X is equal to

EρX =

∫
R

uμρ,X(du) = tr(ρX).

LetX1, . . . , Xn be independent random Hermitian matrices and Y1, . . . , Yn be the
outcomes of measurements of X1, . . . , Xn for the system being identically prepared
n times in the state ρ. The goal is to estimate the unknown density matrix ρ based
on the measurements (X1, Y1), . . . , (Xn, Yn) (that are independent random couples).
Such a problem is very basic in quantum state tomography (Nielsen and Chuang
[13], Artiles, Gill and Guta [2]). Note that E(Yj |Xj) = tr(ρXj), j = 1, . . . , n. In
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what follows, it will be assumed that the data (X1, Y1), . . . , (Xn, Yn) consists of
independent couples satisfying the following linear model

Yj = tr(ρXj) + ξj , j = 1, . . . , n

with a random noise {ξj}. Here {ξj} are independent random variables with E(ξj |
Xj) = 0, j = 1, . . . , n.

We are interested in this problem in the case when m is large, but the rank
of the target matrix ρ is relatively small, so, the problem can be viewed as low
rank matrix recovery. More generally, ρ can be a full rank matrix, but it should be
well approximated by low rank matrices. The problems of this nature have been
intensively studied in the recent years, the main approach being based on nuclear
norm penalization, see Candes and Recht [4], Candes and Tao [5], Candes and Plan
[6], Recht [14], Rohde and Tsybakov [15], Koltchinskii, Lounici and Tsybakov [11],
Koltchinskii [9] and references therein. Gross et al [7], Gross [8] studied low rank
recovery problems in the context of quantum state tomography and developed a
powerful method of their analysis based on noncommutative Bernstein inequali-
ties of Ahlswede and Winter [1] (we follow this approach here). Koltchinskii [10]
suggested a method of low rank density matrix recovery based on von Neumann
entropy penalization.

2. Low rank recovery of density matrices

The following notations will be used throughout the paper. The operator norm of
matrices will be denoted by ‖ · ‖ and their Schatten p-norm, p ≥ 1, will be denoted
by ‖ · ‖p. Recall that for Hermitian matrices

‖A‖pp := tr(|A|p), A ∈ Hm,

where |A| :=
√
A2, A ∈ Hm. In particular, ‖ · ‖1 is the nuclear norm and ‖ · ‖2 is

the Hilbert–Schmidt norm. The norm ‖ · ‖2 is generated by the Hilbert–Schmidt
inner product that will be denoted 〈·, ·〉 :

〈A,B〉 := tr(AB), A,B ∈ Hm

(the same notation is also used for vectors in C
m). We use the notation ⊗ for

tensor products of vectors in C
m or matrices in Hm (viewed as vectors in the

Euclidean space (Hm, 〈·, ·〉)). In the last case, given A,B ∈ Hm, A⊗B is the linear
transformation of Hm defined as

(A⊗B)C = A〈B,C〉, C ∈ Hm.

Given a random matrix X in Hm with distribution Π, denote

‖A‖L2(Π) := ‖〈A, ·〉‖L2(Π) = E
1/2〈A,X〉2.

A random matrix X is called isotropic iff

E(X ⊗X) = IdHm ,

where IdHm denotes the identity transformation of Hm. Equivalently, the distribu-
tion Π of X is isotropic iff

∫
Hm

(x⊗ x)Π(dx) = IdHm , or

‖A‖L2(Π) = ‖A‖2, A ∈ Hm.
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Suppose that the independent “design matrices” X1, . . . , Xn have been sampled
from distributions Π1, . . . ,Πn in Hm. Let

Π̄ := Π̄n = n−1
n∑

j=1

Πj .

In what follows, it will be assumed that the distribution Π̄ is isotropic (in particular,
this is the case if all the distributions Πj are isotropic). This implies that

n−1
n∑

j=1

E(Xj ⊗Xj) = n−1
n∑

j=1

∫
Hm

(x⊗ x)Πj(dx) =

∫
Hm

(x⊗ x)Π̄(dx) = IdHm

Note that, for all j = 1, . . . , n

E(YjXj) = EE(Yj |Xj)Xj = E〈ρ,Xj〉Xj = E(Xj ⊗Xj)ρ.

Thus,

En−1
n∑

j=1

YjXj = ρ.

Suppose that D ⊂ Hm is a given closed convex subset of Hermitian matrices that
is known to include the target state ρ. We will study the following estimator of ρ :

(2.1) ρ̂ := argminS∈D

[
‖S‖22 − 2

〈
n−1

n∑
j=1

YjXj , S

〉]
.

Replacing in (2.1) the matrix n−1
∑n

j=1 YjXj by its expectation results in the fol-
lowing minimization problem

‖S‖22 − 2〈ρ, S〉 = ‖S − ρ‖22 − ‖ρ‖22 −→ min, S ∈ D,

whose unique solution is ρ. The estimator ρ̂ can be viewed as a modification of the
standard least squares estimator defined as a solution of the following minimization
problem:

(2.2) n−1
n∑

j=1

(
Yj − 〈S,Xj〉

)2 −→ min, S ∈ D.

Indeed, (2.2) is equivalent to

(2.3) ‖S‖2
L2(Π̂n)

− 2

〈
n−1

n∑
j=1

YjXj , S

〉
−→ min, S ∈ D,

where Π̂n is the empirical measure based on (X1, . . . , Xn). In (2.1), ‖S‖2
L2(Π̂n)

is

replaced by its expectation:

E‖S‖2
L2(Π̂n)

= En−1
n∑

j=1

〈S,Xj〉2 = n−1
n∑

j=1

‖S‖2L2(Πj)
= ‖S‖2L2(Π̄) = ‖S‖22

since Π̄ is isotropic.



216 V.Koltchinskii

Similar approach was used in Koltchinskii, Lounici and Tsybakov [11] where it
was assumed that the design distributions Πj , j = 1, . . . , n are known (not necessar-
ily isotropic) and the empirical norm ‖S‖2

L2(Π̂n)
in a version of problem (2.3) with

nuclear norm penalization was replaced by its expectation n−1
∑n

j=1 ‖S‖2L2(Πj)
(in

this paper, the domain D was a linear space of matrices rather than a subset of den-
sity matrices). Koltchinskii [10] studied a penalized version of problem (2.2) with
the complexity penalty εtr(S logS) = −εE(S), where E(S) is the von Neumann
entropy of S and ε > 0 is a regularization parameter.

Our main observation in this note is that, even without any regularization, the
error of the estimator ρ̂ defined by (2.1) can be controlled in terms of the rank of
the target matrix ρ (or in terms of low rank matrices approximating ρ). The same
is true for the least squares estimator (2.2) with somewhat different error bounds
and with a little bit more involved proofs (see Koltchinskii [9], Chapter 9).

In what follows, we denote

Ξ := n−1
n∑

j=1

YjXj − ρ and Δ := ‖Ξ‖.

In the next section, we will describe noncommutative Bernstein type inequalities
that give upper bounds on Δ. The following statement provides a way to control
the Hilbert–Schmidt error of ρ̂ in terms of quantity Δ and the rank of the target
matrix ρ.

Theorem 1. Suppose that D ⊂ S is a closed convex set, ρ ∈ D and ρ̂ is defined by
(2.1). Then, the following bound holds:

(2.4) ‖ρ̂− ρ‖22 ≤ min
(
4Δ, (1 +

√
2)2Δ2rank(ρ)

)
.

Proof. The argument is very similar to the proofs of some of the results by Koltchin-
skii, Lounici and Tsybakov [11]. We give the proof for completeness. It is well known
(see, e.g., Watson [17]) that the subdifferential of the nuclear norm of Hermitian
matrices is given by the following formula:

(2.5) ∂‖S‖1 =
{
sign(S) + PL⊥WPL⊥ : W ∈ Hm, ‖W‖ ≤ 1

}
.

Here S is a Hermitian matrix with spectral representation S =
∑r

j=1 λj(φj ⊗ φj),
r being the rank of S, λj , j = 1, . . . , r being its nonzero eigenvalues and φj , j =
1, . . . , r being the corresponding eigenvectors;

sign(S) :=

r∑
j=1

sign(λj)(φj ⊗ φj);

L := l.s.(φ1, . . . , φr); L
⊥ is the orthogonal complement of L and PL⊥ the corre-

sponding orthogonal projection. In particular, for all V ∈ ∂‖S‖1, we have ‖V ‖ ≤ 1.
Note that, since ‖S‖1 = tr(S) = 1, S ∈ D ⊂ S, we have

ρ̂ = argminS∈DLn(S),

where

Ln(S) := ‖S‖22 − 2

〈
n−1

n∑
j=1

YjXj , S

〉
+ 2Δ‖S‖1.
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We will use a well known necessary condition of minimum of a convex function (see
Aubin and Ekeland [3], Chapter 4, Section 2, Corollary 6): since Ln is a convex
function in Hm, D ⊂ Hm is closed and convex and ρ̂ is a minimal point of Ln in D,
we have

0 ∈ ∂Ln(ρ̂) +ND(ρ̂),

where ∂Ln(ρ̂) is the subdifferential of Ln at the point ρ̂ and ND(ρ̂) is the normal
cone of the convex set D at ρ̂ (see [3] for precise definitions). Thus, there exists a
point C ∈ ∂Ln(ρ̂) ∩ (−ND(ρ̂)). It follows from the definition of the normal cone,
that 〈C, ρ̂− S〉 ≤ 0 for all S ∈ D. Note also that

C = 2ρ̂− 2

n

n∑
j=1

YjXj + 2ΔV̂ = 2ρ̂− 2ρ− 2Ξ + 2ΔV̂ ,

for some V̂ ∈ ∂‖ρ̂‖1. Therefore, we have

2〈ρ̂− ρ, ρ̂− ρ〉 − 2〈Ξ, ρ̂− ρ〉+ 2Δ〈V̂ , ρ̂− ρ〉 ≤ 0.

This implies that, for any V ∈ ∂‖ρ‖1,

‖ρ̂− ρ‖22 +Δ〈V̂ − V, ρ̂− ρ〉 ≤ 〈Ξ, ρ̂− ρ〉 −Δ〈V, ρ̂− ρ〉.

Using monotonicity of subdifferentials of convex functions, we conclude that

〈V̂ − V, ρ̂− ρ〉 ≥ 0

and

(2.6) ‖ρ̂− ρ‖22 ≤ 〈Ξ, ρ̂− ρ〉 −Δ〈V, ρ̂− ρ〉.

Observe that

|〈Ξ, ρ̂− ρ〉| ≤ ‖Ξ‖‖ρ̂− ρ‖1 ≤ Δ(‖ρ̂‖1 + ‖ρ‖1) = 2Δ,

since ρ̂, ρ ∈ D ⊂ S. Also,

|〈V, ρ̂− ρ〉| ≤ ‖V ‖‖ρ̂− ρ‖1 ≤ 2‖V ‖ ≤ 2,

since, for V ∈ ∂‖ρ‖1, ‖V ‖ ≤ 1. Thus, (2.6) implies that ‖ρ̂− ρ‖22 ≤ 4Δ.
We will use (2.5) for S = ρ (assuming that ρ =

∑r
j=1 λj(φj ⊗ φj) and L =

l.s.(φ1, . . . , φr)). Substitute in (2.6) V = sign(ρ) + PL⊥WPL⊥ , where W ∈ Hm,
‖W‖ ≤ 1 and

〈PL⊥WPL⊥ , ρ̂− ρ〉 = 〈PL⊥WPL⊥ , ρ̂〉 = 〈W,PL⊥ ρ̂PL⊥〉 = ‖PL⊥ ρ̂PL⊥‖1

(the existence of such a W easily follows from the duality between nuclear and
operator norms). For such a V ∈ ∂‖ρ‖1, (2.6) yields

(2.7) ‖ρ̂− ρ‖22 +Δ‖PL⊥ ρ̂PL⊥‖1 ≤ 〈Ξ, ρ̂− ρ〉 −Δ
〈
sign(ρ), ρ̂− ρ

〉
.

It remains to bound the right hand side from above. To this end, note that

(2.8) |
〈
sign(ρ), ρ̂− ρ

〉
| ≤ ‖sign(ρ)‖2‖ρ̂− ρ‖2 =

√
rank(ρ)‖ρ̂− ρ‖2.
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Let PL,P⊥
L : Hm 
→ Hm be the orthogonal projectors defined as follows:

PLA := A− PL⊥APL⊥ , P⊥
LA := PL⊥APL⊥ , A ∈ Hm.

With these notations, we get

|〈Ξ, ρ̂− ρ〉| ≤ |
〈
Ξ,PL(ρ̂− ρ)

〉
|+ |

〈
Ξ,P⊥

L (ρ̂− ρ)
〉
|

≤ ‖PLΞ‖2‖ρ̂− ρ‖2 + ‖Ξ‖‖PL⊥ ρ̂PL⊥‖1(2.9)

≤Δ
√
2rank(ρ)‖ρ̂− ρ‖2 +Δ‖PL⊥ ρ̂PL⊥‖1,

where we used the bound

‖PLΞ‖22 = ‖PLΞ‖22 + ‖PL⊥ΞPL‖22 ≤ 2rank(ρ)‖Ξ‖2 = 2rank(ρ)Δ2

that holds because ‖PLΞ‖ ≤ ‖Ξ‖, ‖PL⊥ΞPL‖ ≤ ‖Ξ‖ and

rank(PLΞ) ≤ dim(L) = rank(ρ), rank(PL⊥ΞPL) ≤ dim(L) = rank(ρ).

Substituting (2.8) and (2.9) in (2.7), we get

‖ρ̂− ρ‖22 +Δ‖PL⊥ ρ̂PL⊥‖1 ≤ (1 +
√
2)Δ

√
rank(ρ)‖ρ̂− ρ‖2 +Δ‖PL⊥ ρ̂PL⊥‖1,

implying

‖ρ̂− ρ‖22 ≤ (1 +
√
2)2Δ2rank(ρ),

which completes the proof.

With a minor modification of the proof, it is easy to obtain the following more
general low rank oracle inequality that provides a way to control the estimation
error ‖ρ̂− ρ‖22 in terms of low rank oracles S ∈ D with a small approximation error
‖S − ρ‖22.

Theorem 2. Under the assumptions of Theorem 1, the following bound holds:

‖ρ̂− ρ‖22 ≤ inf
S∈D

[‖S − ρ‖22 + (1 +
√
2)2Δ2rank(S)].

Thus, the problem of bounding the Hilbert–Schmidt error ‖ρ̂−ρ‖22 is reduced to
bounding the operator norm Δ of a sum of independent Hermitian random matrices.
This will be done using noncommutative Bernstein type inequalities discussed in
the following section.

3. Bernstein type inequalities for sums of independent random
matrices

Let X1, . . . , Xn be independent Hermitian m×m random matrices. Suppose that,
for some constant U > 0, ‖Xj‖ ≤ U, j = 1, . . . , n and that EXj = 0, j = 1, . . . , n.
Denote

Sn := X1 + · · ·+Xn and Bn := ‖E(X2
1 + · · ·+X2

n)‖.

The following remarkable extension of the classical Bernstein inequality goes back
to Ahlswede and Winter [1]. The precise form of the inequality below, in particular,
of variance Bn is due to Tropp [16].
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Theorem 3. For all t > 0,

(3.1) P{‖Sn‖ ≥ t} ≤ 2m exp

{
− t2

2Bn + 2Ut/3

}
.

We will also discuss a version of Bernstein inequality in the cases when ‖Xj‖ are
not necessarily uniformly bounded, but rather have subexponential tails. Recall the
definition of Orlicz norms (see, e.g., van der Vaart and Wellner [18], p. 95). Namely,
let ψ be a convex nondecreasing function from R+ into R+ with ψ(0) = 0. For a
random variable ξ on a probability space (Ω,Σ,P), define

‖ξ‖ψ := inf

{
C > 0 : Eψ

(
|ξ|
C

)
≤ 1

}
.

The most common choices of ψ are ψ(u) = up, p ≥ 1 (in this case, the ψ-norm
is just the Lp-norm), ψ(u) = ψ1(u) := eu − 1 (subexponential tails) and ψ(u) =

ψ2(u) = eu
2 − 1 (subgaussian tails). In what follows, we assume that

(3.2) ψ(u) ≥ eu−1−u, u ≥ 1 and ψ(u) ≥ up, u ≥ 0 for some p ≥ 1.

Denote σ2 := n−1Bn.

Theorem 4. Suppose that, for some M > 0,

max
1≤j≤n

∥∥‖Xj‖
∥∥
ψ2 ≤ M.

Let δ ∈ (0, 2
ψ(1) ) and

Ū := Mψ−1

(
2

δ

M2

σ2

)
.

Then, for tŪ ≤ (e− 1)(1 + δ)Bn,

(3.3) P{‖Sn‖ ≥ t} ≤ 2m exp

{
− t2

2(1 + δ)Bn + 2Ū t/3

}

and, for tŪ > (e− 1)(1 + δ)Bn,

(3.4) P{‖Sn‖ ≥ t} ≤ 2m exp

{
− t

(e− 1)Ū

}
.

As a standard example, consider the case when ψ(u) = ψα(u) = eu
α − 1, u ≥

0, α ≥ 1. Clearly, conditions (3.2) are satisfied with p = α. Also, ψ2
α(u) ≤ e2u

α − 1.
This implies that

‖ξ‖ψ2
α
≤ 21/α‖ξ‖ψα .

Finally, we have ψ−1(u) = log1/α(1 + u).

Corollary 1. Let δ ∈ (0, 2
e−1 ),

M = M (α) = 21/α max
1≤j≤n

∥∥‖Xj‖
∥∥
ψα

and

Ū = Ū (α) = M log1/α
(
2

δ

M2

σ2
+ 1

)
.

Then bounds (3.3) and (3.4) hold.
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Note that, if for some constant U > 0, ‖Xj‖ ≤ U, j = 1, . . . , n, then, for all δ > 0,

lim sup
α→∞

M (α) ≤ U, lim sup
α→∞

Ū (α) ≤ U.

Passing in (3.3) and (3.4) to the limit when α → ∞ and then when δ → 0, yields
the bounds

P{‖Sn‖ ≥ t} ≤ 2m exp

{
− t2

2Bn + 2Ut/3

}

for tU < (e− 1)Bn and

P{‖Sn‖ ≥ t} ≤ 2m exp

{
− t

(e− 1)U

}

for tU > (e− 1)Bn, almost recovering the result of Theorem 3.

Proof. For completeness, we prove both Theorems 3 and 4. Denote λ+(A), λ−(A)
the largest and the smallest eigenvalues of A ∈ Hm. Clearly, ‖Sn‖ ≥ t if and only
if λ+(Sn) ≥ t, or λ−(Sn) ≤ −t, implying that

(3.5) P{‖Sn‖ ≥ t} ≤ P
{
λ+(Sn) ≥ t

}
+ P

{
λ−(Sn) ≤ −t

}
.

It is enough to control only one of the probabilities in the right hand side (another
one is controlled similarly). For all λ > 0, we have

(3.6) P
{
λ+(Sn) ≥ t

}
≤ P

{
tr

(
eλSn

)
≥ eλt

}
≤ e−λt

Etr
(
eλSn

)
.

To bound Etr(eλSn), we will use an approach by Tropp [16] that relies on the
following lemma due to Lieb [12]. The original approach by Ahlswede and Winter
[1] was based on Golden–Thompson inequality tr(eA+B) ≤ tr(eAeB), A,B ∈ Hm; it
gives the same bound in the i.i.d. case and a slightly weaker bound in the general
case.

Lemma 1. For all B ∈ Hm, the function

FB(S) := tr exp{B + logS}

is concave on the cone {S : S ∈ Hm, S ≥ 0}.

Tropp’s approach is based on the following bound:

(3.7) Etr
(
eλSn

)
≤ tr exp

{
logEeλX1 + logEeλX2 + · · ·+ logEeλXn

}
.

To prove (3.7), denote by En the conditional expectation given X1, . . . , Xn−1 and
use iteratively Lieb’s lemma combined with Jensen’s inequality:

Etr
(
eλSn

)
= EEntr exp

{
λSn−1 + log eλXn

}
= EEnFλSn−1

(
eλXn

)
≤ EFλSn−1

(
EeλXn

)
= Etr exp

{
λSn−1 + logEeλXn

}
= EEn−1tr exp

{
λSn−2 + logEeλXn + log eλXn−1

}
= EEn−1FλSn−2+log EeλXn

(
eλXn−1

)
≤ Etr exp

{
λSn−2 + logEeλXn−1 + logEeλXn

}
≤ . . .

≤ tr exp
{
logEeλX1 + logEeλX2 + · · ·+ logEeλXn

}
.
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In view of (3.7), it remains to bound EeλX for X = X1, . . . , Xn. Denote

φ(u) :=
eu − 1− u

u2
.

Under the assumptions EX = 0 and ‖X‖ ≤ U, the Taylor expansion yields:

EeλX = Im + Eλ2X2

[
1

2!
+

λX

3!
+

λ2X2

4!
+ . . .

]

≤ Im + λ2
EX2

[
1

2!
+

λ‖X‖
3!

+
λ2‖X‖2

4!
+ . . .

]
= Im + λ2

EX2φ(λ‖X‖) ≤ Im + λ2φ(λU)EX2,

which implies
logEeλX ≤ λ2φ(λU)EX2.

It remains to substitute this bound in (3.7) (for each of random matrices Xj):

Etr
(
eλSn

)
≤ tr exp

{
λ2φ(λU)E

(
X2

1 + · · ·+X2
n

)}
(3.8)

≤m exp
{
λ2φ(λU)‖E

(
X2

1 + · · ·+X2
n

)
‖
}
.

In view of (3.5), (3.6) and (3.8), the proof of Theorem 3 can be now completed
exactly as in the case of classical Bernstein inequality.

We now turn to the proof of Theorem 4. Let τ > 0. Again, using the Taylor
expansion we easily get that

logEeλX ≤ λ2
EX2φ(λ‖X‖)

(3.9) ≤ λ2φ(λτ)EX2 + Imλ2
E‖X‖2φ(λ‖X‖)I(‖X‖ ≥ τ).

For λ ≤ 1/M, the second term in the right hand side can be bounded as follows:

λ2
E‖X‖2φ(λ‖X‖)I(‖X‖ ≥ τ)

≤ λ2M2
E
‖X‖2
M2

φ

(
‖X‖
M

)
I

(
‖X‖
M

≥ τ

M

)

≤ λ2M2
E

(
exp

{
‖X‖
M

}
− 1− ‖X‖

M

)
I

(
‖X‖
M

≥ τ

M

)

≤ λ2M2
Eψ2

(
‖X‖
M

)(
ψ

(
τ

M

))−1

≤ λ2M2

(
ψ

(
τ

M

))−1

.

For τ = Ū , we have

M2

(
ψ

(
Ū

M

))−1

=
δσ2

2
.

Thus, we get

(3.10) λ2
E‖X‖2φ(λ‖X‖)I(‖X‖ ≥ Ū) ≤ δσ2λ

2

2
,

which, together with (3.9), yields

logEeλX ≤ λ2φ(λŪ)EX2 + Imδσ2λ
2

2
.
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Substituting this bound for X = Xj , j = 1, . . . , n into (3.7), we get that, for all
λ ≤ 1/M,

Etr
(
eλSn

)
≤m exp

{
λ2φ(λŪ)‖E

(
X2

1 + · · ·+X2
n

)
‖+ δnσ2λ

2

2

}
(3.11)

≤m exp

{
λ2φ(λŪ)Bn + δBn

λ2

2

}
≤ m exp

{
λ2φ(λŪ)(1 + δ)Bn

}
,

where we used the fact λ2φ(λŪ) ≥ φ(0)λ2 = λ2

2 . It remains to use bounds (3.5),
(3.6), (3.11) and to repeat a standard argument of the classical proof of Bern-
stein inequality to derive the bounds on tail probabilities from the bounds on the
exponential moments and to complete the proof.

4. Applications of Bernstein type inequalities

In this final section, we will use noncommutative Bernstein type inequalities to
control the size of random variable Δ involved in the error bounds of Section 2.
This would lead to error bounds with an explicit dependence on the important
parameters of the problem such as the sample size n, the size and rank of the
target matrix and the variance of the noise.

Recall that

Δ = ‖Ξ‖ =

∥∥∥∥∥n−1
n∑

j=1

YjXj − ρ

∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n∑
j=1

(〈ρ,Xj〉Xj − ρ) +
1

n

n∑
j=1

ξjXj

∥∥∥∥∥.
We will bound Δ by applying the bounds of Section 3 separately to∥∥∥∥∥ 1

n

n∑
j=1

(〈ρ,Xj〉Xj − ρ)

∥∥∥∥∥ and

∥∥∥∥∥ 1

n

n∑
j=1

ξjXj

∥∥∥∥∥.
Assume that, for some constant UX ≥ 0,

‖Xj‖ ≤ UX , j = 1, . . . , n.

Let
σ2
X := max

1≤j≤n
‖EX2

j ‖.

Recall that E(ξj |Xj) = 0 and suppose that for some constant σ2
ξ ≥ 0

E(ξ2j |Xj) ≤ σ2
ξ , j = 1, . . . , n a.s.

Finally, we will assume that either, for some constant Uξ ≥ 0,

|ξj | ≤ Uξ, j = 1, . . . , n a.s.,

or, for some α ≥ 1 and for some constant M
(α)
ξ ≥ 0,

21/α‖ξj‖ψα ≤ M
(α)
ξ , j = 1, . . . , n.

In the first case, set
UX,ξ := UXUξ;
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in the second case, set

UX,ξ := UXM
(α)
ξ log1/α

(
2
UXM

(α)
ξ

σXσξ
+ 1

)
.

Note also that σX , σξ in the above definitions can be replaced by upper bounds not

exceeding UX ,M
(α)
ξ , respectively.

The following proposition is a direct and easy consequence of Theorem 3 and
Corollary 1.

Proposition 1. There exists a numerical constant C > 0 such that for all t > 0
with probability at least 1− e−t

∥∥∥∥ 1

n

n∑
j=1

ξjXj

∥∥∥∥ ≤ C

[
σXσξ

√
t+ log(2m)

n

∨
UX,ξ

t+ log(2m)

n

]
.

Suppose that there exists a constant Uρ,X ≥ 0 such that

|〈ρ,Xj〉| ≤ Uρ,X , j = 1, . . . , n a.s.

Then the following proposition is an immediate consequence of Theorem 3.

Proposition 2. There exists a numerical constant C > 0 such that for all t > 0
with probability at least 1− e−t

∥∥∥∥∥ 1

n

n∑
j=1

(〈ρ,Xj〉Xj − ρ)

∥∥∥∥∥ ≤ C

[
σXUρ,X

√
t+ log(2m)

n

∨
UXUρ,X

t+ log(2m)

n

]
.

Let t > 0 and define

εn,m := σX(σξ ∨ Uρ,X)

√
t+ log(2m)

n

∨
(UX,ξ ∨ UXUρ,X)

t+ log(2m)

n
.

The next statement follows from Theorems 1, 2 and Propositions 1, 2.

Corollary 2. Suppose that D ⊂ S is a closed convex set, ρ ∈ D and ρ̂ is defined by
(2.1). Then, there exists a numerical constant C > 0 such that the following bound
holds with probability at least 1− e−t :

‖ρ̂− ρ‖22 ≤ Cmin(εn,m, ε2n,mrank(ρ)).

Moreover, with the same probability,

‖ρ̂− ρ‖22 ≤ inf
S∈D

[‖S − ρ‖22 + Cε2n,mrank(S)].

We now turn to a popular model of sampling from an orthonormal basis. Namely,
let {E1, . . . , Em2} be an orthonormal basis of Hermitian matrices and let Π be the
uniform distribution in {E1, . . . , Em2}. Let X be a random matrix sampled from Π.
Conditionally on the random matrixX with spectral representation

∑
j λjPj , where

{λj} are the eigenvalues and {Pj} are the spectral projectors of X, let the random
variable Y take values λj with probabilities tr(ρPj) (for the system prepared in
the state ρ). We will assume that (X1, Y1) . . . , (Xn, Yn) are i.i.d. copies of (X,Y ).
Denote

U := max
1≤j≤m2

‖Ej‖.
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Clearly, U ≤ 1 since ‖Ej‖ ≤ ‖Ej‖2 = 1. Under this definition, we have UX = U
and

|〈ρ,Xj〉| ≤ ‖ρ‖1‖Xj‖ ≤ ‖Xj‖ ≤ U, j = 1, . . . , n

since ‖ρ‖1 = tr(ρ) = 1. Thus, we can set Uρ,X = U. We also have that |Yj | ≤ U
(since the eigenvalues of Xj are in [−U,U ]) and |ξj | ≤ 2U. Thus, we can take
Uξ = 2U and replace σξ by its upper bound 2U. As a result, UX,ξ = 2U2. Finally,
for an arbitrary orthonormal basis {e1, . . . , em} of Cm, the following holds:

‖EX2‖ = sup
v∈Cm

E
〈
X2v, v

〉
= sup

v∈Cm

E|Xv|2 = sup
v∈Cm

E

m∑
k=1

|〈Xv, ek〉|2

= sup
v∈Cm

E

m∑
k=1

|〈X, v ⊗ ek〉|2 = sup
v∈Cm

m−2
m∑

k=1

m2∑
j=1

|〈Ej , v ⊗ ek〉|2

= sup
v∈Cm

m−2
m∑

k=1

‖v ⊗ ek‖22 = m−2 sup
v∈Cm

m∑
k=1

|v|2|ek|2 = m−1.

Therefore, σX = m−1/2.
Note that, in the case of sampling from an orthonormal basis, we have

‖A‖2L2(Π) = m−2‖A‖22, A ∈ Hm

and E(X ⊗ X) = m−2IdHm . Thus, the problem has to be rescaled in order to
apply Corollary 2. To this end, let X ′

j = mXj and Y ′
j = mYj . The estimator ρ̂

defined by (2.1) should be now based on the data (X ′
1, Y

′
1), . . . (X

′
n, Y

′
n). In terms

of (X1, Y1), . . . , (Xn, Yn), it can be written as

(4.1) ρ̂ := argminS∈D

[
m−2‖S‖22 − 2

〈
n−1

n∑
j=1

YjXj , S

〉]
.

A natural measure of its error is

‖ρ̂− ρ‖2L2(Π) = m−2‖ρ̂− ρ‖22.

Note that σX′ = mσX = m1/2, UX′ = mUX = mU and Uρ,X′ = mUρ,X = mU.
Denoting ξ′j = Y ′

j − tr(ρX ′
j), we also have Uξ′ = mUξ = 2mU, σξ′ = mσξ ≤ 2mU

and UX′,ξ′ = 2m2U2. This yields the following formula for εn,m:

εn,m = m3/2U

√
t+ log(2m)

n

∨
m2U2 t+ log(2m)

n
.

Under the assumption that

U2m(t+ log(2m))

n
≤ 1,

we have

εn,m = m3/2U

√
t+ log(2m)

n
,

and, it follows from Corollary 2 that with probability at least 1− e−t,

(4.2) ‖ρ̂− ρ‖2L2(Π) ≤ C

(
U

√
t+ log(2m)

mn

∧ mU2rank(ρ)(t+ log(2m))

n

)
.



Low rank matrix recovery and noncommutative Bernstein inequalities 225

and

(4.3) ‖ρ̂− ρ‖2L2(Π) ≤ inf
S∈D

[
‖S − ρ‖2L2(Π) + C

mU2rank(S)(t+ log(2m))

n

]
.

As an interesting special example, consider the case of Pauli basis. Recall that
Pauli matrices are defined as

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
and σ4 :=

(
1 0
0 1

)
.

The Pauli basis in the space H2 consists of the matrices Wj :=
1√
2
σj , j = 1, 2, 3, 4. If

now m = 2k, k ≥ 1, then the Pauli basis in Hm consists of all tensor products (here
⊗means the tensor product of linear transformations)Wi1⊗· · ·⊗Wik , (i1, . . . , ik) ∈
{1, 2, 3, 4}k. This provides a measurement model for a k qubit system in quantum
state and quantum process tomography (see Nielsen and Chuang [13], Section 8.4.2).

In the case of Pauli basis, we have that ‖Wi‖ ≤ 1√
2
and, as a consequence,

‖Wi1 ⊗ · · · ⊗Wik‖ ≤ 2−k/2 ≤ m−1/2, (i1, . . . , ik) ∈ {1, 2, 3, 4}k. Thus, U = m−1/2

and bounds (4.2), (4.3) imply that with probability at least 1− e−t

(4.4) ‖ρ̂− ρ‖2L2(Π) ≤ C

(
1

m

√
t+ log(2m)

n

∧ rank(ρ)(t+ log(2m))

n

)
.

and

(4.5) ‖ρ̂− ρ‖2L2(Π) ≤ inf
S∈D

[
‖S − ρ‖2L2(Π) + C

rank(S)(t+ log(2m))

n

]
.
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