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Variance reduction via basis expansion in

Monte Carlo integration

Yazhen Wang1

University of Wisconsin-Madison

Abstract: Monte Carlo methods are widely used in numerical integration,
and variance reduction plays a key role in Monte Carlo integration. This pa-
per investigates variance reduction for Monte Carlo integration in both finite
dimensional Euclidean space and infinite dimensional Wiener space. The pro-
posed variance reduction approaches are to use basis functions to construct
control variates for finite dimensional integrals and utilize Itô-Wiener chaos
expansion to design antithetic variates and control variates for Wiener in-
tegrals. We establish the variances of the proposed Monte Carlo integration
estimators and show that the proposed methods can achieve dramatic variance
reduction in comparison with the basic Monte Carlo estimators. Examples are
used to illustrate the performance of the proposed estimators.
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1. Introduction

Numerical integration has wide applications and good numerical integration
schemes are always in high demand. There are many deterministic quadrature for-
mulas for computing ordinary integrals with well behaved integrands. However, if
the integrands fail to be regular such as the lack of continuous derivaive of moderate
order, numerical analytic techniques, such as the trapezoidal and Simpson’s rules,
become less attractive. In particular the deterministic methods will run into sev-
eral difficulties when applying to high dimensional integrals. For dimension d = 1,
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standard deterministic integration techniques have very good accuracy for smooth
integrand f . Their accuracy decreases as dimension d increases. In general for a
deterministic integration method with errors O(n−r) in one dimension, where n
is data points used and r is some number usually no less than 1, the errors be-
come O(n−r/d) in d dimensions. At high dimensions, these deterministic integration
methods are computationally infeasible or insufficiently accurate. It is often more
convenient to compute such high dimensional integrals by Monte Carlo methods.
The Monte Carlo approach is to represent an integral as an expectation of some
random variable and then convert the integration problem into the problem of es-
timating a population mean. Monte Carlo methods are simple and can be used in
any dimensions. The Monte Carlo estimators have errors of order n−1/2 in proba-
bility, which is free of dimension d, although error magnitudes may deteriorate as
d increases. Thus, it is very important to reduce the variances of the Monte Carlo
estimators.

Variance reduction may be viewed as a means to control the variability of the
Monte Carlo estimators by the use of known information about the problem. If we
know nothing about the problem, variance reduction can not be achieved, while at
the other extreme, if we have complete knowledge about the problem, the variance
is equal to zero and there is no need for simulation. Variance reduction is often
obtained from the clever use of available information about the integration prob-
lem. There exist several variance reduction techniques including antithetic variates,
control variates, importance sampling, and stratified sampling. Some of these tech-
niques may require pilot simulations, which are used to define variance reduction
techniques that will refine and improve the efficiency of the whole simulations. See
[2, 7].

This paper will study variance reduction for Monte Carlo integration in finite di-
mensional Euclid space and infinite dimensional Wiener space. Our approaches rely
on basis expansion in finite dimensions and Itô-Wiener chaos expansion in Wiener
space. For the finite dimensional case, we use basis functions to construct control
variates for achieving variance reduction; and for Wiener integrals, we make use of
Itô-Wiener chaos expansion together with orthonormal bases to design antithetic
variates and control variates for variance reduction. We derive the variances of the
proposed Monte Carlo estimators and demonstrate the variance reduction effects.

The rest of the paper proceeds as follows. Section 2 presents the construction
of control variates by using basis functions for variance reduction in Monte Carlo
integration in finite dimensions. Both orthonormal bases and a dictionary of bases
are considered. Section 3 features Monte Carlo integration in Wiener space. Us-
ing Itô-Wiener chaos expansion we design schemes to construct antithetic variates
and control variates for variance reduction in Monte Carlo Wiener integration. Sec-
tion 4 provides two simple examples to illustrate the performance of the proposed
methods.

2. Variance reduction by basis expansion

The problem we consider is to evaluate integral

(2.1) I =
∫

Ω

f(x) μ(dx),

where μ is a probability measure on Ω = [0, 1]d, and f(x) is a function on Ω whose
integral is analytically intractable. Standard manipulation can be applied to express
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integrals over domains other than the unit cube in (2.1), and integrand f in (2.1)
may subsume weighting functions from importance sampling or periodization. Since
all integrals will be on Ω, we will suppress Ω from integral signs.

Monte Carlo methods estimate integral I by the form

(2.2) Î =
1
n

n∑
i=1

f(Xi),

where X1, . . . , Xn are n points sampled in Ω according to the probability measure
μ(dx).

2.1. Variance reduction by control variates

Suppose that h(x) is an easily working function with known integral say
∫

h(x) ×
μ(dx) = 0 (if not, we replace h(x) by h(x) −

∫
h(x) μ(dx)). We decompose f(x) into

two orthogonal parts:
f(x) = θ h(x) + fh(x),

where h and fh are orthogonal, that is,∫
h(x) fh(x) μ(dx) = 0,

and

θ =
∫

f(x) h(x) μ(dx).

For constant a, we define

Ĩ = Î − 1
n

n∑
i=1

a h(Xi) =
1
n

n∑
i=1

{f(Xi) − a h(Xi)} .

Then

E(Ĩ) = E {f(X1) − a h(X1)} =
∫

f(x) μ(dx) − a

∫
h(x) μ(dx) = I,

so Ĩ is an unbiased estimator of I. The variance of Ĩ

V ar(Ĩ) =
1
n

V ar {f(X1) − a h(X1)}

=
1
n

∫
{f(x) − a h(x) − I}2

μ(dx)

=
1
n

(θ − a)2
∫

[h(x)]2 μ(dx) +
1
n

∫
{fh(x) − I}2

μ(dx).

Hence, if
a = θ = E{f(X) h(X)},

Ĩ has the smallest variance. In order to make the control variates method practical,
the integral of h(x) needs to be either known or can be easily evaluated numerically.
We will investigate the construction of such h(x) by basis functions.
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2.2. Construction of control variates by orthonormal basis

We start with an orthonormal system ψ�, � = 1, 2, . . . , on L2(Ω, μ(dx)), which
satisfy ∫

[ψ�(x)]2 μ(dx) = 1,

∫
ψ�(x) μ(dx) = 0,∫

ψ�(x) φj(x) μ(dx) = 0, � �= j.

We select k basis functions ψ�j , j = 1, . . . , k, and let φj = ψ�j , j = 1, . . . , k. The
selected basis functions φj are used to construct h(x) in the control variates method,
that is,
(2.3)
f(x) = θ h(x)+fh(x), h(x) ∈ span{φ1, . . . , φk }, fh(x) ⊥ span{φ1, . . . , φk }.

Let

(2.4) θ h(x) =
k∑

j=1

θj φj(x),

where

(2.5) θj =
∫

f(x) φj(x) μ(dx).

For constants a1, . . . , ak, define

(2.6) Ĩ = Î − 1
n

n∑
i=1

k∑
j=1

aj φj(Xi) =
1
n

n∑
i=1

⎧⎨
⎩f(Xi) −

k∑
j=1

aj φj(Xi)

⎫⎬
⎭ .

Then

E(Ĩ) = E

⎧⎨
⎩f(X1) −

k∑
j=1

aj φj(X1)

⎫⎬
⎭ =

∫
f(x) μ(dx) −

k∑
j=1

aj

∫
φj(x) μ(dx) = I,

so Ĩ is an unbiased estimator of I. The variance of Ĩ

V ar(Ĩ) =
1
n

V ar

⎧⎨
⎩f(X1) −

k∑
j=1

aj φj(X1)

⎫⎬
⎭

=
1
n

∫ ⎧⎨
⎩f(x) −

k∑
j=1

aj φj(x) − I

⎫⎬
⎭

2

μ(dx)

=
1
n

∫ ⎧⎨
⎩θ h(x) −

k∑
j=1

aj φj(x)

⎫⎬
⎭

2

μ(dx) +
1
n

∫
{fh(x) − I}2

μ(dx)

=
1
n

∫ ⎧⎨
⎩

k∑
j=1

(θj − aj) φj(x)

⎫⎬
⎭

2

μ(dx) +
1
n

∫
{fh(x) − I}2

μ(dx)

=
1
n

k∑
j=1

(θj − aj)2 +
1
n

∫
{fh(x) − I}2

μ(dx).



238 Y. Wang

Hence, if

aj = θj =
∫

Ω

f(x) φj(x) = E{f(X1) φj(X1)},

Ĩ has the smallest variance. As θj are also integrals, we estimate θj by Monte Carlo
simulation as follows. We generate a pilot sample Y1, . . . , Ym from μ(dx) and use
the sample to estimate θj by

(2.7) θ̃j =
1
m

m∑
i=1

f(Yi) φj(Yi).

Take aj = θ̃j , plug them into Ĩ defined by (2.6), and denote the resulting estimator
by

(2.8) Î∗ = Î − 1
n

n∑
i=1

k∑
j=1

θ̃j φj(Xi) =
1
n

n∑
i=1

⎧⎨
⎩f(Xi) −

k∑
j=1

θ̃j φj(Xi)

⎫⎬
⎭ .

The following theorem gives the variance of Monte Carlo estimator Î∗.

Theorem 2.1.

V ar(Î∗) =
1
n

⎧⎨
⎩

∫
{fh(x) − I}2 μ(dx) +

k∑
j=1

V ar(θ̃j)

⎫⎬
⎭ ,

where

V ar(θ̃j) =
1
m

k∑
j=1

∫
{f(y) φj(y) − θj }2μ(dy).

Proof. Let Y = (Y1, . . . , Ym) and note that

(2.9) V ar(Î∗) = E{V ar(Î∗ |Y)} + V ar{E(Î∗ |Y)}.

Simple calculations show

E(I∗ |Y) = E(Î|Y) − 1
n

n∑
i=1

k∑
j=1

θ̃j E{φj(Xi)|Y)}

= E(Î) − 1
n

n∑
i=1

k∑
j=1

θ̃j E{φj(Xi)} = I,

and thus,

(2.10) V ar{E(Î∗ |Y)} = V ar(I) = 0.
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Also we calculate the conditional variance as follows,

V ar(Î∗ |Y) =
1
n

V ar

⎧⎨
⎩f(X1) −

k∑
j=1

θ̃j φj(X1)|Y

⎫⎬
⎭

=
1
n

∫
{f(x) − I −

k∑
j=1

θ̃j φj(x)}2 μ(dx)

=
1
n

∫
{fh(x) − I +

k∑
j=1

(θj − θ̃j) φj(x)}2 μ(dx)

=
1
n

∫
{fh(x) − I}2 μ(dx) +

1
n

k∑
j=1

(θ̃j − θj)2,

and hence

E{V ar(Î∗ |Y)} =
1
n

∫
{fh(x) − I}2 μ(dx) +

1
n

k∑
j=1

E{(θ̃j − θj)2},

where

E(θ̃j) =
1
m

m∑
i=1

E{f(Yi) φj(Yi)} = θj ,

E[(θ̃j − θj)2] = V ar(θ̃j) =
1
m

∫
{f(y) φj(y) − θj }2μ(dy).

We complete the proof by substituting above result and (2.10) into (2.9).

Remark 2.1. Theorem 1 shows that the variance of Î∗ has two parts: the variance
part for fh(x) that is orthogonal to φj(x), and the variance part for estimating k
coefficients θj . Note that from (2.2)-(2.5), we have

V ar(Î) =
1
n

∫
{f(x) − I}2 μ(dx)

=
1
n

{∫
{fh(x) − I}2 μ(dx) +

∫
{θ h(x)}2 μ(dx)

}

=
1
n

⎧⎨
⎩

∫
{fh(x) − I}2 μ(dx) +

k∑
j=1

θ2
j

⎫⎬
⎭ .

Since f(x) can be expanded over the basis functions, with appropriate selection of
k basis functions φj , much of f(x) can be represented by φj(x) in the sense that∑k

j=1 θ2
j accounts for a large portion of

∫
{f(x) − I}2 μ(dx), and thus the reduction

from
∫

{f(x) − I}2 μ(dx) to
∫

{fh(x) − I}2 μ(dx) can be very significant. Therefore,
in comparison with the variance of V ar(Î), Î∗ may achieve a big variance reduction,
since the second term in the expression of V ar(Î∗) in Theorem 1 can be very small
for reasonably large m.

Remark 2.2. To increase the variance reduction, we need to select basis functions
φj = ψ�j , j = 1, . . . , k, such that

∑k
j=1 θ2

j is maximized, where θj are defined in
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(2.5). Ideally we should select k basis functions whose coefficients are k largest in
terms of magnitude. That is, suppose that ψ�, � = 1, 2, . . . , have coefficients

α� =
∫

f(x) ψ�(x) μ(dx).

We order the absolute values of α� in a decreasing order

|α(1)| ≥ |α(2)| ≥ · · · ,

and denote the ordered coefficients by α(�) and the corresponding basis functions by
ψ(�). We select the top k basis functions φj = ψ(j) with corresponding coefficients
θj = α(j), j = 1, . . . , k. Of course, the ideal selection needs to know coefficients
α�, which are also integrals. As we have employed the pilot sample Y1, . . . , Ym to
estimate the coefficients of the selected basis functions, we may as well use the
sample to select basis functions. The method works as follows. From Y1, . . . , Ym we
estimate coefficients α�

α̂� =
1
m

m∑
i=1

f(Yi) ψ�(Yi), � = 1, . . . , m,

and order them in absolute value

|α̂(1)| ≥ |α̂(2)| ≥ · · · .

We pick up k such that ∑k
j=1 α2

(j)∑m
j=1 α2

j

exceeds a pre-specified percentage such as 80% and 90%. Then we select |α̂(j)|,
j = 1, . . . , k, and the corresponding k basis functions. Denote by θ̃j = α̂(j), and the
corresponding selected basis functions by φj , j = 1, . . . , k. We plug them into (2.8)
to define the Monte Carlo estimator Î∗, which is totally sample dependent.

2.3. Construction of control variates by a dictionary of bases

Sometimes it is more convenient to work with a dictionary of bases that may not
be orthogonal. Suppose that we have a dictionary of bases ψλ, λ ∈ Λ. Analog to
the orthogonal case, we select k basis functions ψ�j , j = 1, . . . , k, set φj = ψ�j ,
j = 1, . . . , k, and take

(2.11) f(x) =
k∑

j=1

θj φj(x) + fh(x), fh(x) ⊥ span{φ1, . . . , φk },

where

(2.12) θj =
∫

f(x) φj(x) μ(dx).

From the pilot sample Y1, . . . , Ym we estimate θj by

θ̃j =
1
m

m∑
i=1

f(Xi) φj(Xi),
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and build the Monte Carlo estimator of I by

Ĩ∗ = Î − 1
n

n∑
i=1

k∑
j=1

θ̃j φj(Xi) =
1
n

n∑
i=1

⎧⎨
⎩f(Xi) −

k∑
j=1

θ̃j φj(Xi)

⎫⎬
⎭ .

Similar to Theorem 1, we have the following theorem for the variance of Ĩ∗.

Theorem 2.2.

V ar(Ĩ∗) =
1
n

⎧⎨
⎩

∫
{fh(x) − I}2 μ(dx) +

k∑
r=1

k∑
j=1

Cov(θ̃r, θ̃j)

⎫⎬
⎭ ,

where

Cov(θ̂r, θ̂j) =
1
m

∫
{[f(y)]2 φr(y) φj(y) − θr θj } μ(dy).

Proof. Similar to the proof of Theorem 1, we use Y = (Y1, . . . , Ym) and

V ar(Ĩ∗) = E{V ar(Ĩ∗ |Y)} + V ar{E(Ĩ∗ |Y)},

and have

E(Ĩ∗ |Y) = I, V ar(E(Ĩ∗ |Y)) = V ar(I) = 0.

We calculate the conditional variance as follows,

V ar(Ĩ∗ |Y) =
1
n

V ar

⎧⎨
⎩f(X1) −

k∑
j=1

θ̃j φj(X1)|Y

⎫⎬
⎭

=
1
n

∫
{f(x) − I −

k∑
j=1

θ̃j φj(x)}2 μ(dx)

=
1
n

∫
{fh(x) − I +

k∑
j=1

(θj − θ̃j) φj(x)}2 μ(dx)

=
1
n

∫
{fh(x) − I}2 μ(dx) +

1
n

∫ {
k∑

j=1

(θ̃j − θj)φj(x)

}2

μ(dx)

=
1
n

∫
{fh(x) − I}2 μ(dx)

+
1
n

k∑
i=1

k∑
j=1

(θ̃i − θi) (θ̃j − θj)
∫

φi(x) φj μ(dx).

Thus we have

V ar(Ĩ∗) = E{V ar(Ĩ∗ |Y)}

=
1
n

∫
{fh(x) − I}2 μ(dx)

+
1
n

k∑
i=1

k∑
j=1

E(θ̃i − θi) (θ̃j − θj)
∫

φi(x) φj μ(dx),
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where for j = 1, . . . , k,

E(θ̃j) =
1
m

m∑
i=1

E{f(Yi) φj(Yi)} = θj ,

E{(θ̃i − θi) (θ̂j − θj)} = Cov(θ̂i, θ̂j)

=
1
m

∫
{f(y) φi(y) − θi} {f(y) φj(y) − θj } μ(dy)

=
1
m

∫
{[f(y)]2 φi(y) φj(y) − θi θj } μ(dy).

Remark 2.3. There exist several well known bases, and we may use these bases di-
rectly or with some modifications for the construction of the proposed Monte Carlo
estimators. Univariate bases include Hermite polynomials, Laguerre polynomials,
Fourier basis, splines, wavelet bases, wavelet packets and local cosine bases, and
wavelet frames [3]. Multivariate bases include tensor products of univariate bases
and radial bases.

3. Monte Carlo integration in Wiener space

Suppose {Wt ∈ IR, t ∈ [0, T ]} is a Wiener process in probability space (Ω, F , IP ).
The problem considered is to evaluate the expected value of a functional of W , that
is, we need to compute J = E[F (W )], where F : C([0, T ], IR) → IR is a functional
on the space of IR-valued continuous functions of t. The basic Monte Carlo method
is to estimate J by

(3.1) Ĵ =
1
n

n∑
i=1

F (W i),

where W 1, . . . , Wn are independent simulations of W . Such problems are encoun-
tered in stochastic control, partial differential equations, and mathematical finance.
Specifically, consider a diffusion process {Xt ∈ IR, t ∈ [0, T ]} governed by the fol-
lowing Itô stochastic differential equation,

(3.2) dXt = b(Xt, t) dt + σ(Xt, t) dWt,

where {Wt ∈ IR, t ∈ [0, T ]} is a standard Wiener process, b(Xt, t) is drift, and
σ(Xt, t) is diffusion variance [8]. We often need to evaluate E[G(X)] for some func-
tional G. As the diffusion process Xt is a functional of Wt, G(X) is a functional
of W , and thus we may calculate E[G(X)] by Monte Carlo methods. Such Monte
Carlo methods have a number of potential applications. For example, for partial
differential equations like the Cauchy problem, the Feynmann-Kac formula provides
stochastic representations for their solutions as functionals of Wt; in mathematical
finance asset prices are often assumed to follow Itô processes, and the prices of
options and derivatives often can be expressed as functionals of Wt. Monte Carlo
methods are used to numerically evaluate derivative prices and solutions of the
partial differential equations. The Monte Carlo evaluation is to simulate indepen-
dent realizations of Wt, solve (3.2) numerically by the use of any of a number of
discretization schemes for stochastic differential equations, where the simplest of
which is the Euler scheme, and then evaluate the sample average given by (3.1).
See [1, 2, 7, 9, 12].



Monte Carlo integration 243

In this section we investigate variance reduction methods by Itô-Wiener chaos
expansion for the Monte Carlo evaluation of J = E[F (W )]. For H = F (W ) ∈
L2(Ω, F , IP ), we have the following Itô-Wiener chaos expansion [5, 6, 9],

H = F (W ) = J +
∫ T

0

h1(t) dWt +
∫

0≤t1<t2≤T

h2(t1, t2) dWt1 dWt2

+ · · · +
∫

0≤t1<···<td ≤T

hd(t1, . . . , td) dWt1 · · · dWtd
+ · · · ,(3.3)

where hd(x) ∈ L2(IRd, dx), and∫
0≤t1<···<td ≤T

hd(t1, . . . , td) dWt1 · · · dWtd

are Itô multiple stochastic integrals which have mean zero and variance∫
0≤t1<···<td ≤T

[hd(t1, . . . , td)]2 dt1 · · · dtd =
1
d!

‖hd‖2,

and are uncorrelated,

E

[∫
0≤t1<···<td ≤T

hd dWt1 · · · dWtd

∫
0≤t1<···<tr ≤T

hr dWt1 · · · dWtr

]
= 0, d �= r.

Hence H has variance

(3.4) V ar(H) = ‖h1‖2 +
1
2!

‖h2‖2 + · · · +
1
d!

‖hd‖2 + · · · .

Suppose φd
j (x) is an orthonormal basis for L2(IRd, dx). Then we have a repre-

sentation for hd(x) ∈ L2(IRd, dx),

hd(x) =
∞∑

j=1

θd
j φd

j (x), ‖hd‖2 =
∞∑

j=1

(θd
j )2.

Substituting the above representation into Itô-Wiener chaos expansion (3.3) we
obtain a representation of H

H = J +
∑

j

θ1
j

∫ T

0

φ1
j (t) dWt +

∑
j

θ2
j

∫
0≤t1<t2≤T

φ2(t1, t2) dWt1 dWt2

+ · · · +
∑

j

θd
j

∫
0≤t1<···<td ≤T

φd
j (t1, . . . , td) dWt1 · · · dWtd

+ · · · ,(3.5)

where

θd
j = E

{
H

∫
0≤t1<···<td ≤T

φd
j (t1, . . . , td) dWt1 · · · dWtd

}
,

and an expression for the variance of H

(3.6) V ar(H) =
∑

j

(θ1
j )2 +

1
2!

∑
j

(θ2
j )2 + · · · +

1
d!

∑
j

(θd
j )2 + · · · .
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From (3.4) and (3.6) we obtain the variance of the basic Monte Carlo estimator Î
defined in (3.1)

V ar(Ĵ) =
1
n

V ar(H) =
1
n

{
‖h1‖2 +

1
2!

‖h2‖2 + · · · +
1
d!

‖hd‖2 + · · ·
}

=
1
n

⎧⎨
⎩

∑
j

(θ1
j )2 +

1
2!

∑
j

(θ2
j )2 + · · · +

1
d!

∑
j

(θd
j )2 + · · ·

⎫⎬
⎭ .(3.7)

3.1. Variance reduction by antithetic variates

Since Wiener process Wt is symmetric, that is, −W is also a Wiener process. We
use −W to construct antithetic variable H0 = F (−W ), which has E(H0) = J . The
resulting Monte Carlo estimator

(3.8) J̃ =
1
n

n∑
i=1

{F (W i) + F (−W i)}/2.

Replace W by −W in (3.3) we obtain

H0 = F (−W ) = J −
∫ T

0

h1(t) dWt +
∫

0≤t1<t2≤T

h2(t1, t2) dWt1 dWt2 + · · ·

+ (−1)d

∫
0≤t1<···<td ≤T

hd(t1, . . . , td) dWt1 · · · dWtd
+ · · · .

Combining the above expression with (3.3) and (3.5) we conclude

[H + H0]/2 = [F (W ) + F (−W )]/2 = J +
∫

0≤t1<t2≤T

h2(t1, t2) dWt1 dWt2 + · · ·

+
∫

0≤t1<···<t2 d ≤T

h2 d(t1, . . . , t2 d) dWt1 · · · dWt2 d
+ · · ·

= J +
∑

j

θ2
j

∫
0≤t1<t2≤T

φ2(t1, t2) dWt1 dWt2 + · · ·

+
∑

j

θ2 d
j

∫
0≤t1<···<t2 d ≤T

φ2 d
j (t1, . . . , t2 d) dWt1 · · · dWt2 d

+ · · · .(3.9)

Using (3.8) and (3.9) we can show that E(J̃) = J and J̃ has variance

V ar(J̃) =
1
n

{
1
2!

‖h2‖2 +
1
4!

‖h4‖2 · · · +
1

(2 d)!
‖h2 d‖2 + · · ·

}

=
1
n

⎧⎨
⎩ 1

2!

∑
j

(θ2
j )2 +

1
4!

∑
j

(θ4
j )2 + · · · +

1
(2 d)!

∑
j

(θ2 d
j )2 + · · ·

⎫⎬
⎭ .(3.10)

Remark 3.1. In comparison with the variance of Ĵ given by (3.7), the variance of
J̃ in (3.10) has only terms with even d, thus J̃ should achieve a substantial variance
reduction. From now on we consider Itô-Wiener expansion with only terms indexed
by even d.
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3.2. Variance reduction by control variates

Of θd
j with even d, we order |θd

j |/d! in a decreasing order and pick up the k largest
ones. Denote the selected k coefficients by θd�

j�
, � = 1, . . . , k. We use the terms with

θd�
j�

in (3.9) as control variates to adjust Monte Carlo estimator J̃ defined in (3.8) for
variance reduction. First we simulate another m independent samples, B1, . . . , Bm,
of Wiener process, and use the samples to estimate θd�

j�
by

θ̂d�
j�

=
1
m

m∑
i=1

F (Bi)
∫

0≤t1<···<td�
≤T

φd�
j�

(t1, . . . , td�
) dBi

t1 · · · dBi
td�

.

Then we build the Monte Carlo estimator

Ĵ ∗ =
1
n

n∑
i=1

{
F (W i) + F (−W i)

2

−
k∑

�=1

θ̂d�
j�

∫
0≤t1<···<td�

≤T

φd�
j�

(t1, . . . , td�
) dW i

t1 · · · dW i
td�

}
.(3.11)

The variance of Ĵ ∗ is given in the following theorem.

Theorem 3.1. Ĵ ∗ is an unbiased estimator of J with variance

V ar(Ĵ ∗) =
1
n

⎧⎨
⎩

∑
(d,j) �=(d�,j�)

(
θd

j /d!
)2

+
k∑

�=1

V ar
(
θ̂d�

j�

)⎫⎬
⎭ ,

where

V ar
(
θ̂d�

j�

)
=

1
m

V ar

(
F (B)

∫
0≤t1<···<td�

≤T

φd�
j�

(t1, . . . , td�
) dBt1 · · · dBtd�

)
.

Proof. Let B = (B1, . . . , Bm), and note that

(3.12) V ar(Ĵ ∗) = E{V ar(Ĵ ∗ |B)} + V ar{E(Ĵ ∗ |B)}.

Since multiple stochastic integrals have zero mean, simple conditional calculations
show

E(J ∗ |B) = E(J̃) − 1
n

n∑
i=1

k∑
�=1

θ̃d�
j�

E

[∫
0≤t1<···<td�

≤T

φd�
j�

(t1, . . . , td�
) dW i

t1 · · · dW i
td�

]

= J,

and thus E[Ĵ ∗] = J , and

(3.13) V ar{E(Ĵ ∗ |B)} = V ar(J) = 0.
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On the other hand, from (3.9) and (3.11) we obtain

Ĵ ∗ =
1
n

n∑
i=1

⎧⎨
⎩

∑
even d

∑
j

θd
j

∫
0≤t1<···<td ≤T

φd
j (t1, . . . , td) dW i

t1 · · · dW i
td

−
k∑

�=1

θ̂d�
j�

∫
0≤t1<···<td�

≤T

φd�
j�

(t1, . . . , td�
) dW i

t1 · · · dW i
td�

}

=
1
n

n∑
i=1

⎧⎨
⎩

∑
(d,j) �=(d�,j�)

θd
j

∫
0≤t1<···<td ≤T

φd
j (t1, . . . , td) dW i

t1 · · · dW i
td

−
k∑

�=1

(θ̂d�
j�

− θd�
j�

)
∫

0≤t1<···<td�
≤T

φd�
j�

(t1, . . . , td�
) dW i

t1 · · · dW i
td�

}
.

Thus we have

V ar(Ĵ ∗ |B) =
1
n

⎧⎨
⎩

∑
(d,j) �=(d�,j�)

θd
j

∫
0≤t1<···<td ≤T

φd
j (t1, . . . , td) dt1 · · · dtd

−
k∑

�=1

(θ̂d�
j�

− θd�
j�

)
∫

0≤t1<···<td�
≤T

φd�
j�

(t1, . . . , td�
) dt1 · · · dtd�

}

=
1
n

⎧⎨
⎩

∑
(d,j) �=(d�,j�)

(θd
j )2/d! +

k∑
�=1

(θ̂d�
j�

− θd�
j�

)2/d�!

⎞
⎠ ,

and hence

E{V ar(Ĵ ∗ |B)} =
1
n

⎧⎨
⎩

∑
(d,j) �=(d�,j�)

(θd
j )2/d! +

k∑
�=1

E[(θ̂d�
j�

− θd�
j�

)2]/d�!

⎞
⎠ ,

where E(θ̂d�
j�

) = θd�
j�

, and

E[(θ̂d�
j�

− θd�
j�

)2] = V ar(θ̂d�
j�

)

=
1
m

V ar

(
F (B)

∫
0≤t1<···<td�

≤T

φd�
j�

(t1, . . . , td�
) dBt1 · · · dBtd�

)
.

We complete the proof by substituting above result and (3.13) into (3.12).

Remark 3.2. From Theorem 3 we can see that with appropriate selection of k
terms,

∑
(d,j) �=(d�,j�)

(θd
j )2/d! can be very small, and also the sum of V ar(θ̂d�

j�
) over

1 ≤ � ≤ k may be very small for reasonably large m. Thus, similar to the finite
dimensional case in Section 2, in comparison with the variance of Ĵ , Ĵ ∗ can achieve
a significant variance reduction. Also the same selection scheme described in Sec-
tion 2.2 can be adopted here for the selection of k and the k terms θd�

j�
used in the

construction of Ĵ ∗ based on simulated B1, . . . , Bm.
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4. Examples

We illustrate two simple examples to demonstrate the performance of the proposed
methods. The first example is the integral of a non-smooth function. Consider

I =
∫ 1

−1

f(x) dx =
∫ 1

0

2 f(2 u − 1) du,

where

f(x) =
∞∑

j=0

2−0.25 j cos(2j π x)

is continuous but nowhere differentiable. The theoretical value of I is 0. Basic Monte
Carlo estimator Î has variance σ2/n, where

σ2 =
∫ 1

−1

[f(x)]2 dx =
1

1 − 2−0.5
.

Take cosine basis
cos(π j x), j = 1, . . . ,

and select the four basis functions with j = 2, 4, 8, 16. The corresponding Monte
Carlo estimator Î∗ in (2.8) has variance σ2

∗/n + τ2/(nm), where

σ2
∗ =

∞∑
j=5

2−0.5 j =
2−2.5

1 − 2−0.5
= 0.177 σ2,

and τ2 is given by the second term in the expression of V ar(Î∗) in Theorem 1. For
reasonably large m, the term τ2/(nm) is negligible, so with Î as benchmark, Î∗

can make 82% variance reduction.
The second example is a Wiener integral. Consider Itô process Xt, where

dXt = Xt dt + h(t) Xt dWt, t ∈ [0, 1], X0 = 0.

where h(t) = 1 for t ∈ [0, 1/2] and = 2 for t ∈ (1/2, 1]. The problem is to eval-
uate J = E{‖X1‖ }. The theoretical value of J = e = 2.7183. Basic Monte Carlo
estimator Ĵ has variance σ2/n, where

σ2 = e2 {e2.5 − 1} = 82.6281.

Antithetic variates estimator J̃ has variance σ2
0/n, where

σ2
0 = e2 {(e2.5 + e−2.5)/2 − 1} = 37.9223,

which represents 54% variance reduction from Ĵ to J̃ .
Next we consider control variates estimator Ĵ ∗. Take Haar wavelets on [0, 1]:

φ(x) = 1, ψ(x) = −1 for x ∈ [0, 1/2] and 1 for x ∈ (1/2, 1], and

ψj,k(x) = 2j/2 ψ(2j x − k), j = 1, 2, . . . , k = 0, . . . , 2j − 1,

and use them to form wavelets on [0, 1]d (see [3]).
Four terms are selected to form control variates and build the Monte Carlo

estimator Ĵ ∗. The four terms are selected as follow: three for h2(x) in [0, 1]2:

2.25 φ(t1) φ(t2), 0.75 φ(t1) ψ(t2), 0.75 ψ(t1) φ(t2),
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and one for h4(x) in [0, 1]4:

5.0625 φ(t1) φ(t2) φ(t3) φ(t4).

The control variates Monte Carlo estimator Ĵ ∗ has variance σ2
∗/n+τ2/(mn), where

σ2
∗ = 0.9707 e2 = 7.1723,

and τ2 is given by the second term in the expression of V ar(Ĵ ∗) in Theorem 3. For
reasonably large m, the term τ2/(nm) is negligible, so the variance can be further
reduced by about 81% from J̃ to Ĵ ∗. In fact, if we take Ĵ as benchmark, Ĵ ∗ can
reduce variance by about 91%, or equivalently, Ĵ has variance 11 times higher than
Ĵ ∗.
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