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Rank tests for heterogeneous treatment

effects with covariates

Roger Koenker∗

Abstract: Employing the regression rankscore approach of Gutenbrunner
and Jurečková [2] we consider rank tests designed to detect heterogeneous
treatment effects concentrated in the upper tail of the conditional response
distribution given other covariates.

1. Introduction

Heterogeneous treatment response has long been recognized as an essential feature
of randomized controlled experiments. The Neymann [11] framework of “potential
outcomes” foreshadows modern developments by Rubin [13] and others acknowl-
edging the right of each experimental subject to have a distinct response to treat-
ment. Statistical inference based on ranks has played an important role in these
developments. Lehmann [9] describes several heterogeneous treatment effect models
and derives locally optimal rank tests for them. Rosenbaum [12] has reemphasized
the relevance of heterogeneity of treatment effects in biomedical applications and
stressed the rank based approach to inference. He et al. [5] have recently proposed
tests based on “expected shortfall” designed to detect response in the upper or
lower tail of the response distribution after adjusting for covariate effects.

Rank tests for the treatment-control model have focused almost exclusively on
the two sample problem without considering possibly confounding covariate effects.
In this paper we will describe some new rank tests designed for several hetero-
geneous treatment effect models. The tests employ the regression rankscores in-
troduced by Gutenbrunner and Jurečková [2] and therefore are able to cope with
additional covariate effects.

2. Quantile Treatment Effects

For the two sample setting Lehmann [10] introduced a general model of treatment
response in the following way:

Suppose the treatment adds the amount Δ(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment
responses is that of the random variableX+Δ(X) whereX is distributed
according to F .

Department of Economics, 410 David Kinley Hall, 1407 W. Gregory, MC-707, Urbana, IL
61801, USA. e-mail: rkoenker@uiuc.edu

∗Partially supported by NSF Grant SES 08-50060. The author would like to thank Xuming
He and Ya-Hui Hsu for valuable conversations on the subject of this paper.

AMS 2000 subject classifications: Primary 62G10; secondary 62J05.
Keywords and phrases: regression rankscores, rank test, quantile treatment effect

134

http://www.imstat.org/publications/imscollections.htm
http://www.imstat.org
http://dx.doi.org/10.1214/10-IMSCOLL714
mailto:rkoenker@uiuc.edu


Heterogeneous treatment effects 135

Thus, F (x) = G(x+Δ(x)) so Δ(x) is the horizontal distance between the control
distribution, F , and the treatment distribution, G,

Δ(x) = G−1(F (x))− x.

Plotting Δ(x) versus x yields what is sometimes called the “shift plot.” For present
purposes we find it more convenient to evaluate Δ(x) at x = F−1(τ) and define the
quantile treatment effect as

δ(τ) = G−1(τ)− F−1(τ)

The average treatment effect can be obtained by simply integrating:

δ̄ =

∫ 1

0

δ(τ) dτ =

∫
(G−1(τ)− F−1(τ)) dτ ≡ μ(G)− μ(F ),

for some τ0 and τ1 in (0, 1). But mean treatment may obscure many important
features of δ(τ). Only in the pure location shift case do we not lose something by
the aggregation. We now consider three simple models of the quantile treatment
effect.

Partial Location Shift: Rather than assuming that the treatment induces a
constant effect δ(τ) = δ0 over the entire distribution we may instead consider a
partial form of the location shift restricted to an interval

δ(τ) = δ0I(τ0 < τ < τ1).

Thus, the shift may occur only in the upper tail, or near the median, or of course,
over all of (0, 1).

Partial Scale Shift: Similarly, we may consider treatment effects that corre-
spond to scale shifts of the control distribution over a restricted range,

δ(τ) = δ0I(τ0 < τ < τ1)F
−1(τ).

Imagine stretching the right tail of the control distribution beyond some specified
τ0 quantile, while leaving the distribution below F−1(τ0) unperturbed.

Lehmann Alternatives: The family of Lehmann (1953) alternatives may be
expressed as

G(x) = F (x)γ or 1−G(x) = (1− F (x))1/γ ,

and has been widely considered in the literature in part perhaps because it is closely
associated with the Cox proportional hazard model. In the two sample version of
the Cox model, when 1/γ = k, an integer, the treatment distribution is that of a
random variable taking the minimum of k trials from the control distribution. The
quantile treatment effect for the Cox form of the Lehmann alternative is easily seen
to be,

(1) δ(τ) = F−1(1− (1− τ)γ)− F−1(τ).

Rosenbaum [12] and Conover and Salsburg [1] argue that the Lehmann family
offers an attractive model for two sample treatment-control experiments in which
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a substantial fraction of subjects fail to respond to treatment, but the remainder
exhibit a significant response.

Each of the foregoing semi-parametric alternatives are intended to capture to
some degree the idea that the treatment strongly influences the response, but in
some restrictive way that makes conventional tests for a full location shift unsat-
isfactory. As in the motivating example of He et al. [5] involving treatments for
rheumatoid arthritis there is a need for a more targeted approach capable of de-
tecting a more localized effect.

3. Rank Tests for QTEs

We very briefly review some general theory of rank tests in the regression setting
based on the regression rankscores introduced by Gutenbrunner and Jurečková [2].
For further details see, Gutenbrunner et al. [3] or Koenker [7]. Consider the linear
quantile regression model

(2) QY |X,Z(τ |x, z) = x�β(τ) + zδ(τ).

We have a binary treatment variable, z, and p other covariates, denoted by the
vector x. We would like to test the hypothesis H0 : δ(τ) ≡ 0 versus local alternatives
Hn : δn(τ) = δ0(τ)/

√
n in the presence of other covariate effects represented by the

linear predictor x�β(τ) terms. Of course, in the two sample setting the latter term
is simply an intercept. We will write X to denote the matrix with typical row xi of
the observed covariates.

Under the null hypothesis the regression rankscores are defined as,

â(τ) = argmax {a�y|X�a = (1− τ)X�1, a ∈ [0, 1]n}
This n-vector constitutes the dual solution to the quantile regression problem

β̂(τ) = argmin
∑

ρτ (yi − x�
i β).

The function âi(τ) = 1 when yi > x�
i β̂(τ) and âi(τ) = 0 when yi < x�

i β̂(τ) and
integrating,

b̂i =

∫ 1

0

âi(τ) dτ i = 1, . . . , n,

yields “ranks” of the observations. In the two sample setting these âi(τ)’s are exactly
the rankscores of Hájek (1965). Generalizing, we may consider integrating with
another score function to obtain,

b̂ϕi =

∫ 1

0

âi(τ) dϕ(τ).

As described in Hájek and Šidák [4] the choice of ϕ is dictated by the form of the
alternative Hn. When δ0(τ) is of the pure location shift form δ0(τ) = δ0, there
are three classical options for ϕ: normal (van der Waerden) scores ϕ(τ) = Φ−1(τ),
Wilcoxon scores ϕ(τ) = τ , and sign scores ϕ(τ) = |τ− 1

2 |. These choices are optimal
under iid error models

(3) yi = x�
i β + ui
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when the ui’s are Gaussian, logistic and double exponential, respectively. In this
form the model is a special case of (2) in which the coordinates of β(τ) are all
independent of τ except for the “intercept” component that takes the form β0(τ) =
F−1
u (τ), the quantile function of the iid errors. For simplicity of exposition, we will

maintain this iid error model in the next subsection, with the understanding that
eventually it may be relaxed.

4. Noncentralities and Scores

Choice of the score function, ϕ can be motivated by examining the noncentrality
parameter of the corresponding rank tests under local alternatives. Our test statistic
is

Tϕ
n = s�nQ

−1
n sn/A

2(ϕ)

where sn = (z− ẑ)�b̂ϕn, Qn = (z− ẑ)�(z− ẑ), ẑ = PXz, the projection of z onto the
space spanned by the x covariates, and A2(ϕ) =

∫
(ϕ(t)−ϕ̄)2 dt, with ϕ̄ =

∫
ϕ(t) dt.

Theorem 1. (Gutenbrunner, Jurečková, Koenker and Portnoy) Under the local
alternative, Hn : δn(u) = δ0(u)/

√
n to the null model (3), Tn is asymptotically

χ2
1(η) with noncentrality parameter

η = [QnA
2(ϕ)]−

1
2

∫ 1

0

f(F−1(u))δ0(u) dϕ(u).

A general strategy for selecting score functions, ϕ, is to optimize this noncentral-
ity parameter given choices of δ0(u) and f . In the case of location shift, δ0(u) = δ0,

η = δ0

∫ 1

0

f(F−1(u)) dϕ(u)

= −δ0

∫ 1

0

f ′

f
(F−1(u))ϕ(u) du,

and optimal performance of the test is achieved by choosing ϕ(u) = f ′/f(F−1(u)),
thereby achieving the same asymptotic efficiency as the likelihood ratio test. In the
case of partial location shifts we may consider trimmed score functions of the form,

ϕ(u) =
f ′

f
(F−1(u))I(τ0 < u < τ1).

In particular we will consider the trimmed Wilcoxon scores ϕ(u) = uI(τ0 < u < τ1)
in the next section. Hettmansperger [6] has previously considered symmetrically
trimmed Wilcoxon tests motivated by robustness considerations. It is important to
emphasize that the optimal score functions depend on both on the density f and
the form of the treatment response δ0(u), however following conventional practice
in rank statistics we will focus on the latter dependence and attempt to select tests
that are robust to the former.

For scale shift alternatives we have local alternatives of the form

δn(u) = δ0F
−1(u)/

√
n

and noncentrality parameter

η = [QnA
2(ϕ)]−

1
2 δ0

∫
f(F−1(u))F−1(u) dϕ(u)
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and again integrating by parts we have optimal score functions of the form,

ϕ(u) = −(1 + F−1(u) · f
′

f
(F−1(u)))

which for the Gaussian distribution yields ϕ(u) = (Φ−1(u))2 − 1. Again, we may
consider partial scale shifts and obtain restricted forms.

Finally, for alternatives of the Lehmann type (1) we will consider localized ver-
sions with γn = 1 + γ0/

√
n, so expanding,

δn(u) = γ0(f(F
−1(u)))−1[−(1− u) log(1− u)]/

√
n+ o(1/

√
n),

uniformly for u ∈ [ε, 1 − ε] for some ε > 0. Again integrating by parts in the
noncentrality expression we have,

η = −[QnA
2(ϕ)]−

1
2 γ0

∫
[(1− u) log(1− u)] dϕ(u)

= −[QnA
2(ϕ)]−

1
2 γ0

∫
[log(1− u) + 1]ϕ(u) du,

so the optimal score function is ϕ(u) = log(1 − u) + 1. (An alternative derivation
of this result can be found in Conover and Salsburg [1]). An apparent advantage
of this class of alternatives is that the score function is independent of the error
distribution F .

5. Simulation Evidence

Throughout this section we will consider models that under the null hypothesis
take the form,

yi = β0 + xiβ1 + vi

with vi iid from some distribution, F , with Lebesgue density, f . The covariate, x
will be standard normal. Three families of alternatives will be considered, one from
each of the three general classes already discussed:

Location Shift δn(u) = γnI(τ0 < u < τ1)
Scale Shift δn(u) = γnF

−1(u)I(τ0 < u < τ1)
Lehmann Shift δn(u) = F−1(1− (1− u)γn)− F−1(u)

where in the location and scale shift cases, γn = γ0/
√
n while in the Lehmann

case γn = 1 + γ0/
√
n. Having specified quantile functions for the alternatives, it

is straightforward to generate data according to these specifications. Under the
alternatives we have,

yi = β0 + xiβ1 + ziδn(Ui) + F−1(Ui),

where the Ui are iid U [0, 1] random variables. The treatment indicator, zi is gener-
ated as Bernoulli with probability 1/2 throughout the simulations.

A convenient property of the regression rankscores is that they are invariant to
the parameter, β, so we can take β = 0 for purposes of generating the data for the
simulations. Of course, test statistics are based on inclusion of the covariate, xi in
estimation of the rankscores under the null model. Dependence between xi and the
treatment indicator is potentially a serious problem. Asymptotically, this is seen in
the appearance of Qn in the noncentrality parameter. But to keep things simple, we
will maintain independence of x and z mimicking full randomization of treatment.
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We consider the following collection of tests for “treatment effect:”

T Student t-test
N Normal (van der Waerden) rank test
S Sign (median) rank test
W[τ0, τ1] Trimmed Wilcoxon rank test
H[τ0, τ1] Trimmed normal scale rank test
L Lehmann Alternative rank test

All the rank tests are computed as described in Section 3, following Gutenbrunner
et al. [3]. The piecewise linearity of the âi(u) functions can be exploited, so

b̂ϕi =

∫ 1

0

âi(u) dϕ(u) =

J∑
j=1

âi(τj)− âi(τj−1)

τj − τj−1

∫ τj

τj−1

ϕ(u) du.

The last integral can be computed in closed form for all of our examples. See the
function ranks in [8] for further details.

γ0 = 0 γ0 = 0.5 γ0 = 1
n=50 n=100 n=500 n=50 n=100 n=500 n=50 n=100 n=500

Location
T 0.0518 0.0560 0.0523 0.1234 0.1448 0.1566 0.3212 0.3402 0.4468
N 0.0540 0.0561 0.0516 0.1133 0.1359 0.1531 0.2030 0.2577 0.4090
W[0,1] 0.0559 0.0576 0.0524 0.1045 0.1188 0.1262 0.1693 0.1982 0.3070
S 0.0678 0.0649 0.0542 0.0752 0.0510 0.0536 0.0519 0.0460 0.0534
W[.6,.95] 0.0547 0.0514 0.0527 0.2906 0.3667 0.4504 0.5341 0.7156 0.9175
H[0,1] 0.0363 0.0432 0.0467 0.1473 0.2179 0.2538 0.3882 0.4926 0.7166
H[.5,1] 0.0300 0.0434 0.0514 0.2211 0.3376 0.3844 0.6654 0.7827 0.9055
L 0.0460 0.0529 0.0531 0.1846 0.2612 0.2970 0.4481 0.5744 0.7831

Scale
T 0.0496 0.0569 0.0514 0.1033 0.1382 0.1593 0.2671 0.2984 0.4277
N 0.0506 0.0573 0.0507 0.0903 0.1123 0.1451 0.1557 0.1867 0.3368
W[0,1] 0.0531 0.0565 0.0500 0.0798 0.0894 0.0974 0.1290 0.1395 0.2066
S 0.0698 0.0580 0.0520 0.0709 0.0473 0.0553 0.0569 0.0507 0.0562
W[.6,.95] 0.0536 0.0554 0.0491 0.1665 0.2077 0.2635 0.3610 0.4593 0.6506
H[0,1] 0.0346 0.0412 0.0453 0.1118 0.2026 0.3093 0.2561 0.3817 0.7460
H[.5,1] 0.0318 0.0440 0.0475 0.1385 0.3205 0.4873 0.4336 0.6418 0.9326
L 0.0460 0.0539 0.0493 0.1307 0.2175 0.3282 0.2999 0.4208 0.7556

Lehmann
T 0.0545 0.0534 0.0488 0.3866 0.4347 0.5420 0.7795 0.8618 0.9612
N 0.0559 0.0547 0.0493 0.3719 0.4215 0.5379 0.7388 0.8403 0.9585
W[0,1] 0.0568 0.0544 0.0507 0.3700 0.4093 0.5093 0.7273 0.8291 0.9457
S 0.0717 0.0594 0.0570 0.3145 0.2830 0.3698 0.5395 0.6520 0.8246
W[.6,.95] 0.0555 0.0514 0.0508 0.3802 0.4402 0.5512 0.7885 0.8601 0.9662
H[0,1] 0.0366 0.0364 0.0483 0.0459 0.0841 0.1397 0.0812 0.1022 0.3149
H[.5,1] 0.0336 0.0433 0.0468 0.2709 0.4081 0.5494 0.7111 0.8240 0.9616
L 0.0500 0.0529 0.0474 0.3892 0.4808 0.6111 0.8034 0.8920 0.9823

Table 1

Rejection Frequencies for Several Rank Tests: Nominal level of significance for all tests is 0.05,
table entries are each based on 10,000 replications, all models have standard normal iid errors

under the null and local alternatives with the indicated γ0 parameters.

In Table 1 we report results of a simulation with Gaussian F . Entries in the
table represent empirical rejection frequencies for 10,000 replications. There are
three sample sizes, three settings of the local alternative parameter, γ0, and three
distinct forms for the alternative hypothesis. Eight tests are evaluated: two versions
of the Wilcoxon test one trimmed, one untrimmed; and two of the normal scale test
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one trimmed, one untrimmed. The first three columns of the table evaluate size of
the test. These entries generally lie with experimental sampling accuracy for the
nominal 0.05 level of the tests. Power of the tests for γ0 = 0.5 and γ0 = 1 are
reported in the next six columns.

γ0 = 0 γ0 = 0.5 γ0 = 1
n=50 n=100 n=500 n=50 n=100 n=500 n=50 n=100 n=500

Location
T 0.0447 0.0491 0.0455 0.0718 0.0883 0.0962 0.1521 0.1880 0.2047
N 0.0498 0.0532 0.0477 0.0756 0.0889 0.1054 0.1160 0.1627 0.2187
W[0,1] 0.0534 0.0538 0.0493 0.0791 0.0860 0.1013 0.1132 0.1438 0.1991
S 0.0645 0.0448 0.0537 0.0647 0.0586 0.0493 0.0544 0.0507 0.0520
W[.6,.95] 0.0502 0.0523 0.0507 0.1746 0.2314 0.3133 0.3774 0.5304 0.7467
H[0,1] 0.0354 0.0421 0.0496 0.0757 0.1038 0.1246 0.1693 0.2411 0.3226
H[.5,1] 0.0304 0.0419 0.0519 0.0930 0.1520 0.1720 0.2677 0.3839 0.4714
L 0.0445 0.0486 0.0488 0.0964 0.1314 0.1575 0.2055 0.3043 0.3987

Scale
T 0.0494 0.0475 0.0498 0.0753 0.1075 0.1163 0.1430 0.2264 0.2937
N 0.0566 0.0518 0.0505 0.0750 0.0902 0.0976 0.1068 0.1529 0.2157
W[0,1] 0.0598 0.0538 0.0521 0.0707 0.0805 0.0802 0.0975 0.1237 0.1527
S 0.0713 0.0491 0.0531 0.0656 0.0642 0.0496 0.0582 0.0528 0.0545
W[.6,.95] 0.0542 0.0532 0.0507 0.1289 0.1688 0.1952 0.2568 0.3697 0.5176
H[0,1] 0.0339 0.0426 0.0497 0.0741 0.1246 0.1709 0.1315 0.2521 0.4378
H[.5,1] 0.0293 0.0415 0.0508 0.0776 0.1902 0.2493 0.1831 0.4136 0.6404
L 0.0469 0.0510 0.0512 0.0919 0.1448 0.1815 0.1647 0.3004 0.4724

Lehmann
T 0.0436 0.0459 0.0465 0.2645 0.4320 0.5146 0.4851 0.7550 0.9345
N 0.0497 0.0488 0.0474 0.3319 0.4286 0.5270 0.6928 0.8440 0.9551
W[0,1] 0.0536 0.0495 0.0490 0.3361 0.4129 0.4979 0.6994 0.8360 0.9426
S 0.0703 0.0468 0.0560 0.2698 0.3174 0.3462 0.5261 0.6585 0.8242
W[.6,.95] 0.0525 0.0513 0.0504 0.3447 0.4540 0.5401 0.7158 0.8699 0.9578
H[0,1] 0.0366 0.0435 0.0490 0.0393 0.0894 0.1377 0.0320 0.0927 0.2932
H[.5,1] 0.0336 0.0412 0.0473 0.2144 0.4222 0.5439 0.4772 0.8293 0.9614
L 0.0468 0.0488 0.0509 0.3417 0.4884 0.6057 0.7082 0.8982 0.9799

Table 2

Rejection Frequencies for Several Rank Tests: Nominal level of significance for all tests is 0.05,
table entries are each based on 10,000 replications, all models have iid Student t3 errors under

the null and local alternatives with the indicated γ0 parameters.

The restricted location shift alternative is specified as δn(u) = γnI(0.6 < u < 1)
so there is no signal at the median and the poor performance of the sign test
reflects this handicap. The other classical tests of global location shift also perform
rather badly, even worse than the global normal scale test. The best performance
is achieved by the trimmed Wilcoxon test, but the trimmed normal scale tests is
also quite a strong contender.

The restricted scale shift alternative is specified as δn(u) = γnΦ
−1(u)I(0.5 <

u < 1) so again there is no signal at the median and the sign test is a disaster. The
Student t test, the Wilcoxon, and the normal scores tests perform even worse than
their lack-luster showing for the location shift alternative. Here, not surprisingly
given that it was designed for this situation, the trimmed normal scale test is the
clear winner.

The Lehmann alternative affords an opportunity for all the tests to demonstrate
some strength; these alternatives combine features of global location and scale shift
with a more pronounced effect in the right tail so all the tests have something to
offer. Again, not surprisingly, the Lehmann test designed for this situation is the
clear winner, but the classical location shift tests are not far behind. Only the global
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normal scale test is poor in this case.
The banal conclusion that may be drawn from Table 1 seems to be that it pays to

know what the alternative is before choosing a test. But if we delve slightly deeper
we may be led to the conclusion that the Lehmann alternatives are quite adequately
countered by traditional rank tests, while the asymmetric forms of the Wilcoxon and
normal scale tests are better for stronger forms of asymmetric response captured in
the partial location and scale shift alternatives. Before jumping to such conclusions,
however, it would be prudent to consider whether the normality assumption that
underlies all of the simulation results of Table 1 is critical.

Table 2 reports simulation results for an almost identical experimental setup
except that Gaussian error is replaced everywhere by Student t3 error. Most of the
features of the two tables are very similar. Especially in the partial location shift
setting one sees even worse performance of the classical global rank tests and the t
test. Performance of the Lehmann test deteriorates somewhat for both the location
and scale alternatives under Student errors, but remains strong for the Lehmann
alternative.

6. Conclusions

Rank tests continue to play an important role in many domains of statistical appli-
cation like survival analysis, but their potential value in the context of linear models
remains under-appreciated. The regression rankscore methods of Gutenbrunner and
Jurečková [2] have opened a wide vista of new opportunities for rank based infer-
ence in the regression setting. More targeted inference is particularly important in
the context of heterogeneous treatment models. We have taken a few steps in this
direction, but there are interesting new paths ahead.
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