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Simple sequential procedures for change

in distribution

Marie Hušková∗,1 and Ondřej Chochola1

Charles University of Prague, Department of Statistics

Abstract: A simple sequential procedure is proposed for detection of a change
in distribution when a training sample with no change is available. Its proper-
ties under both null and alternative hypothesis are studied and possible mod-
ifications are discussed. Theoretical results are accompanied by a simulation
study.

1. Introduction

We assume that the observations X1, . . . , Xn, . . . are arriving sequentially, Xi has a
continuous distribution function Fi, i = 1, 2, . . . and the first m observations have
the same distribution function F0, i. e.,

F1 = . . . = Fm = F0,

where F0 is unknown.X1, . . . , Xm are usually called training data. We are interested
in testing the null hypothesis

H0 : Fi = F0, ∀ i ≥ m,

against the alternative hypothesis

HA : there exists k∗ ≥ 0 such that Fi = F0, 1 ≤ i ≤ m+ k∗,

Fi = F 0, m+ k∗ < i < ∞, F0 �= F 0.

In case of independent observations there are no particular assumptions on the
distribution functions Fi except their continuity. In case of dependent observations
certain dependency among observations is assumed. Such a problem was consid-
ered by [2, 11] and [12]. Mostly such testing problems concern a change in finite
dimensional parameter, see, [3, 8, 1] among others. They developed and studied
sequential tests for a change in parameters in regression models.

Our test procedure is described by the stopping rule:

(1) τm,N = inf{1 ≤ k ≤ N : |Q(m, k)| ≥ c qγ(k/m)}
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with inf ∅ := ∞ and either N = ∞ or N = N(m) with limm→∞ N(m)/m = ∞.
Q(m, k) is a detector depending on X1, . . . , Xm+k, k = 1, 2, . . ., qγ(t), t ∈ (0,∞)
is a boundary function with γ ∈ [0, 1/2) (a tuning parameter) and c is a suitably
chosen positive constant.

We require under H0 for α ∈ (0, 1) (fixed) and, under HA ,

(2) lim
m→∞PH0

(
τm,N < ∞)

= α,

and, under HA ,

(3) lim
m→∞PHA

(
τm,N < ∞)

= 1.

The request (2) means that the test has asymptotically level α and (3) corresponds
to consistency of the test. We usually choose the detectors Q(m, k)’s and the bound-
ary function qγ(·), then constant c has to fulfill under H0

lim
m→∞P

(
max

1≤k≤N

|Q(m, k)|
qγ(k/m)

≥ c

)
= α.

In the present paper we choose

(4) Q(m, k) =
1

σ̂m
√
m

m+k∑
i=m+1

(F̂m(Xi)− 1/2), k = 1, 2, . . . ,

where F̂m is an empirical distribution function based on X1, . . . , Xm and σ̂m is a
suitable standardization based on X1, . . . , Xm. We put

(5) qγ(t) = (1 + t)(t/(1 + t))γ , t ∈ (0,∞), 0 ≤ γ < 1/2.

Two sets of assumptions on the joint distribution of Xi’s are considered. One set
assumes that {Xi}i are independent random variables and Xi has continuous dis-
tribution function Fi, i = 1, 2, . . . ., i. e., under H0 they are independent identically
distributed (i.i.d.) with common unknown continuous distribution function F0. The
other set of conditions admits dependent observations.

Notice that the detector Q(m, k) can be expressed through empirical distribu-
tion function based on X1, . . . , Xm and observations Xm+1, . . . , Xm+k. Different
test procedures for our problem based on empirical distribution functions were pro-
posed by [11] and [2]. In these papers there are rather strict restrictions on N and
independent observations are assumed. The paper [12] focuses the sequential detec-
tion of a change in the error distribution in time series. The studied procedure is
based on empirical distribution functions of residuals. One can develop rank based
procedures along the above lines but we do not pursue it here. Certain class of
rank based are considered in [12] while U -statistics based sequential procedures are
studied in [5] and [6].

The rest of the paper is organized as follows. Section 2 contain theoretical results
together with discussions. Section 3 presents results of a simulation study. The
proofs are in Section 4.

2. Main Results

Here we formulate assertions on limit behavior of our test procedure under both
null hypothesis as well under some alternatives and discuss various consequences.
Under the null hypothesis we consider two sets of assumptions:
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(H1) {Xi}i are independent identically distributed (i.i.d.) random variables, Xi

has continuous distribution function F0.
(H2) {Xi}i is a strictly stationary α- mixing sequence with {α(i)}i such that for

all δ > 0

(6) P (|X1 −X1+i| ≤ δ) ≤ D1δ, i = 1, 2, . . . ,

(7) α(i) ≤ D2i
−(1+η)3, i = 1, 2, . . .

for some positive constants η,D1, D2. Xi has continuous distribution function
F0. Here the coefficient α(i)’s are defined as

α(i) = sup
A,B

|P (A ∩B)− P (A)P (B)|

where sup is taken over A ∈ σ(Xj , j ≤ n) and A ∈ σ(Xj , j ≥ n+ i).

Next the assertion on limit behavior of the functional of Q(m, k) under H0 is stated.

Theorem 1
(I) Let the sequence {Xi}i fulfill the assumption (H1) and put σ̂2

m = 1/12. Then

(8) lim
m→∞P

(
sup

1≤k<N

|Q(m, k)|
qγ(k/m)

≤ x

)
= P

(
sup

0≤t≤1

|W (t)|
tγ

≤ x

)

for all x, where qγ(·) is defined in (5) and {W (t); 0 ≤ t ≤ 1} is a Wiener process.

(II) Let the sequence {Xi}i fulfill the assumption (H2) and let, as m → ∞,

(9) N(m)/m → ∞, (logN(m))2/m → 0.

Moreover, let estimator σ̂m be such that, as m → ∞, σ̂2
m − σ2 = oP (1), where

σ2 =
1

12
+ 2

∞∑
j=1

cov{F0(X1), F0(Xj+1)}.

Then (8) holds true.

Concerning alternatives we consider either of the following setups:

(A1) {Xi}i are independent random variables,Xi has continuous distribution func-
tion F0 for i = 1, . . . ,m + k∗ and F 0 for i = m + k∗ + 1, . . ., such that∫
F0(x) dF

0(x) �= 1/2.

(A2) For some integer k∗ ≤ Nη, η ∈ [0, 1) {Xi}m+k∗
i=1 is a strictly stationary α-

mixing sequence with {α0(i)}i with continuous distribution function F0 and
satisfying (6) and (7). Given X1, . . . , Xm+k∗ the sequence {Xi}∞m+k∗ is a
strictly stationary α- mixing sequence with {α0(i)}i with continuous distri-
bution function F 0 and such that for all δ > 0

(10) P (|Xm+k∗+1 −Xm+k∗+1+i| ≤ δ) ≤ D3δ, i = 1, 2, . . . ,

(11) α0(i) ≤ D4i
−(1+κ)3, i = 1, 2, . . .

for some positive constants κ,D3, D4. Also
∫
F0(x) dF

0(x) �= 1/2 is assumed.
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Alternative hypotheses cover a change in parameters like location but also a change
in the shape of distribution. Additionally, alternative (A.2) is sensitive w.r.t. a
change in dependence among observations.

Theorem 2 Let {Xi}i fulfill either (A1) or (A2), let k
∗ < Nη for some 0 ≥ η < 1,

let (5) be satisfied. Then, as m → ∞,

sup
1≤k<N

|Q(k,m)|
qγ(k/m)

P→ ∞.

Proofs of both theorems are postponed to Section 4.

Theorem 1 provides approximation for critical value c so that the test procedure
fulfills (2) under the null hypothesis (H1) or (H2), i. e., c is the solution of the
equation

(12) P

(
sup

0≤t≤1

|W (t)|
tγ

≤ c

)
= 1− α.

Notice that under (H1) the test procedure is distribution free and hence approxi-
mation for c can be obtained by simulation for arbitrary continuous F0.

Both theorems certainly hold under more general assumptions but their proofs
become much more technical and quite long.

The basic idea of the proof under the null hypothesis is to show that the limit
distribution of the process {Vm(t), t > 0}, where

Vm(t) =
1√
m

m+�mt�∑
i=m+1

(F̂m(Xi)− 1/2)

is the same as of {Zm(t), t > 0} with

Zm(t) =
1√
m

(m+�mt�∑
i=m+1

(F0(Xi)− 1/2)− k

m

m∑
j=1

(F0(Xj)− 1/2)
)
.

Moreover, as m → ∞ the process
{

1√
m

(∑m+�mt�
i=m+1 (F0(Xi)−1/2), t > 0

}
converges

to a Gaussian process in a certain sense and 1√
m

∑m
j=1(F0(Xj)− 1/2) converges in

distribution to N(0, σ2), where

σ2 =
1

12
+ 2

∞∑
j=1

cov{F0(X1), F0(Xj+1)}.

In case of independent observations σ2 = 1/12 while for dependent ones the second
term in σ2 is generally nonzero and also unknown. As an estimator of σ2 we use
the estimator

σ̂2
m = R̂(0) + 2

Λm∑
k=1

w(k/Λm)R̂m(k),(13)

R̂m(k) =
1

n

n−k∑
i=1

(F̂m(Xi)− 1/2)(F̂m(Xi+k)− 1/2),(14)
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where w(·) is a weight function. Usual choices are either

w1(t) = 1I{0 ≤ t ≤ 1/2}+ 2(1− t){1/2 < t ≤ 1}

or

w2(t) = 1− tI{0 ≤ t ≤ 1}.
The weight w1(·) is called the flat top kernel, while w2(·) is the Bartlett kernel.

Theorem 3 Let the sequence {Xi}i fulfill the assumption (H1) and let

Λm → ∞, Λm(logm)−β → 0

for some β > 2. Then, as m → ∞,

σ̂2
m − σ2 = oP (1).

Proof. It is omitted since it very similar to the proof of Theorem 1 (II).

3. Simulations

In this section we report the results of a small simulation study that is performed in
order to check the finite sample performance of the monitoring procedure considered
in the previous section. The simulations were performed using the R software.

All results are obtained for the level α = 5% where the critical values c were set
using the limit distribution as indicated in (12). Unfortunately the explicit form
for the distribution of sup0≤t≤1 |W (t)|/tγ is known only for γ = 0 otherwise the
simulated critical values are used. They are reported in [8] for example. We choose
three different length of the training data m = 50, 100 and 500 to asses the ap-
proximation based on asymptotics. The estimate σ̂2

m is set to 1/12 for independent
observations and it is calculated according to (13) with flat top kernel for dependent
ones. We also comment on a common situation when we do not have the apriori in-
formation about the independence and the estimate of σ2

m is calculated also for the
independent observations. The symbol tk stands for t-distribution with k degrees
of freedom.

The empirical sizes of the procedure under the null hypothesis are based on 10 000
replications and monitoring period of length 10 000. They are reported in Table 1
for both independent and dependent observations, where dependent ones form an
AR(1) sequence with a coefficient ρ. Since the procedure make use of the empirical
distribution function it is convenient also for distributions with heavier tails. Two
such examples are shown in the table, as well as a skewed distribution (demeaned
Log-normal one). We use different values of a tuning constant γ and since we will
later examine an early change, we are mostly interested in γ close to 1/2.

We can see that for independent observations the level is kept and the prolonga-
tion of the training period has no significant effect. This is not the case when we do
not make use of the independence information (figures are not reported here). The
reason is that we need more data to estimate σ2 precisely enough and therefore
the prolongation will bring the empirical size closer to the required level. Similar
reasoning holds for dependent observations as well. For γ in question (0.49), the
results are satisfactory. Typically, the results for more regular distributions (e. g.
normal one) are better than those reported here.
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Table 1

Empirical sizes for 5% level for different distribution of errors
being either independent (ρ = 0) or forming AR(1) sequence with coefficient ρ.

t1 t4 LN(0,1)-e−1/2

ρ m \ γ 0 0.25 0.45 0.49 0 0.25 0.45 0.49 0 0.25 0.45 0.49
50 4.7 4.5 2.9 1.7 4.4 4.3 2.8 1.7 4.3 4.1 3.0 1.7

0 100 4.6 4.7 3.4 2.2 4.7 4.3 3.2 2.0 4.7 4.3 3.1 2.0
500 4.5 4.5 4.2 3.0 4.2 4.4 3.8 2.8 4.4 4.5 4.0 3.0
50 9.4 9.0 6.7 4.6 8.6 8.7 6.6 4.6 9.0 8.8 6.7 4.6

0.2 100 7.5 7.6 5.7 3.8 6.6 6.4 5.3 3.8 7.5 7.5 5.8 3.9
500 5.7 5.8 5.3 4.1 5.0 5.3 4.7 3.5 5.2 5.6 5.1 3.8
50 12.1 12.2 8.7 5.6 10.3 10.4 7.6 5.2 11.0 10.9 7.9 5.4

0.4 100 10.9 11.0 8.3 5.9 9.0 9.3 6.9 4.8 8.9 8.8 6.4 4.2
500 8.8 9.6 8.8 6.6 6.7 7.2 6.4 4.9 7.2 7.4 6.8 5.0

Now we focus on alternatives. We take k∗ = 0, i. e. the change occurs right after
the end of training period. Therefore we use γ = 0.49, which is the most convenient
choice for an early change. The maximal length of the monitoring period is 500 and
the number of replications is 2500.

Table 2 summarizes results for stopping times for independent observation when
change is in the location with zero location before the change and μ0 afterwards.
For comparison there are k∗ = 0 and also k∗ = 9. The latter case leads to a small
increase in the delay of detection, otherwise the results are analogous, so we will
report only results for k∗ = 0 onwards. The detection delays are quite small even for
a smaller change. The prolongation of the training period leads mainly to reducing
extremes of the delay. However when we do not have the apriori information about
the independence i. e. the estimate of σ2 need to be calculated, the delays are
monotonically decreasing in m. The results are generally a bit worse even for the
largest m (figures are not reported here). In some simulations where the max value
equals to 500 the change was not detected, however this is quite rare in this setting.

The results for dependent observations are shown in Table 3. In the the upper
part there are stopping times for a unit change in mean, when errors form AR(1)
sequence. For dependent observations the positive impact of increased m is clearly
visible. With an increasing dependence amongst the data, the performance of the
procedure is worsening. However the results for m = 500 are satisfactory even with
ρ = 0.4. The lower part of the table presents the results for change in distribution of
innovations from t4 to demeaned Log-normal one. The procedure detects the change
for larger m, however the performance is not satisfactory. This pair of distributions
was chosen because it fulfills the requirement on F0 and F 0 as described in (A1).
That requirement excludes the possibility of change from a symmetric distribution
to another symmetric one. Simulations confirmed that the procedure is insensitive
to this type of change.

Table 4 shows the results for a change in variance of independent observations.
Due to the requirement of (A1) we choose two skewed distributions, Log-normal and
χ2
2 ones, which were again demeaned. We consider doubling either the variance or

the standard deviation. The results are generally better for Log-normal distribution
because it is more skewed. One can see an improvement in delay with an increasing
m. A longer training period is crucial mainly for a smaller change.
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Table 2

Summary of the stopping times for independent observations
with different distributions when change in location of μ0 occurs,

σ̂2
m = 1/12 and k∗ = 0 (if not stated otherwise).

t4 t1 LN(0,1)-e−1/2 t4, k∗=9
μ0 \m 50 100 500 50 100 500 50 100 500 50 100 500

Min. 5 5 5 4 4 4 5 4 5 24 18 24
1st Qu. 8 9 10 9 12 12 11 14 13 30 24 31

1 Median 11 13 13 16 20 19 13 18 15 34 27 34
Mean 12 15 14 21 24 23 14 18 16 35 28 35
3rd Qu. 15 18 17 28 31 29 16 22 18 39 32 39
Max. 52 54 46 126 124 100 33 42 30 81 64 67
Min. 5 5 6 4 4 4 5 4 7 25 18 27
1st Qu. 14 19 18 18 25 22 35 52 32 44 36 45

0.5 Median 22 31 26 38 48 38 59 85 44 55 47 53
Mean 27 36 29 60 69 46 73 99 45 60 52 55
3rd Qu. 34 47 37 77 91 64 96 131 57 71 62 64
Max. 153 197 110 500 500 250 464 500 128 205 214 124

Table 3

Summary of the stopping time for errors forming AR(1) process.
Upper part – change in mean of +1 occurs,

lower part-change in distribution of innovations, k∗ = 0 for both.

ρ = 0 ρ = 0.2 ρ = 0.4
distribution \m 50 100 500 50 100 500 50 100 500

Min. 5 5 5 2 4 11 3 6 10
1st Qu. 8 9 10 37 34 32 56 47 42

t4 Median 11 13 13 63 50 42 141 78 60
Mean 12 15 14 120 61 45 234 125 66
3rd Qu. 15 18 17 123 71 56 500 140 83
Max. 52 54 46 500 500 168 500 500 365
Min. 1 2 4 3 5 8 4 8 9
1st Qu. 9 10 10 19 19 19 38 33 32

LN(0,1)-e−1/2 Median 14 13 13 34 27 24 113 58 45
Mean 23 15 13 90 38 26 230 116 51
3rd Qu. 23 18 16 76 41 31 500 122 62
Max. 500 75 30 500 500 67 500 500 324

Min. 1 2 6 2 5 7 4 6 7
t4 1st Qu. 59 49 43 201 106 70 500 311 109
↓ Median 500 159 83 500 500 145 500 500 262

LN(0,1)-e−1/2 Mean 328 247 106 383 339 193 423 395 283
3rd Qu. 500 500 141 500 500 276 500 500 500
Max. 500 500 500 500 500 500 500 500 500

4. Proofs

We focus on the proofs for independent observations and give modifications needed
for dependent ones. The line of both proofs is the same, however for dependent
observations it is more technical.

Proof of Theorem 1.

(I) The detector Q(m, k) can be decomposed into two summands:

σ̂m

√
mQ(m, k) = J1(m, k) + J2(m, k),
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Table 4

Summary of the stopping time for independent observations
with different distributions when a change in a standard deviation

(multiplied by κ0) occurs, σ̂2
m = 1/12 and k∗ = 0.

LN(0,1)-e−1/2 χ2
2 − 2

\κ0 2
√
2 2

√
2

\m 50 100 500 50 100 500 50 100 500 50 100 500
Min. 1 1 3 1 2 3 1 1 3 1 2 3
1st Qu. 14 14 14 56 35 33 25 25 24 500 119 60
Median 50 39 31 500 158 75 500 93 59 500 500 173
Mean 151 72 44 333 239 113 282 193 91 397 360 223
3rd Qu. 221 89 61 500 500 153 500 440 125 500 500 396
Max. 500 500 365 500 500 500 500 500 500 500 500 500

where

J1(m, k) =
1

m

m+k∑
i=m+1

m∑
j=1

h(Xj , Xi),

J2(m, k) =

m+k∑
i=m+1

(F0(Xi)− 1/2)− k/m

m∑
i=1

(F0(Xi)− 1/2)

with

h(Xj , Xi) = I{Xj ≤ Xi}−E(I{Xj ≤ Xi}|Xi)−E(I{Xj ≤ Xi}|Xj)+EI{Xj ≤ Xi}.
Since given X1, . . . , Xm term J1(m, k) can be expressed as the sum of independent
random variables with zero mean and since for i �= j

E(h(Xj , Xi)|Xi) = E(h(Xj , Xi)|Xj) = Eh(Xj , Xi) = 0

we get by the Hájek -Rényi inequality for any q > 0:

E
(
P ( max

1≤k≤N

|J1(m, k)|√
m(1 + k/m)(k/(m+ k))γ

≥ q|X1, . . . , Xm)
)

≤ q−2
N∑

k=1

E
(∑m

j=1 h(Xj , Xi)
)2

m3(1 + k/m)2(k/(m+ k))2γ

≤ q−2D
( m∑

k=1

m−2+2γk−2γ +

N∑
k=m+1

k−2
)
= q−2O(m−1)

for some D > 0. The last relation holds true for any N integer and therefore

the limit behavior of max1≤k≤N
|Q(m,k)|
qγ(k/m) is the same as max1≤k≤N

|J2(m,k)|√
mqγ(k/m)

. The

proof can be finished along the line of Theorem 2.1 in [8].

(II) The proof follows the same line as above but due to dependence modifications
are needed. Notice that α-mixing of {Xi}i implies α-mixing of {φ(Xi)}i for any
measurable function φ with the same mixing coefficient as the original sequence.
Then by Lemma 3.3 in [4] we get that there is a positive constant D such that for
h(·, ·) defined above

|E(h(Xi1 , Xi2)h(Xi3 , Xi4)| ≤ D(α(i))2/3−ξ
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for any ξ > 0, where i = min(i(2) − i(1), i(4) − i(3)) with i(1) ≤ i(2) ≤ i(3) ≤ i(4).
Then after some standard calculations we get that

EJ1(m, k)2 ≤ Dmk

for some D > 0 and hence by Theorem B.4 in [9] we get that also under present
assumptions

P ( max
1≤k≤N

|J1(m, k)|
(1 + k/m)(k/(m+ k))γ

≥ q) ≤ q−2O(m−1(logN)2).

The proof is then again finished along the line of Theorem 2.1 in [8] but instead of
Komlós-Major-Tusnády results we use Theorem 4 in [10].

Proof of Theorem 2 Going through the proof of Theorem 1(I) we find that if in
J2(m, k) we replace 1/2 by EF (Xi) and denote this by JA

2 (m, k) then even under
our alternative

max
1≤k≤N

|JA
2 (m, k)|√
mqγ(k/m)

= OP (1), max
1≤k≤N

|J1(m, k)|√
mqγ(k/m)

= oP (1).

Moreover,

max
1≤k≤N

|max(0, k − k∗)|√
mqγ(k/m)

→ ∞.

To prove part (II) we proceed similarly.
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[1] Aue, A., Horváth, L., Hušková, M., and Kokoszka, P. (2006). Change-
point monitoring in linear models. Econometrics Journal 9 373–403.

[2] Bandyopadhyay, U. and Mukherjee, A. (2007). Nonparametric partial se-
quential test for location shift at an unknown time point. Sequential Analysis
26 99-113.

[3] Chu, C.-S., Stinchcombe, M., and White, H. (1996). Monitoring structural
change. Econometrica 64 1045–1065.

[4] Dehling, H. and Wendler, M. (2010). Central limit theorem and the boot-
strap for U -statistics of strongly mixing data. Journal of Multivariate Analysis
101 126–137.

[5] Gombay, E. (1995). Nonparametric truncated sequential change-point detec-
tion. Statistics & Decisions 13 71–82.

[6] Gombay, E. (2004). U-statistics in sequential tests and change detection. Se-
quential Analysis 23 254–274.

[7] Gombay, E. (2008). Weighted logrank statistics in sequential tests. Sequential
Analysis 27 97–104.
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