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On the estimation of smooth densities by

strict probability densities at optimal

rates in sup-norm
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University of Connecticut and University of Mississippi

Abstract: It is shown that the variable bandwidth density estimators pro-
posed by McKay [Canad. J. Statist. 21 (1993) 367–375; Variable kernel meth-
ods in density estimation (1993) Queen’s University] following earlier findings
by Abramson [Ann. Statist. 10 (1982) 1217–1223] approximate density func-
tions in C4(Rd) at the minimax rate in the supremum norm over bounded sets
where the preliminary density estimates on which they are based are bounded
away from zero. A somewhat more complicated estimator proposed by Jones,
McKay and Hu [Ann. Inst. Statist. Math. (1994) 46 521–535] to approximate
densities in C6(R) can also be shown to attain minimax rates in sup norm over
the same kind of sets. These estimators are strict probability densities.

1. Introduction and statement of results

Let Xi, i ∈ N, be independent identically distributed (i.i.d.) observations with den-
sity function f(t), t ∈ R (to be replaced below by t ∈ R

d). Setting K to be a
symmetric probability kernel satisfying some smoothness and differentiability prop-
erties, Abramson [1] proposed the following ‘ideal’ or ‘oracle’ variable bandwidth
kernel density estimator:

(1.1) fA(t;hn) =
1

nhn

n∑
i=1

γ(t,Xi)K
(
h−1
n γ(t,Xi)(t−Xi)

)
,

where, γ(t, s) = (f(s) ∨ f(t)/10)1/2, which is made into a ‘real’ estimator by re-
placing f with a preliminary estimator. In words, in Abramson’s estimator the
window-width about each observation Xi is inversely proportional to the square
root of the density f at Xi unless f(Xi) is too small, in which case the modifica-
tion γ(t,Xi) prevents against the possibility that the observation Xi will exert too
much influence on the estimate of f(t) if it is far from t. This estimator adapts to
the local density of the data and Abramson showed that, while the variance of his
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estimator is pointwise of the same order as that of the regular kernel density esti-
mator, its bias is asymptotically of the order of h4

n, assuming f has four uniformly
continuous derivatives and f(t) �= 0 (recall that the bias achieved by a symmetric
non-negative kernel on such densities is of the order of only h2

n). This ideal estimator
is non-negative but it does not integrate to 1. Terrell and Scott [21] and McKay [16]
constructed different examples showing that Abramson’s ideal estimator without
the ‘clipping filter’ (f(t)/10)1/2 on f1/2(Xi), which is a true probability density,
may have a bias of order much larger than h4

n, and in fact their examples show
that clipping is necessary for such a bias reduction. Hall, Hu and Marron [10] then
proposed the ideal estimator

(1.2) fHHM (t;hn) =
1

nhn

n∑
i=1

K

(
t−Xi

hn
f1/2(Xi)

)
f1/2(Xi)I

(
|t−Xi| < hnB

)
,

where B is a fixed constant; see also Novak [18] for a similar estimator. This esti-
mator is non-negative and achieves the desired bias reduction but, like Abramson’s,
it does not integrate to 1.

McKay [15, 16] discovered a smooth clipping procedure which solves the problem
of obtaining a non-negative ideal estimator that integrates to 1 and that has a bias
of the order of h4

n for densities with four continuous derivatives. He used in (1.1) a
function γ(t, s) = γ(s) not dependent on t, of the form

(1.3) γ(s) := α(f(s)) := cp1/2(f(s)/c2),

where the function p is at least four times differentiable and satisfies p(x) ≥ 1 for
all x and p(x) = x for all x ≥ t0 for some 0 < t0 < ∞, and 0 < c < ∞ is a fixed
number. Then, McKay’s ideal estimator is

(1.4) fMcK(t;hn) =
1

nhn

n∑
i=1

α(f(Xi))K
(
h−1
n α(f(Xi))(t−Xi)

)
.

McKay [16] and Jones, McKay and Hu [11] also show that, using γ(s, h) = α(f(s))×
(1 + h2β(s)), with α as above and a convenient function β that depends on f , f ′

and f ′′, a bias of the order of h6
n can be achieved on densities that are six times

differentiable. This new estimator may be much less practical than McKay’s since,
in order to implement it, one has to obtain preliminary estimates not only of f
but also of its first two derivatives; moreover, these authors claim that preliminary
simulations with the ideal estimators do not show significant gains by this new
estimator over (1.4).

Samiuddin and El-Sayyad [19] achieved the same results by shifting the centers of
the windows by random quantities. See Jones, McKay and Hu [11] who show that,
by combining the two methods one can obtain an infinite number of bias reducing
estimators. However, they argue that among these, the most practical is McKay’s
modification of Abramson’s estimator based on (1.4), followed, at a distance, by the
one for six times differentiable functions just mentioned above (see (1.12) below),
and we will pay attention only to these two estimators in this article.

The estimators f̂(t) resulting from these two ideal estimators (see (1.6) and
(1.12)) are non-linear and it is difficult to measure their discrepancy from f(t).
After Hall and Marron [9], this task is divided into two parts, (a) the study of the
ideal estimator, and (b) the study of the discrepancy between the ideal and the real
estimators. The literature emphasizes the bias part of the ideal estimators, and the
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work of McKay [15, 16] and Jones, McKay and Hu [11] on this is final. Regard-
ing the variance part of the ideal estimators, only Giné and Sang [7] consider the
uniform closeness of the (ideal) estimator to its mean, and this only for the esti-
mator (1.2) of Hall, Hu and Marron [10]. The discrepancy between the ideal and
the corresponding real estimators turns out to be exactly of the same order as the
difference between the ideal and the true density f , not less, and this discrepancy
was first considered in detail by Hall and Marron [9] and Hall, Hu and Marron [10],
who proved that it is asymptotically of the order of n−4/9, pointwise and in prob-
ability for bounded densities with four bounded derivatives. McKay [16] adapted
their method of proof and corrected some inaccuracies from Hall and Marron [9]
to show that this discrepancy for the multidimensional analogue of (1.4) is of the
order of n−4/(8+d), also pointwise and in probability, and for dimension d < 6. Giné
and Sang [7] showed that, in the case of the Hall, Hu and Marron estimator and
in dimension 1, the discrepancy is of the order of ((logn)/n)4/9 uniformly almost
surely, as well as uniformly over densities with fixed but arbitrary bounds on their
sup norm and on the sup norms of their first four derivatives, and (unnecessary)
undersmoothing of the preliminary estimator was used in order to simplify several
arguments. In this article we prove similar results without undersmoothing, both
for the McKay [16] estimator based on the generalization of (1.4) to R

d, for any
dimension d < ∞, and for the estimator (1.12) below (this last, only in dimension
1). In order to obtain these results we use empirical process theory, particularly
and repeatedly, Talagrand’s [20] exponential inequality for empirical processes and,
also at an important instance, an exponential inequality of Major [12] for canon-
ical U -processes, tools that were not available to previous authors, and that were
introduced in density estimation respectively by Einmahl and Mason [3] and Giné
and Mason [6]. We now describe our results.

We first consider the real estimator corresponding to the multidimensional ver-
sion of (1.4),

(1.5) fMcK(t;h2,n) =
1

nhd
2,n

n∑
i=1

K

(
t−Xi

h2,n
α(f(Xi))

)
αd(f(Xi))

with α(x) = cp1/2(c−2x), x ≥ 0, as in (1.3), that is

(1.6) f̂(t;h1,n, h2,n) =
1

nhd
2,n

n∑
i=1

K

(
t−Xi

h2,n
α(f̂(Xi;h1,n))

)
αd(f̂(Xi;h1,n)),

where f̂(x;h1,n) is the classical kernel density estimator

(1.7) f̂(t;h1,n) =
1

nhd
1,n

n∑
i=1

K

(
t−Xi

h1,n

)
.

Convergence will be uniform over the regions

(1.8) Dr = Dr(f) := {t ∈ R
d : f(t) > r > t0c

2, ‖t‖ < 1/r},

and

(1.9) D̂n
r (f) =

{
t : f̂(t;h1,n) > 2r > t0c

2, ‖t‖ < 1/r
}
,

where, c and t0 are the constants that appear in the clipping function γ in (1.3).
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The following notation will be convenient: PC will denote the set of all probability
densities on R

d that are uniformly continuous and are bounded by C < ∞, and PC,k

will denote the set of densities on R
d which together with their partial derivatives

of order k or lower are bounded by C < ∞ and are uniformly continuous. The
dependence on the dimension d will be left implicit both for the regions Dr and for
the sets of densities PC,k.

Here is our first theorem:

Theorem 1. Assume that the kernel K on R
d is non-negative, integrates to 1

and has the form K(t) = Φ(‖t‖2) for some real twice boundedly differentiable even
function Φ with support contained in [−T, T ], T < ∞. Let α(f(x)) be defined by
(1.3) for a nondecreasing clipping function p(s) (p(s) ≥ 1 for all s and p(s) = s for
all s ≥ t0 ≥ 1) with five bounded and uniformly continuous derivatives, and constant
c > 0. Set h2,n = ((log n)/n)1/(8+d) and h1,n = ((log n)/n)1/(4+d), n ∈ N. Then,

the estimator f̂(t;h1,n, h2,n) given by (1.6) and (1.7) with the kernel, bandwidths
and function α just described, satisfies

sup
t∈Dr(f)

∣∣f̂(t;h1,n, h2,n)− f(t)
∣∣

(1.10)

= Oa.s.

((
logn

n

)4/(8+d))
uniformly in f ∈ PC,4

and

sup
t∈D̂n

r

∣∣f̂(t;h1,n, h2,n)− f(t)
∣∣

(1.11)

= Oa.s.

((
logn

n

)4/(8+d))
uniformly in f ∈ PC,4.

We should recall that, given measurable functions Zn,f (X1, . . . , Xn), Xi the co-
ordinate functions of (Rd)N, f ∈ D, D a collection of densities on R

d, we say that
the collection of random variables Zn,f (X1, . . . , Xn) is asymptotically a.s. of the
order of an uniformly in f ∈ D if there exists C < ∞ such that

lim
k→∞

sup
f∈D

(Pf )
N

{
sup
n≥k

1

an
|Zn,f (X1, . . . , Xn)| > C

}
= 0,

where dPf (x) = f(x) dx, and that it is oa.s.(an) uniformly in f if this limit holds
for every C > 0. In the text we will use Prf for (Pf )

N, or even Pr if f is understood
from the context.

Here is an example of a five times differentiable clipping function p for which
t0 = 2:

p(t) =

⎧⎪⎨
⎪⎩
1 + t6

64 (1− 2(t− 2) + 9
4 (t− 2)2 − 7

4 (t− 2)3 + 7
8 (t− 2)4) if 0 ≤ t ≤ 2,

t if t ≥ 2,

1 if t ≤ 0.

This is based on McKay’s [16] example of a four times differentiable clipping func-
tion. Other examples of such functions are possible, and in particular see McKay
[16] for an infinitely differentiable one.

In R, the ideal estimator with bias h6
n = h6

2,n that we will consider has the form

(1.12) fJKH(t;h2,n) =
1

nh2,n

n∑
i=1

K

(
t−Xi

h2,n
γh2,n(Xi)

)
γh2,n(Xi),
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where

γh2,n(x) =
α(f(x))

1 + h2
2,nβ(x)

with α(f(x)) = cp1/2(c−2f(x)),

(1.13)

β(x) =
τ4[f

′′(x)f(x)− 2(f ′(x))2]

24τ2α6(f(x))
, τr =

∫
K(x)|x|r dr, r > 0.

The true estimator corresponding to (1.12) is

f̂(t;h1,n, h2,n, h3,n, h4,n)

=
1

nh2,n

n∑
i=1

K

(
t−Xi

h2,n
γ̂(Xi;h1,n, h2,n, h3,n, h4,n)

)
(1.14)

× γ̂(Xi;h1,n, h2,n, h3,n, h4,n),

where

γ̂(x;h1,n, h2,n, h3,n, h4,n) =
α̂(x;h1,n)

1 + h2
2,nβ̂(x;h1,n, h3,n, h4,n)

,

α̂(x;h1,n) := α(f̂(x;h1,n)),(1.15)

β̂(x;h1,n, h3,n, h4,n) =
τ4[fG2(x;h4,n)f̂(x;h1,n)− 2(fG1(x;h3,n))

2]

24τ2α̂6(x;h1,n)
.

Here f̂(x;h1,n) is the classical kernel density estimator (1.7), and fG1 and fG2 are
the estimators of f ′ and f ′′ given by

fG1(x;h3,n) =
1

nh2
3,n

n∑
i=1

G′
(
x−Xi

h3,n

)
,

(1.16)

fG2(x;h4,n) =
1

nh3
4,n

n∑
i=1

G′′
(
x−Xi

h4,n

)
,

where G is a fourth order kernel, that is, it integrates to one and is orthogonal to
xk for k = 1, 2, 3.

Theorem 2. Assume the kernel K is as in Theorem 1. Assume that the fourth
order kernel G is supported by [−TG, TG] for some TG < ∞, is twice continuously
differentiable, is symmetric about zero and integrates to 1. Let α(f(x)) be defined
by (1.3) for a nondecreasing clipping function p(s) (p(s) ≥ 1 for all s and p(s) =
s for all s ≥ t0 ≥ 1) with seven bounded and uniformly continuous derivatives,
and constant c > 0, and let γ and β be as in (1.13). Set h1,n = ((log n)/n)1/5,

h2,n = h4,n = ((log n)/n)1/13 and h3,n = ((log n)/n)1/11, n ∈ N. Let γ̂, α̂, β̂ be

as in (1.15) for these bandwidths, and let f̂ be defined by (1.14) with the kernels,
bandwidths and function γ̂ just described. Then we have

sup
t∈Dr

∣∣f̂(t;h1,n, h2,n, h3,n, h4,n)− f(t)
∣∣ = Oa.s.

((
log n

n

)6/13)
(1.17)

uniformly in f ∈ PC,6.

Further, for the region defined in (1.9), we have

sup
t∈D̂n

r

∣∣f̂(t;h1,n, h2,n, h3,n, h4,n)− f(t)
∣∣ = Oa.s.

((
logn

n

)6/13)
(1.18)

uniformly in f ∈ PC,6.
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In this article we only prove the part of this theorem corresponding to the ideal
estimator. The discrepancy between ideal and real estimators is similar to the anal-
ogous part of the proof of Theorem 1 but it is quite involved, and can be consulted
in http://arxiv.org/abs/1006.0971.

2. Bias and variance of the ideal estimator

In this section we consider the ideal estimators fMcK and fKJH in several dimen-
sions. We a) describe the bias reduction for the ideal estimators, mainly following
McKay [15, 16] (see also Jones, McKay and Hu [11]), and b) show that the uniform
rates of concentration of the ideal estimators about their means, not surprisingly,
turn out to be the same as for regular kernel density estimators in R

d (Giné and
Guillou [5]; Deheuvels [2] in one dimension).

2.1. Uniform bias expansions

Our ideal estimator is

(2.1) f̄(t;hn) = f̄n(t;hn) =
1

nhd
n

n∑
i=1

γd
h(Xi)K

(
h−1
n γh(Xi)(t−Xi)

)
, t ∈ R

d.

Since γ = γh may depend on h, in order to handle this carefully it is better to
assume that γ depends on another variable δ and eventually have δ = h:

(2.2) f̄n(t;h, δ) =
1

nhd

n∑
i=1

γd
δ (Xi)K

(
h−1γδ(Xi)(t−Xi)

)
, t ∈ R

d.

The following proposition and its proof are contained in McKay ([16], Theo-
rems 2.10, 1.1 and 5.13) (see also Hall [8], and particularly Jones, McKay and Hu
[11] (Theorem A.1) and McKay [15]). We sketch McKay’s proof in the case d = 1
for the reader’s convenience.

Notation: we say that a function g is in Cl(Ω) if itself and its first l derivatives
are bounded and uniformly continuous on Ω. More notation: for v = (v1, . . . , vd) ∈
(N ∪ {0})d, we set |v| =

∑d
i=1 vi, Dv := Dv1

x1
◦ · · · ◦ Dvd

xd
, v! = v1! · · · vd! and

τv =
∫
Rd u

v1
1 · · ·uvd

d K(u) du.

Proposition 1 (McKay [15, 16]). Let the kernel K : Rd �→ R be symmetric about
zero separately in each coordinate, have bounded support and integrate to 1. Assume
the density f is in Cl(Rd). Assume γδ(t) ≥ c > 0 for some c > 0 and all t ∈ R

d

and 0 ≤ δ ≤ δ0, for some δ0 > 0, and that the function γ(t, δ) := γδ(t) is in
Cl+1(Rd × [0, δ0]). Then we have

(2.3) Ef̄n(t;h, δ) =

l∑
k=0

ak,δ(t)h
k + o(hl)

as h → 0, uniformly in t ∈ R
d and 0 ≤ δ ≤ δ1 for some δ1 > 0, and the set of

functions ak,δ, which are uniformly bounded and equicontinuous, are defined as

(2.4) a2k+1,δ(t) = 0, a2k,δ(t) =
∑

|v|=2k

τv
v!
Dv

(
f(t)

γ2k
δ (t)

)
,

for k ≤ l/2, in particular, a0,δ(t) = f(t).

http://arxiv.org/abs/1006.0971
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Proof. (For d = 1.) We refer to Lemma 2.11 in McKay [16] for the details in any
dimensions, whereas here we only consider the case d = 1. Since the functions
γδ are bounded away from zero and their derivatives are bounded (uniformly in
δ), there exists δ1 > 0 such that γδ(t − v) − vγ′

δ(t − v) is bounded away from
zero for all t ∈ R, δ ∈ [0, δ0], and v ∈ [−δ1, δ1]. Hence, for each t ∈ R and 0 ≤
δ ≤ δ0, the function v �→ Ut,δ(v) := vγδ(t − v) is invertible on the neighborhood
[−δ1, δ1] of v = 0. These inverse functions, say Vt,δ(u), are l+1 times differentiable
with continuous derivatives, with respect to the three variables (this can be seen
directly by differentiation, or using the implicit function theorem as in McKay [16]
Theorem 2.10 and Lemma 2.11 for x = (t, δ)). If the support of K is [−T, T ] then
K(h−1γδ(s)(t − s)) = 0 unless |t − s| ≤ hT/c. This implies that the change of
variables

hz = (t− s)γδ
(
t− (t− s)

)
, that is t− s = Vt,δ(hz),

in the following integral is valid for all h small enough

Ef̄(t;h, δ) =
1

h

∫
γδ(s)f(s)K

(
t− s

h
γδ(s)

)
ds

= −
∫

γδ(t− Vt,δ(hz))f
(
t− Vt,δ(hz)

)dVt,δ(hz)

d(hz)
K(z) dz.

Now, the first statement in the proposition follows by developing the function

γδ(t − Vt,δ(hz))f(t − Vt,δ(hz))
dVt,δ(hz)
d(hz) into powers of hz and integrating, on ac-

count of the compactness of the domain of integration (z ∈ [−T, T ]) and the dif-
ferentiability properties of f and γδ. (Note that the presence of dV (hz)/d(hz) in
the integrand requires that the function V be l + 1 times differentiable in order to
obtain differentiability of the integrand up to the l-th order, necessary for (2.3).)

Let ψ be an infinitely differentiable function of bounded support. Then, changing
variables (t = s + hu), developing ψ, changing variables once more (w = uγδ(s)))
and integrating by parts, we obtain∫

ψ(t)Ef̄(t;h, δ) dt =

∫
ψ(s)f(s) ds+

l∑
k=1

(−1)k
τkh

k

k!

∫
ψ(s)

(
f(s)

γk
δ (s)

)(k)

ds

+o(hl),

and note that, by symmetry, τk = 0 if k is odd. But by (2.3),∫
ψ(t)Ef̄(t;h, δ) dt =

l∑
k=0

hk

∫
ψ(t)ak,δ(t) dt+ o(hl),

and (2.4) follows by comparing the coefficients of hk in both expansions.

With a slightly less simple proof, one can replace the bounded support hypothesis
on K by

∫
(1 + |x|l)K(x) dx < ∞, as done in the above mentioned references.

Corollary 1 (McKay [15, 16]). Let f be a density in C4(Rd), let p be a clipping
function in C5(R), set α(f(t)) = cp1/2(c−2f(t)) for some c > 0, and define f̄(t, h)
by equation (2.1) with γ(s) = α(f(s)), that is f̄(t;h) = fMcK(t;h) (see (1.5)). Let
Dr be as in (1.8). Then,

(2.5) EfMcK(t;h) = f(t) +

(∑
|v|=4

τvDv(1/f)/v!

)
h4 + o(h4) = f(t) +O(h4)

as h → 0, uniformly on Dr.
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Proof. For x ∈ Dr, γ(t) = cp1/2(c−2f(t)) = f1/2(t), so that, by equation (2.4),
a2(x) = 0 on Dr. So, the corollary follows from the previous proposition.

Corollary 2 (McKay [15], Jones, McKay and Hu [11]). Let f be a density in
C6(R). Let p be a clipping function in C7(R) and, for some c > 0, set α(f(t)) =
cp1/2(c−2f(t)) and

β(t) =
τ4[f

′′(t)f(t)− 2(f ′(t))2]

24τ2α6(t)
.

Define

(2.6) γδ(t) =
α(t)

1 + δ2β(t)
,

and, consider f̄n(t;h, h), the estimator defined by (2.2) with this γδ and with δ = h,
that is f̄n(t;h, h) = fJKH(t;h) (see (1.14)). Let Dr be as in (1.8) for dimension
d = 1. Then,

EfJKH(t;h)

= f(t) + h6

{
1

2
τ2(β

2)′′(t) +
1

6
τ4

(
β

f

)(4)

(t) +
1

720
τ6

(
1

f2

)(6)

(t)

}
+ o(h6)(2.7)

= f(t) +O(h6)

as h → 0, uniformly on Dr.

Proof. By definition, β(t) = τ4[f
′′(t)f(t)−2(f ′(t))2]

24τ2f3(t) = − τ4
24τ2

( 1f )
′′(t) and α(f(t)) =

f1/2(t) on Dr, and the corollary follows by direct application of the previous propo-
sition.

2.2. Rate of uniform deviation from the mean

The idea of the next proposition and its proof goes back to a result of Giné and
Guillou [5] who obtain the almost sure exact discrepancy rate between kernel den-
sity estimators in R

d and their expected values, uniformly on the whole space.
A proposition closer to the one below was proved in Giné and Sang [7] for the Hall-
Hu-Marron estimator, and Mason and Swanepoel [14] (see also Mason [13]) proved a
general theorem that also yields the result, even with uniformity in bandwidth. The
proof itself is a direct and straightforward application of the famous Talagrand’s
exponential inequality, in the version in Einmahl and Mason [3] (inequality A.1
combined with Proposition A.1), and particularly in Giné and Guillou ([4], Propo-
sition 2.2; [5], Corollary 2.2). This version of Talagrand’s inequality turns out to
be as well the main component in the proofs of all the above mentioned results.
Before proving the proposition we collect the assumptions needed and present a
key lemma.

Assumptions 1. The sequence hn has the form

(2.8) hn = ((log n)/n)η

for some 0 < η < 1/d. The kernel K has the form K(t) = Φ(‖t‖2), where Φ is
bounded, has support on [0, T ] for some T < ∞ and is of bounded variation and left
or right continuous. f is a bounded density function, and γh(x) = α(x)/(1+h2β(x)),
where the functions α and β are continuous and bounded, α is bounded away from
zero, and 0 < h ≤ 1/(2‖β‖∞)1/2. The ideal estimator f̄(t;hn) = f̄n(t) is defined,
with these kernel, function γh and bandwidths hn, as in (2.1).
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All these assumptions can be weakened, but this is all we need in this article.
We recall that N(K, d, ε), the ε covering number of the metric or pseudo-metric

space (K, d), is defined as the smallest number of (open) d-balls of radius not ex-
ceeding ε needed to cover K. Also, a collection of measurable functions K on a
measurable space (S,S) is of V C type relative to an envelope F (a measurable
function F such that F (s) ≥ |f(s)| for all s ∈ S and f ∈ K) if there exist finite
constants A, v such that, for all probability measures Q on (S,S),

(2.9) N(K, L2(Q), ε) ≤
(
A‖F‖L2(Q)

ε

)v

, 0 < ε ≤ 2 sup
f,g∈K

‖f − g‖L2(Q).

All but one among the classes of functions that we will consider in this article can
be shown to be of V C type using the following lemma, whose proof is omitted
because it is a variation on Lemma 4 of Giné and Sang [7], and whose idea comes
from Nolan and Pollard [17] (inexplicably, we failed to mention this source in Giné
and Sang [7]).

Lemma 1. Let K, f and γh satisfy Assumptions 1. Let G be a uniformly bounded
V C type class of measurable functions on R

d with respect to a constant envelope G
and admitting constants A1, v1 in equation (2.9). Let K be the class of functions

(2.10) K =

{
K

(
t− ·
h

γh(·)
)
g(·) : t ∈ R

d, 0 < h < 1/(2‖β‖∞)1/2, g ∈ G
}
.

Then, there exists a universal constant R such that for every Borel probability mea-
sure Q on R

d,

(2.11) N(K, L2(Q), ε) ≤
(
(R ∨A1)‖Φ‖V G

ε

)8d+20+v1

where ‖Φ‖V is the total variation norm of Φ, that is, K is a bounded class of
functions of VC type with envelope ‖Φ‖V G and admitting characteristic constants
A = R ∨A1 and v = 8d+ 20 + v1, independent of f .

This lemma is important for us because it allows direct application of a version
of Talagrand’s [20] inequality e.g. in the form given in Einmahl and Mason [3] or
in Giné and Guillou [4, 5], to the effect that, if P is a probability measure on a
measurable space (S,S) and Xi : S

N �→ S are the coordinate functions of SN, which
are i.i.d. with law P , and if a class F of functions is bounded, countable and of VC
type for an envelope F , then there exist 0 < Ci < ∞, 1 ≤ i ≤ 2, depending only on
v and A such that, for all λ ≥ 1 ∨ 2C1 and all t satisfying

(2.12) C1

√
nσ

√
log

2‖F‖∞
σ

≤ t ≤ λnσ2

‖F‖∞
,

we have

(2.13) Pr

{
sup
g∈F

∣∣∣∣∣
n∑

i=1

(g(Xi)− Pg)

∣∣∣∣∣ > t

}
≤ C2 exp

(
− t2

C2λnσ2

)
,

where ‖F‖∞ ≥ σ2 ≥ supg∈F VarP (g). The class K is not countable, but the con-
tinuity properties of the functions defining it imply that the sup over g ∈ K of∣∣∣∑k

i=1(g(Xi)− Pg)
∣∣∣ is in fact a countable supremum. Whenever this will happen

in this article we will say that the class is measurable.
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Proposition 2. Under the hypotheses in Assumptions 1,

sup
t∈Rd

|f̄(t;hn)− Ef̄(t;hn)| = ‖f̄n − Ef̄n‖∞ = Oa.s.

(√
logn

nhd
n

)

uniformly over all densities f such that ‖f‖∞ ≤ C, for any 0 < C < ∞, that is,
there exists L < ∞ such that, if PC is the set of these densities, then

lim
k→0

sup
f∈PC

Prf

⎧⎨
⎩sup

n≥k

√
nhd

n

logn
||f̄n − Ef̄n||∞ > L

⎫⎬
⎭ = 0.

Proof. We have:

Pr

{√
nhd

n

log h−1
n

‖f̄n − Ef̄n‖∞ > λ

}

= Pr

{
sup
t∈Rd

∣∣∣∣∣
n∑

i=1

[
K

(
t−Xi

h
γh(Xi)

)
γd
h(Xi)(2.14)

− EK

(
t−Xi

h
γh(Xi)

)
γd
h(Xi)

]∣∣∣∣ > λ
√

nhd
n logn

}

for any λ > 0. Using Lemma 1 and that the class of functions G = {γd
h : 0 < h ≤

1/(2‖β‖∞)1/2} is bounded by 2d‖α‖d∞ and is clearly of VC type with v = 1 since

|( α(x)
1+h2

1β(x)
)d − ( α(x)

1+h2
2β(x)

)d| ≤ 2d6d‖α‖d∞‖β‖1/2∞ |h1 − h2|, we see that the class of

functions K defined as in (2.10) using this G and the kernel K and the functions γh
from this proposition, is V C by Lemma 1 and, since it contains the classes

(2.15) Fh =

{
K

(
t− ·
h

γh(·)
)
γd
h(·) : t ∈ R

d

}
, h > 0,

that these classes are all V C and admit the same constants A and v as K. The
continuity properties of K and γh imply that these classes are measurable. Since
0 < ν := (2/3) infx α(x) ≤ ‖γh‖∞ ≤ 2‖α‖∞ < ∞, we have, by the usual change of
variables u = (t− x)/h,

(2.16)

∫
Rd

K2

(
t− x

h
γ(x)

)
γ2d(x)f(x) dx ≤ 2d(2T 1/2/ν)d‖K‖2∞‖f‖∞‖α‖2d∞hd.

So, we can take σ2
h := C(K,α)Chd with C(K,α) = 2d(2T 1/2/ν)d||K||2∞||α||2d∞,

assuming f ∈ PC . Take now h = hn satisfying (2.8). If C1 and C2 are the constants
in Talagrand’s inequality (2.13) common to all the classes Fh, it is then clear that
there is n ≥ n0, n0 large enough, so that there exists λ >

√
C2C(K,α)C such that,

for all n ≥ n0 (note that log(AU/σhn) � c logn)

(2.17) C1

√
nσhn

√
log

AU

σhn

< λ
√
nhd

n logn � nσ2
hn

.

Then, Talagrand’s inequality (2.13) applied in (2.14) gives

∑
n≥n0

sup
f∈PC

Pr

⎧⎨
⎩
√

nhd
n

logn
||f̄n − Ef̄n||∞ > λ

⎫⎬
⎭

(2.18)

≤ C2

∑
n

exp

(
− λ2 logn

C2C(K,α)C

)
< ∞.
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Corollary 1 in Section 2.1 shows that the ideal estimator fMcK(t;h2,n) from (1.5)
has bias of the order of h4

2,n uniformly in t ∈ Dr and in f ∈ PC,4, and Proposition 2
(with β ≡ 0 in the definition of γh) gives that the uniform deviation from its

mean, supt∈Rd |fMcK(t;h2,n)−EfMcK(t;h2,n)|, has order Oa.s.(
√

logn
nhd

2,n
) uniformly

in t ∈ R
d and in f ∈ PC (any 0 < C < ∞). Hence, bias and uniform deviation form

the mean are of the same order for h2,n = ((log n)/n)1/(8+d), and we have

sup
t∈Dr

|fMcK(t;h2,n)− f(t)| = Oa.s.

(
((log n)/n)4/(8+d)

)
(2.19)

uniformly in f ∈ PC,4.

Likewise, Corollary 2 in Section 2.1 and Proposition 2 give that, for h2,n = ((log n)/
n)1/13

sup
t∈Dr

|fJKH(t;h2,n)− f(t)| = Oa.s.

(
((log n)/n)6/13

)
(2.20)

uniformly in f ∈ PC,6.

Once proven that the union of the classes Fh, 0 < h < 1/(2‖β‖∞)1/2, is VC
bounded and measurable, and that inequality (2.16) holds, we could invoke the
general theorem in Mason and Swanepoel [14] instead of Talagrand’s inequality to
prove the previous proposition, and we would even get uniformity in bandwidth.
However, the balance between the bias and the centered stochastic component of
the difference fMcK(t;h2,n) − f(t) (or fJKH(t;h2,n) − f(t)) in (2.19) (or (2.20))
prevents us from taking advantage of uniformity in bandwidth, and since the Mason-
Swanepoel result is based on (2.13), using (2.13) rather than their theorem makes
for a more direct proof in our case.

3. Completion of the proof of Theorem 1

In this section we develop the proof of Theorem 1. The pattern of proof is similar to
that of the main results in Hall and Marron [9], corrected in Hall, Hu and Marron
[10], and particularly in Giné and Sang [7], but details are different.

Assumptions 2. The kernel K is assumed to satisfy all the conditions in Propo-
sition 1 and Assumptions 1, and to have, besides, uniformly bounded second order
partial derivatives. We also assume that the densities f are bounded and have at
least four bounded and uniformly continuous derivatives, that is, f ∈ PC,4 for some
C < ∞. The nondecreasing clipping function p : R → R is assumed to have two
bounded derivatives, p(s) ≥ 1 for all s and p(s) = s for all s ≥ t0 ≥ 1. Here c and t0
are fixed constants.We set h1,n = ((log n)/n)1/(4+d) and h2,n = ((log n)/n)1/(8+d),
n ∈ N.

Proving the theorem in R
d for any d > 0 requires more precision than in dimen-

sion 1 (see Giné and Sang [7]), in particular we cannot undersmooth the preliminary
estimator and we must proceed differently with several estimations.

By (2.19), in order to obtain a uniform convergence rate of ((logn)/n)4/(8+d)

for the difference between the true estimator (1.6) and the density f(t) we only
need to show that the uniform convergence rate of the difference between the true
estimator (1.6) and the ideal estimator (1.5) is at most of this order.
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Recall α(t) := cp1/2(c−2t). Define δ(t) = δ(t, n) by the equation

δ(t) =
α(f̂(t;h1,n))− α(f(t))

α(f(t))
(3.1)

=
p(c−2f̂(t;h1,n))− p(c−2f(t))

p1/2(c−2f(t))[p1/2(c−2f̂(t;h1,n)) + p1/2(c−2f(t))]
,

so that

(3.2) α(f̂(t;h1,n)) = α(f(t))(1 + δ(t)).

Since p is a Lipschitz function and p ≥ 1,

(3.3) |δ(t)| ≤ Bc−2|f̂(t;h1,n)− f(t)|

for a constant B that depends only on p. Set

D(t;h1,n) = f̂(t;h1,n)− Ef̂(t;h1,n) and b(t;h1,n) = Ef̂(t;h1,n)− f(t)

and note that

(3.4) ‖D(·;h1,n)‖∞ = Oa.s.

(√
log h−1

1,n

nhd
1,n

)
uniformly in f ∈ PC

for all 0 < C < ∞ by a result of Giné and Guillou [5], and that

(3.5) ‖b(·;h1,n)‖∞ = Oa.s.(h
2
1,n) uniformly in f ∈ PC,2

by the classical bias computation for symmetric kernels. Then we have, by (3.3),
(3.4) and (3.5),

(3.6) sup
t∈Rd

|δ(t)| = Oa.s.(h
2
1,n) = oa.s.(1) uniformly in f ∈ PC,2.

We also have, for further use,

(3.7) δ(t) =
α′(f(t))[f̂(t;h1,n)− f(t)]

α(f(t))
+

α′′(η)[f̂(t;h1,n)− f(t)]2

2α(f(t))
,

where η = η(t) ≥ 0 is between f̂(t;h1,n) and f(t) (so, not only it depends on t
but also on f and on the whole sample. Note that, since p ≥ 1 and p′ and p′′ are
uniformly bounded on [0,∞), we have |α′′(η(t, h1,n))| ≤ c−3A for some constant A
that does not depend on n or t but only on p. It is convenient as well to record the
following expansion of αd(f̂) implied by (3.2) and (3.6):

(3.8) αd(f̂(t;h1,n)) = αd(f(t))(1 + dδ(t)) + δ1(t)

with

(3.9) ‖δ1‖∞ = Oa.s.(‖δ‖2∞) uniformly in f ∈ PC.2,

hence, by (3.3) and (3.6),

(3.10) ‖δ1‖∞ = Oa.s.(‖f̂n(·;h1,n)− f(·)‖2∞) uniformly in f ∈ PC,2.
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For the kernel K we have the expansion

K

(
t−Xi

h2,n
α(f̂(Xi;h1,n))

)

= K

(
t−Xi

h2,n
α(f(Xi))

)
(3.11)

+

d∑
j=1

K ′
j

(
t−Xi

h2,n
α(f(Xi))

)
(t−Xi)j

h2,n
α(f(Xi))δ(Xi) + δ2(t;Xi)

with

δ2(t, x) :=
d∑

j,�=1

K ′′
j,�(ξ)

(t− x)j(t− x)�
2h2

2,n

α2(f(x))δ2(x),

where ξ is a (random) point in the line connecting the points t−Xi

h2,n
α(f(Xi)) and

t−Xi

h2,n
α(f(Xi)) +

t−Xi

h2,n
α(f(Xi))δ(Xi), as before. Since K has compact support, α is

bounded from below by c (and above on bounded sets) and δ satisfies (3.6) and

(3.3), we get that, for each n, on the set where ‖f̂n(·;h1,n)− f(·)‖2∞ ≤ c2/(2B) (so,
‖δ‖∞ ≤ 1/2),

(3.12) |δ2(t, x)| ≤
d2‖K ′′‖∞

2
(2T 1/2/c)2δ2(x)I(‖t− x‖ ≤ 2T 1/2c−1h2,n),

in particular,

(3.13) sup
t,x∈Rd

|δ2(t, x)| = Oa.s.

(
‖f̂n(·;h1,n)− f(·)‖2∞

)
uniformly in f ∈ PC,2.

Set

(3.14) L1(t) =
d∑

i=1

tiK
′
i(t) and L(t) = dK(t) + L1(t), t ∈ R

d,

and notice that by symmetry, integration by parts gives that L is a second order
kernel (K ′

j denotes the partial derivative ofK in the direction of the i-th coordinate,

and ti denotes the i-th coordinate of t ∈ R
d). The decompositions (3.2), (3.8) and

(3.11) then give:

nhd
2,nf̂(t;h1,n, h2,n)

= nhd
2,nf̄(t;h2,n)

+

n∑
i=1

L

(
t−Xi

h2,n
α(f(Xi))

)
αd(f(Xi))δ(Xi)(3.15)

+

n∑
i=1

[
K

(
t−Xi

h2,n
α(f(Xi))

)
δ1(Xi) + αd(f(Xi))δ2(t,Xi)(3.16)

+ dL1

(
t−Xi

h2,n
α(f(Xi))

)
αd(f(Xi))δ

2(Xi)

]

+

n∑
i=1

[
L1

(
t−Xi

h2,n
α(f(Xi))

)
δ(Xi)δ1(Xi) + dαd(f(Xi))δ(Xi)δ2(t,Xi)

]
(3.17)

+

n∑
i=1

δ2(t,Xi)δ1(Xi).(3.18)
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The sums (3.16)–(3.18) are of lower and decreasing order, and will be dealt with
first. Let us consider the first term from (3.16): we have

Pr

(
sup
n≥k

1

nhd
2,nh

4
1,n

n∑
i=1

∣∣∣∣K
(
t−Xi

h2,n
α(f(Xi))

)
δ1(Xi)

∣∣∣∣ > τ

)

≤ Pr

(
sup
n≥k

1

nhd
2,n

∥∥∥∥∥
n∑

i=1

∣∣∣∣K
(
t−Xi

h2,n
α(f(Xi))

)∣∣∣∣
∥∥∥∥∥
∞

> τ/b

)
(3.19)

+ Pr

(
max
n≥k

‖h−4
1,nδ1‖∞ > b

)

and the last term, for suitable b < ∞, converges to zero uniformly in f ∈ PC,2 as
k → ∞ by (3.4), (3.5) and (3.10). Now, by change of variables, for any r > 0,

E

∣∣∣∣Kr

(
t−Xi

h2,n
α(f(Xi))

)∣∣∣∣ ≤ C(K, r)‖f‖∞hd
2,n

for some finite constant C(K, r), so that, for a suitable constant m, the first term
at the right hand side of (3.19) is bounded by

∞∑
n=k

Pr

(
1

nhd
2,n

∥∥∥∥∥
n∑

i=1

(|Kn,i| − E |Kn,1|)
∥∥∥∥∥
∞

> τ/b−m

)
,

where Kn,i := K( t−Xi

h2,n
α(f(Xi))). Here we can use Talagrand’s inequality (2.13)

(if a class of functions is V C type, so is the class of its absolute values, by direct
computation of L2 distances), which, by the second moment estimate above (r = 2)
and boundedness of K, and for suitable τ (in particular making τ/b − m > 0),

shows that this series is dominated, uniformly if f ∈ PC , by
∑

n≥k e
−ηnhd

2,n for
some η > 0, which tends to zero. (Note that we are using Talagrand’s inequality
for t in the upper limit of its domain (2.12), whereas typically one uses it for t in
its lower limit.) Thus, we have proved that, uniformly in f ∈ PC,2,

1

nhd
2,n

sup
t∈Rd

n∑
i=1

|Kn,iδ1(Xi)| = Oa.s.(h
4
1,n) = oa.s.((log n)/n)

4/(8+d).

Basically, what (2.13), used in the probability decomposition (3.19), does for us
is to show that the order of the first term in (3.16) is at most the order of ‖δ1‖∞
multiplied by the order of the sup of the expectations of the (absolute values of) the
summands without δ1(Xi). We can likewise follow this pattern of proof and get sim-
ilar results for all the terms in (3.16)-(3.18). One has to use that the classes of func-
tions {L1

(
t−·
h α(f(·)) : t ∈ R

d, h > 0
}
and

{
I(‖t− ·‖ ≤ 2T 1/sc−1h) : t ∈ R

d, h > 0
}

are VC type by Lemma 1 (the class of indicator functions is needed in order to
handle the three terms in (3.16)-(3.18) that contain δ2). We then get

1

nhd
2,n

sup
t∈Rd

|(3.16)| = Oa.s.(h
4
1,n),

1

nhd
2,n

sup
t∈Rd

|(3.17)| = Oa.s.(h
6
1,n) and

(3.20) 1

nhd
2,n

sup
t∈Rd

|(3.18)| = Oa.s.(h
8
1,n)

uniformly in f ∈ PC,2.
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The estimation of (3.15) is much more difficult. We decompose it into several

pieces using first the expansion (3.7) of δ, and then the decomposition of f̂ −f into
variance D and bias b:

1

nhd
2,n

n∑
i=1

Ln,iα
d(f(Xi))δ(Xi)

=
1

dnhd
2,n

n∑
i=1

Ln,i(α
d)′(f(Xi))D(Xi;h1,n)(3.21)

+
1

dnhd
2,n

n∑
i=1

Ln,i(α
d)′(f(Xi))b(Xi;h1,n)(3.22)

+
1

2nhd
2,n

n∑
i=1

Ln,iα
d−1(fXi))(α

d)′′(η(Xi))[f̂(Xi;h1,n)− f(Xi)]
2,(3.23)

where Ln,i := L( t−Xi

h2,n
α(f(Xi))) here. Notice that the term (3.23) is very similar to

the terms in (3.16), and it has clearly the same order (recall (3.3)), that is

(3.24) sup
t∈Rd

|(3.23)| = Oa.s.(h
4
1,n) uniformly in PC,2.

We devote two subsections to the estimation of the remaining two terms and an-
ticipate that the main term is (3.21).

3.1. Estimation of the bias term (3.22)

Consider the classes of functions

(3.25) Qn :=

{
Q(x) = L

(
t− x

h2,n
α(f(x))

)
(αd)′(f(x))b(x;h1,n) : t ∈ R

d

}
.

Recall that L(t) =
∑d

i=1 tiK
′
i+dK(t) and that K(t) = Φ(‖t‖2), Φ twice boundedly

differentiable and with bounded support. Hence, L(t) = 2‖t‖2Φ′(‖t‖2) + dΦ(‖t‖2).
Since the function uΦ′(u)+ dΦ(u) is of bounded variation and bounded, the kernel
L satisfies the hypotheses of the kernel K in Lemma 1 (with s = 2). So, these classes
conform, for each n, to Lemma 1 with G the class consisting of the single function
(αd)′(f(x))b(x, h1,n), which, by (3.5), is uniformly bounded by M(c, p, C)h2

1,n if
f ∈ PC,2, for some constant M depending only on c, p and C. We conclude by
that lemma that they are V C each with envelope M(c, p, C,K)h2

1,n for some other
constant depending on the stated objects, and all with the same characteristic
constants A and v. Since the continuity hypotheses make these classes measurable,
this will allow us to apply Talagrand’s inequality. If we set

Qi(t) = L

(
t−Xi

h2,n
α(f(Xi))

)
(αd)′(f(Xi))b(Xi;h1,n)

it then follows, by the bound (3.5) on b, by boundedness and bounded support of
L, by boundedness of p′ and p ≥ 1, that, for all t and all f ∈ PC,2,

sup
t∈Rd

EQ2
i (t) ≤ ‖b(·;h1,n)‖2∞‖(αd)′‖2∞‖f‖∞hd

2,n sup
t∈Rd

∫
Rd

L2
(
uα

(
f(t− uh2,n)

))
du

≤M(C, c, p,K)h4
1,nh

d
2,n,

and similarly,
sup
t∈Rd

|Qi(t)| <∼ M̄(c, p, C,K)h2
1,n.
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We then have

sup
t∈Rd

∣∣∣∣∣ 1

nhd
2,n

n∑
i=1

Qi(t)

∣∣∣∣∣ ≤ sup
t∈Rd

∣∣∣∣∣ 1

nhd
2,n

n∑
i=1

[Qi(t)− EQi(t)]

∣∣∣∣∣+ sup
t∈Rd

1

hd
2,n

|EQ1(t)|

and inequality (2.13), with σ2 = M(C, c, p,K)h4
1,nh

d
2,n and F = 2M(c, p, C,K)h2

1,n

gives that, for some D, L > 1,

∑
n

sup
f∈PC

Prf

{
sup
t∈Rd

∣∣∣∣∣
n∑

i=1

[Qi(t)− EQi(t)]

∣∣∣∣∣ ≥ D
√

nh4
1,nh

d
2,n logn

}

≤ C2

∑
n

exp(−L log n) < ∞.

Since
√
nh4

1,nh
d
2,n logn/(nh

d
2,n) � ((log n)/n)4/(8+d), the term (3.22) will be at

most of order ((log n)/n)4/(8+d) only if the expectation term supt∈Rd
1

hd
2,n

|EQ1(t)|
is of this order or smaller (uniformly in t ∈ R

d and f ∈ PC,2). The obvious bound
for E|Q1(t)|, that one obtains just like the bound above for EQ2

1(t), is of the order
of h2

1,nh
d
2,n, which then gives an order of h2

1,n for the term (3.22). This is not good
enough, although it would be if we undersmoothed the preliminary estimator a
little by taking h1,n = ((log n)/n)2/(8+d) instead of h1,n = ((logn)/n)1/(4+d): this
works, and in fact we made this choice in Giné and Sang [7] on a related problem
and d = 1, however, some extra work along the lines suggested by Hall and Marron
[9] will allow us to prove the right rate for (3.22) with the optimal h1,n, as follows.
In the setting of the proof of Proposition 1, but in dimension d, the inverse function
theorem yields the existence and differentiability of Vt(u), the inverse function of
Ut(v) = vα(f(t − v)) in a neighborhood of zero independent of t (this can be
readily seen, or one can see it in McKay [16]). This, together with the facts that
L has bounded support, α is bounded away from zero and h2,n → 0, justifies the
change of variables hz = (t− s)α(f(t− (t− s))) in the expression of EQ1(t), to get
(omitting the subindex n in the bandwidth),

1

hd
2

EQ1(t)

=
1

hd
2

∫
Rd

L

(
t− s

h2
α(f(s))

)
(αd)′(f(s))f(s)

×
∫
Rd

1

hd
1

K

(
s− u

h1

)
(f(u)− f(s)) du ds

= −
∫
Rd

(
(αd)′(f(t− Vt(h2z)))f(t− Vt(h2z))

(
∂Vt

∂v

)
v=h2z

×
∫
Rd

K(y) (f(t− Vt(h2z)− yh1)− f(t− Vt(h2z))) dy

)
L(z) dz

:=

∫
Rd

F (h2z)G(h2z)L(z) dz.

Then, using that
∫
L(z) dz =

∫
ziL(z) dz = 0 and expanding, we obtain

1

hd
2

EQ1(t) = −h2
2

2

∫
Rd

⎛
⎝ d∑

i,j=1

(F ′′
i,jG+ F ′

iG
′
j + F ′

jG
′
i + FG′′

i,j)(θ(h2z))zizj

⎞
⎠L(z) dz.
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Now, F and its partial derivatives are bounded, L is bounded and has bounded
support, and, if f ∈ PC,4, then, expanding g(t−Vt(h2z)−yh1)−g(t−Vt(h2z)), for
g = f, f ′

i , f
′′
i,j , and using the symmetry of K, we get that ‖G‖∞, ‖G′

i‖∞, ‖G′′
i,j‖∞

are all O(h2
1) uniformly in f ∈ PC,4. We conclude

(3.26) sup
t∈Rd

1

hd
2,n

|EQ1(t)| = O(h2
1,nh

2
2,n) uniformly in f ∈ PC,4,

and this in turn gives, together with the above application of Talagrand’s inequality,

sup
t∈Rd

∣∣∣∣∣ 1

nh2
2,n

n∑
i=1

L

(
t−Xi

h2,n
α(f(Xi))

)
(αd)′(f(Xi))b(Xi;h1,n)

∣∣∣∣∣
(3.27)

= oa.s.(n
−4/(8+d))

uniformly in f ∈ PC,4.

3.2. Estimation of the variance term (3.21)

This term requires U -processes. Given a function H of two variables, and i.i.d.
variables X and Y such that H(X,Y ) is integrable, recall the U -statistic notation
Un(H) = 1

n(n−1)

∑
1≤i 	=j≤n H(Xi, Xj), where the variables Xi are i.i.d. copies of

X. Also, recall the second order Hoeffding projection of H(X,Y ), π2(H)(X,Y ) =
H(X,Y )− EXH(X,Y )− EY H(X,Y ) + EH. If we set

(3.28) Ht(X,Y ) := L

(
t−X

hd
2,n

α(f(X))

)
(αd)′(f(X))K

(
X − Y

h1,n

)
,

then (3.21) decomposes into a diagonal term and a U -statistic term, as follows:

n2hd
1,nh

d
2,n

n(n− 1)

1

nhd
2,n

n∑
i=1

L

(
t−Xi

h2,n
α(f(Xi))

)
(αd)′(f(Xi))D(Xi;h1,n)

=
1

n(n− 1)

n∑
i=1

(
Ht(Xi, Xi)− EY Ht(Xi, Y )

)
+ Un (π2(Ht(·, ·)))(3.29)

+
1

n

n∑
i=1

(
EXHt(X,Xi)− EHt

)
.

These are two empirical process terms and a canonical U -statistic term. The last
term will turn out to be the only significant one.

For the first empirical process in (3.29), set Q̄i(t) = Ht(Xi, Xi)− EY Ht(Xi, Y )
and observe that, very much as in the simple bounds for moments of Qi in the
previous subsection,

sup
f∈PC

sup
t∈Rd

E|Q̄1(t)| ≤ L1h
d
2,n, sup

f∈PC

sup
t∈Rd

EQ̄2
1(t) ≤ L2h

d
2,n, sup

f∈PC

sup
t∈Rd

|Q̄1(t)| ≤ L3

for some finite constants Li = Li(C, c, p,K). So,

sup
t∈Rd

1

n2hd
1,nh

d
2,n

∣∣∣∣∣
n∑

i=1

Q̄i(t)

∣∣∣∣∣ ≤ 1

n2hd
1,nh

d
2,n

sup
t∈Rd

∣∣∣∣∣
n∑

i=1

(Q̄i(t)− EQ̄1(t))

∣∣∣∣∣
(3.30)

+
L1

nhd
1,n

.
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The sup part corresponds to the empirical process over the class of functions of x

Q̄n =

{
L

(
t− x

h2,n
α(f(x))

)
(αd)′(f(x))

(
K(0)− EK

(
x−X

h1,n

))
: t ∈ R

d

}
,

which, by Lemma 1 is of VC type with respect to a constant envelope and admits
characteristic constants A and v independent of n and f , just as in the previous
subsection for the classes Qn defined by (3.25). Then, as in this previous instance,
Talagrand’s inequality (2.13) gives that there exist D1, D2 > 1 such that

∑
n

sup
f

Prf

{
sup
t∈Rd

∣∣∣∣∣
n∑

i=1

(Q̄i(t)− EQ̄1(t))

∣∣∣∣∣ > D1

√
nhd

2,n logn

}
≤ C2

∑
n

n−D2 < ∞,

which, since
√

nhd
2,n logn/(n

2hd
1,nh

d
2,n) � ((log n)/n)4/(8+d) and since also

nhd
1,n � (n/ log n)4/(8+d), together with (3.30) yields

sup
t∈Rd

1

n2hd
1,nh

d
2,n

∣∣∣∣∣
n∑

i=1

(Ht(Xi, Xi)− EY Ht(Xi, Y ))

∣∣∣∣∣
(3.31)

= oa.s.
(
((logn)/n)4/(8+d)

)
uniformly in f ∈ PC . The canonical U -statistic term in (3.29) is best handled by
means of an exponential inequality of Major [12]: Let F be a uniformly bounded
countable V C class of functions and let ‖F‖2∞ ≥ σ2 ≥ ‖Var(f(X1, X2))‖F ; then,
there exist 0 < Ci < ∞, 1 ≤ i ≤ 3, depending on v and A such that, for all t
satisfying

C1nσ log
2‖F‖∞

σ
≤ t ≤ n2σ3

‖F‖2∞
we have

(3.32) Pr

{∥∥∥∥ ∑
1≤i 	=j≤n

πP
2 f(Xi, Xj)

∥∥∥∥
F
> t

}
≤ C2 exp

(
−C3

t

nσ

)
.

Major states the theorem for {πP
2 f} of VC type, but it is easy to see that if F is

VC type for F then {πP
2 f : f ∈ F} is VC type for the envelope 4F . Our classes F

will be the classes {Ht : t ∈ R
d}. Note that they depend on n via hi,n, i = 1, 2, but

we do not display this dependence because they are VC type for a fixed constant
envelope, admitting characteristic constants A and v independent of n: this follows
from Lemma 1 with L instead of K, and with G consisting of the single bounded
function (αd)′(f(X))K(X−Y

h1,n
) (see Section 3.1, proof that the classes defined in

(3.25) are V C). Since, as is easy to check, for f ∈ PC ,

EH2
t (X,Y ) ≤ M(c, p, C,K)hd

1,nh
d
2,n,

we can take σ2 = M(c, p, C,K)hd
1,nh

d
2,n and conclude that there exist D1, D2 > 1

such that∑
n

sup
f :‖f‖∞≤C

Prf

{
sup
t∈Rd

|Un(π2(Ht))|>D1

√
hd
1,nh

d
2,n(logn)/n

}
≤C2

∑
n

n−D2 <∞.

Since (log n)/[n
√
hd
1,nh

d
2,n] � ((log n)/n)4/(8+d) we obtain

(3.33) sup
t∈Rd

1

hd
1,nh

d
2,n

|Un(π2(Ht))| = oa.s.(n
−4/(8+d)) uniformly in f ∈ PC .
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Having dealt with the first two terms in the last two lines of (3.29), we will now
handle the third and last, namely,

(3.34) T (t;h1,n, h2,n) =
1

nhd
1,nh

d
2,n

n∑
i=1

(EXHt(X,Xi)− EHt)

or, setting, for ease of notation,

g(t, x) = EXHt(X,x)
(3.35)

= EX

[
L

(
t−X

h2,n
α(f(X))

)
K

(
X − x

h1,n

)
(αd)′(f(X))

]
,

T (t;h1,n, h2,n) =
1

nhd
1,nh

d
2,n

n∑
i=1

(g(t,Xi)− Eg(t,X)).

Let G be the class of functions {g(t, ·) : t ∈ R
d}. We check that this class is of

VC type and apply Talagrand’s inequality once more. We have, for any s, t ∈ R
d,

and Borel probability measure Q,

EQ

(
g(t, x)− g(s, x)

)2
≤
∫

EX

(
(αd)′(f(X))K

(
X − x

h1,n

))2

× EX

(
L

(
t−X

h2,n
α(f(X))

)
− L

(
s−X

h2,n
α(f(X))

))2

dQ(x)

≤ ‖(αd)′‖2∞‖f‖∞hd
1,n‖K‖22

×
∫ (

L

(
t− y

h2,n
α(f(y))

)
− L

(
s− y

h2,n
α(f(y))

))2

f(y) dy

= ‖(αd)′‖2∞‖f‖∞hd
1,n‖K‖22Ef (�t − �s)

2,

where �s and �t are functions from the class L := {L( t−·
h α(f(·))) : t ∈ R

d, h > 0}
which is VC for a constant envelope by Lemma 1 (as L satisfies the hypotheses of
K in that lemma -see Section 3.1). This lemma then proves that for all Q and for
all f ∈ PC ,

(3.36) N(G, L2(Q), ε) ≤
(
R(c, p, d,K,C)h

d/2
1,n

ε

)8d+20

for 0 < ε < R(c, p, d,K,C)h
d/2
1,n where R = R(c, p, d,K,C) depends only on the

stipulated parameters, in particular, G is VC for the constant envelope Rh
d/2
1,n (that

depends on n), with characteristic constants A = 1 and v = 8d + 20 independent
of n and f ∈ PC .

In order to apply Talagarand’s (2.13) inequality, we need to estimate Eg2(t,X).
With the change of variables x = t− h1,nw− h1,nz, y = t− h2,nz, u = t− h1,nw−
h2,nz − h1,ns, of determinant h2d

1,nh
d
2,n, we obtain

Eg2(t,X1)

=

∫
Rd

{∫
Rd

f(x)K
(x− u

h1,n

)
L

(
t− x

h2,n
α(f(x))

)
(αd)′(f(x)) dx

×
∫
Rd

f(y)K

(
y − u

h1,n

)
L

(
t− y

h2,n
α(f(y))

)
(αd)′(f(y)) dy

}
f(u) du(3.37)
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≤ ‖f‖3∞h2d
1,nh

d
2,n‖(αd)′‖2∞

×
∫
Rd

∫
Rd

∫
Rd

L

((
h1,n

h2,n
w + z

)
α(f(t− h1,nw − h2,nz))

)
× L

(
zα
(
f(t− h2,nz)

))
K(s)K(s+ w) ds dw dz

≤ BK‖f‖3∞h2d
1,nh

d
2,n‖(αd)′‖2∞c−1,

where the last inequality follows from the bounded support of L andK and α(t) ≥ c.

Then, since the envelope F of the VC class G can be taken to be BKh
d/2
1,n and σ2

to be BKC3h2d
1,nh

d
2,nc

−1 (by (3.36) and (3.37)), for constants BK that depend only
on K, we get by (2.12) and (2.13) that there exist constants D1, D2 > 1 depending
only on K, C, d, p and c such that

sup
f∈PC

Prf

{∥∥∥∥∥
n∑

i=1

(g(·, Xi)− Eg(·, X))

∥∥∥∥∥
∞

≥ D1

√
nh2d

1,nh
d
2,n logn

}
≤ C2n

−D2 ,

and note that √
nh2d

1,nh
d
2,n logn/(nh

d
1,nh

d
2,n) = ((log n)/n)4/(8+d)

we get that

(3.38) sup
t∈Rd

|T (t;h1,nh2,n)| = Oa.s.

(
[(logn)/n]4/(8+d)

)
uniformly in f ∈ PC .

Combining the estimates (3.31), (3.33) and (3.38) with (3.29) yields

sup
t∈Rd

1

nhd
2,n

∣∣∣∣∣
n∑

i=1

L

(
t−Xi

h2,n
α(f(Xi))

)
(αd)′(f(Xi))D(Xi;h1,n)

∣∣∣∣∣
(3.39)

= Oa.s.

(
[(logn)/n]4/(8+d)

)
uniformly in f ∈ PC .

Plugging in the estimates (3.20), (3.24), (3.27) and (3.39) into the decompositions

(3.15)–(3.18) and (3.21)–(3.23) of f̂(t;h1,n, h2,n)− f̄(t;h2,n), yields:

Proposition 3. Under Assumptions 2, for any C < ∞ the difference between the
actual and the ideal estimators of a density f satisfies

sup
t∈Rd

|f̂(t;h1,n, h2,n)− f̄(t;h2,n)| = Oa.s.

((
logn

n

)4/(8+d))
uniformly in f ∈ PC,4.

Moreover, uniformly in f ∈ PC,4,

sup
t∈Rd

|f̂(t;h1,n, h2,n)− f̄(t;h2,n)− T (t, h1,nh2,n)| = oa.s.

((
logn

n

)4/(8+d))
.

3.3. End of the proof of Theorem 1

Proposition 3 together with the results in Section 2 for the bias (Corollary 1) and the
variance (Proposition 2) of the ideal estimator complete the proof of the asymptotic
estimate (1.10) in Theorem 1. To prove (1.11), we note that, by (3.4) and (3.5),



148 E. Giné and H. Sang

‖f̂(t;h1,n) − f‖∞ = Oa.s.(((log n)/n)
2/(4+d)) uniformly in f ∈ PC,2, that is, there

exists λ < ∞ such that

(3.40) lim
k→∞

sup
f∈PC,2

Pr
f

{
sup
n≥k

(
n

logn

)2/(4+d)

‖f̂(ti;h1,n)− f‖∞ > λ

}
= 0.

Since ‖f̂(ω) − f‖∞ ≤ λ((logn)/n)2/(4+d) implies D̂n
r (ω) ⊂ Dr as soon as r >

λ((logn)/n)2/(4+d), (1.11) follows immediately from (1.10) and (3.40). This con-
cludes the proof of Theorem 1.
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