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exponential families
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Abstract: Theory and methodology for nonparametric regression have been
particularly well developed in the case of additive homoscedastic Gaussian
noise. Inspired by asymptotic equivalence theory, there have been ongoing ef-
forts in recent years to construct explicit procedures that turn other function
estimation problems into a standard nonparametric regression with Gaussian
noise. Then in principle any good Gaussian nonparametric regression method
can be used to solve those more complicated nonparametric models. In partic-
ular, Brown, Cai and Zhou [3] considered nonparametric regression in natural
exponential families with a quadratic variance function.

In this paper we extend the scope of Brown, Cai and Zhou [3] to general
natural exponential families by introducing a new explicit procedure that is
based on the variance stabilizing transformation. The new approach signifi-
cantly reduces the bias of the inverse transformation and as a consequence
it enables the method to be applicable to a wider class of exponential fam-
ilies. Combining this procedure with a wavelet block thresholding estimator
for Gaussian nonparametric regression, we show that the resulting estimator
enjoys a high degree of adaptivity and spatial adaptivity with near-optimal
asymptotic performance over a broad range of Besov spaces.

1. Introduction

The theory of asymptotic equivalence occupies an important position in statistical
decision theory. The main goal is to approximate complex statistical models by
simpler ones. If two models are asymptotically equivalent, then all asymptotically
optimal procedures for the simpler model can be carried over to the complex one
under all bounded losses. Asymptotic equivalence theory was pioneered by Lucien
Le Cam and the early focus was on parametric models. See [16]. The first global
asymptotic equivalence result for nonparametric function estimation models was
developed in the seminal paper by Brown and Low [4] in the context of nonpara-
metric regression and white noise with drift models. Since then there has been active
research on asymptotic equivalence/nonequivalence among nonparametric function
estimation models. Many important results have been developed in different con-
texts.

The main ideas behind asymptotic equivalence theory are very appealing, but the
theory does have drawbacks. One is that full equivalence in Le Cam’s sense is a very
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stringent goal and often the failures are caused by pathological cases which do not
occur in many applications of interest. Another is that the equivalence mappings
typically require randomizations and are thus not practical.

Inspired by the ideas from the asymptotic equivalence theory, there have been
recent efforts to construct explicit and practical procedures to turn more compli-
cated nonparametric function estimation problems into a standard nonparametric
regression with homoscedastic Gaussian noise, which is relatively simple and has
been particularly well studied in the literature. For example, explicit procedures
based on binning and taking the median have been developed in [2] and [10] for
nonparametric regression with general additive noise. Brown et al. [6] introduced
a root-unroot transformation for density estimation. Brown, Cai and Zhou [3] con-
sidered nonparametric regression in natural exponential families with a quadratic
variance function, which includes, for example, nonparametric Poisson regression,
binomial regression, and Gamma regression as special cases.

A key tool in [3] is a mean-matching variance stabilizing transformation (VST)
for natural exponential families. However, such a VST exists only for families with
a quadratic variance function. The advantage of the mean-matching VST over the
classical VST is that it reduces the bias due to the transformation up to a certain
level while still stabilizing the variance. The bias reduction is a crucial property.
Other methods for nonparametric regression in exponential families have been pro-
posed and studied in the literature. The reader are referred to [3] for references and
discussions.

In this paper we further extend the idea of Gaussianization given in [3] to cover
nonparametric regression in general natural exponential families where the mean-
matching VST may not exist. A new procedure is introduced to eliminate the
transformation bias completely for every natural exponential family. The procedure
has four steps: Binning, VST, Gaussian regression, and inverse VST. The main
differences between the procedure proposed in the present paper and that in [3]
are in the choices of the VST and the inverse VST as well as the selection of the
bin size. Complete elimination of the transformation bias enables one to use much
smaller bin size than that required in [3]. As a consequence the procedure can still
perform well when the regression function is less smooth.

Our procedure begins by grouping the data into bins with size of order (log n)1+ν

for some ν > 0, where n is the sample size, and then a VST is applied to the
binned data. In principle any good Gaussian regression procedure can then be
applied to the transformed data. The final estimator of the regression function in
the original problem is constructed by the inverse VST of the estimator obtained in
the Gaussian regression problem. To illustrate our general methodology, we use a
wavelet block thresholding procedure for Gaussian nonparametric regression in this
paper. Wavelet thresholding methods have achieved considerable success in terms of
spatial adaptivity and asymptotic optimality in such a setting. In particular, block
thresholding rules have been shown to possess impressive properties. In the context
of Gaussian nonparametric regression local block thresholding has been studied,
for example, in [13, 7, 8, 9]. For concreteness, we shall use the BlockJS procedure
proposed in [7] in the present paper.

Theoretical properties of our estimators are investigated. It is shown that the
estimators enjoy excellent asymptotic adaptivity and spatial adaptivity. The pro-
cedure using BlockJS simultaneously attains the optimal rate of convergence under
mean integrated squared error over a broader range of Besov classes than those
in [3]. This is mainly due to the fact that a much smaller bin size is used in our
procedure. The estimator also automatically adapts to the local smoothness of the
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underlying function; it attains the local adaptive minimax rate for estimating func-
tions at a point.

The paper is organized as follows. In Section 2, after the classical variance sta-
bilizing transformation for natural exponential families is introduced, we present
the procedure of using the VST to convert nonparametric regression in exponential
families into a Gaussian nonparametric regression problem. Section 3 discusses in
detail a particular estimation procedure based on the VST and wavelet block thresh-
olding. Theoretical properties of the procedures are treated in Section 4. Technical
proofs are given in Section 6.

2. Nonparametric regression in exponential families

For nonparametric regression in natural exponential families, the noise is not ad-
ditive and non-Gaussian. Applying standard nonparametric regression methods di-
rectly to the data in general do not yield desirable results. Our strategy is to use
a variance stabilizing transformation (VST) to turn this problem to a standard
Gaussian regression problem. We begin by discussing the VST and then introduce
our procedure for nonparametric regression in natural exponential families.

The VST for natural exponential families has been widely used in many con-
texts. See, for example, [14] for an extensive review. Note that the probability den-
sity/mass function of a distribution in a natural one-parameter exponential families
can be written as

q(x|η) = eηx−ψ(η)h(x),

where η is the natural parameter. The mean and variance are respectively

μ(η) = ψ′(η), and σ2(η) = ψ′ ′(η).

We shall denote the distribution by NEF (μ). Let X1, . . . , Xm
iid∼ NEF (μ) be a

random sample and set X =
∑m

i=1 Xi. The Central Limit Theorem yields that

√
m(X/m − μ(η)) L−→ N(0, V (μ(η))), as m → ∞.

A variance stabilizing transformation (VST) is a function G : R → R such that

(1) G′(μ) = V − 1
2 (μ).

The standard delta method then yields

√
m{G(X/m) − G(μ(η))} L−→ N(0, 1).

Since the natural exponential can be mean parameterized, we define

(2) Hm (μ) = EG(X/m),

where Hm depends on m. For notational simplicity, we shall drop the subscript m
hereafter.

Now consider nonparametric regression in natural exponential families. Suppose
we observe

(3) Yi
ind.∼ NEF (f(ti)), i = 1, . . . , n, ti =

i

n
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and wish to estimate the mean function f(t). As mentioned earlier, applying stan-
dard nonparametric regression methods directly to the data {Yi} in general do not
yield desirable results. We shall turn this problem to a standard Gaussian regression
problem based on a sample {Ỹj : j = 1, . . . , T } where

Ỹj ∼ N
(
H (f (tj)) , m−1

)
, tj = j/T, j = 1, 2, . . . , T.

Here H is defined as in (2), T is the number of bins, and m is the number of
observations in each bin. Later we will discuss the specific choice of T and m in
Section 4.

We begin by dividing the interval into T equi-length subintervals with m = n/T
observations in each subintervals. Let Qj be the sum of observations on the j-th
subinterval Ij = ( j−1

T , j
T ], j = 1, 2, . . . , T ,

(4) Qj =
jm∑

i=(j−1)m+1

Yi.

The sums {Qj } can be treated as observations for a Gaussian regression directly, but
this in general leads to a heteroscedastic problem. Instead, we apply the VST and
then treat G(Qj/m) as new observations in a homoscedastic Gaussian regression
problem. To be more specific, let

(5) Y ∗
j = G

(
Qj

m

)
, j = 1, . . . , T.

The transformed data Y ∗ = (Y ∗
1 , . . . , Y ∗

T ) is then treated as the new equi-spaced
sample for a Gaussian nonparametric regression problem.

We will first estimate H(f(ti)), then take an inverse transformation H−1 of the
estimator to estimate the mean function f . After the original regression problem
is turned into a Gaussian regression problem through binning and the VST, in
principle any good Gaussian nonparametric regression method can be applied to
the transformed data {Y ∗

j } to construct an estimate of H(f(·)). The general ideas
for our approach can be summarized as follows.

1. Binning: Divide {Yi} into T equal length intervals between 0 and 1. Let
Q1, Q2, . . . , QT be the sum of the observations in each of the intervals. Later
results suggest a choice of T satisfying T � n/ log1+ν n. See Section 4 for
details.

2. VST: Let Y ∗
j = G(Qj

m ), j = 1, . . . , T , and treat Y ∗ = (Y ∗
1 , Y ∗

2 , . . . , Y ∗
T ) as the

new equi-spaced sample for a Gaussian nonparametric regression problem.
3. Gaussian regression: Apply your favorite nonparametric regression proce-

dure to the binned and transformed data Y ∗ to obtain an estimate Ĥ(f) of
H(f).

4. Inverse VST: Estimate the mean function f by f̂ = H−1(Ĥ(f)). If Ĥ(f) is
not in the domain of H−1 which is an interval between a and b (a and b can be
∞), we set H−1(Ĥ(f)) = H−1(a) if Ĥ(f) < a and set H−1(Ĥ(f)) = H−1(b)
if Ĥ(f) > b. For example, H−1(a) = 0 when a < 0 in the case of Negative
Binomial and NEF-GHS distributions. Note that this step is different from
the “Inverse VST” in [3].
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2.1. Effects of binning and VST

As mentioned earlier, after binning and the VST, the transformed data {Y ∗
j } can be

treated as if they were data from a homoscedastic Gaussian nonparametric regres-
sion problem. A key step in understanding why this procedure works is to under-
stand the effects of binning and the VST. Quantile coupling provides an important
technical tool to shed insights on the procedure.

The following result, which is a direct consequence of the quantile coupling in-
equality developed by Komlós, Major and Tusnády [15], shows that the binned and
transformed data can be well approximated by independent normal variables. See
also [24].

Lemma 1. Let Xi
iid∼ NEF (μ) with variance V for i = 1, . . . , m and let X =∑m

i=1 Xi. There exists a standard normal random variable Z ∼ N(0, 1) and positive
constants ci, i = 1, 2, 3, 4, 5, not depending on m such that whenever the event
A = {|X − mμ| ≤ c1m} occurs,

(6) |X − mμ −
√

mV Z| < c2Z
2 + c3

and
P
(

|X − mμ −
√

mV Z| > a
)

≤ c4 exp (−c5a)

uniformly over μ in a compact set in the interior of the natural parameter space.

Hence, for large m, X can be treated as a normal random variable with mean
mμ and variance mV . Let Y = G(X/m), and Z be a standard normal variable
satisfying (6). Then Y can be written as

(7) Y = H (μ) + m− 1
2 Z + ξ,

where

(8) ξ = G

(
X

m

)
− H (μ) − m− 1

2 Z

is a zero mean and “stochastically small” random variable. The following result is
proved in Section 6.1.

Lemma 2. Let Xi
iid∼ NEF (μ) with variance V for i = 1, . . . , m, and X =∑m

i=1 Xi. Let Z be the standard normal variable given as in Lemma 1 and let ξ
be given as in (8). Then for any integer k ≥ 1 there exist positive constants ck > 0
such that for all a > 0,

(9) P(m|ξ| > a) ≤ c1 exp (−c2a) + c3 exp (−c4m) .

The discussion so far has focused on the effects of the VST for i.i.d. observations.
In the nonparametric function estimation problem mentioned earlier, observations
in each bin are independent but not identically distributed since the mean function
f is not a constant in general. However, through coupling, observations in each bin
can in fact be treated as if they were i.i.d. random variables when the function f
is smooth. Let Xi ∼ NEF (μi), i = 1, . . . , m, be independent. Here the means μi

are “close” but not equal. Let μ be a value close to the μi’s. The analysis given
in Section 6.1 shows that Xi in each bin can in fact be coupled with i.i.d. random



204 T. T. Cai and H. H. Zhou

variables Xi,c with Xi,c
iid∼ NEF (μ∗

c), for some μ∗
c > 0. See Lemma 4 in Section 6.1

for a precise statement.
Lemmas 1, 2 and 4 together yield the following result which shows how far away

are the transformed data {Y ∗
j } from the ideal Gaussian model.

Theorem 1. Let Y ∗
j = G(Qj

m ) be given as in (5). Assume that f is continuous, and
for all x ∈ [0, 1], f(x) ∈ [ε, v], a compact set in the interior of the mean parameter
space of the natural exponential family. Then Y ∗

j can be written as

(10) Y ∗
j = H

(
f

(
j∗
T

))
+ m− 1

2 Zj + ξj , j = 1, 2, . . . , T,

where jm + 1 ≤ j∗ ≤ (j + 1)m, Zj
i.i.d.∼ N(0, 1), and ξj are independent and

“stochastically small” random variables satisfying that for any integer k > 0 and
any constant a > 0

(11) P(m|ξj | > a) ≤ c1 exp (−c2a) + c3 exp (−c4m) ,

where ck > 0.

Theorem 1 provides explicit bounds for both the deterministic and stochastic
errors. This is an important technical result which serves as a major tool for the
proof of the main results given in Section 4.

3. A wavelet procedure for generalized regression

One can apply any good Gaussian nonparametric regression procedure to the trans-
formed data {Y ∗

j } to construct an estimator of the function f . To illustrate our
general methodology, in the present paper we shall use wavelet block thresholding
to construct the final estimators of the regression function. Before we can give a
detailed description of our procedure, we need a brief review of basic notation and
definitions.

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are
assumed to be compactly supported and

∫
φ = 1, and dilation and translation of φ

and ψ generates an orthonormal wavelet basis. For simplicity in exposition, in the
present paper we work with periodized wavelet bases on [0, 1]. Let

φp
j,k(t) =

∞∑
l=− ∞

φj,k(t − l), ψp
j,k(t) =

∞∑
l=− ∞

ψj,k(t − l), for t ∈ [0, 1],

where φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k). The collection {φp
j0,k,

k = 1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, . . . , 2j } is then an orthonormal basis of

L2[0, 1], provided the primary resolution level j0 is large enough to ensure that
the support of the scaling functions and wavelets at level j0 is not the whole of
[0, 1]. The superscript “p” will be suppressed from the notation for convenience. An
orthonormal wavelet basis has an associated orthogonal Discrete Wavelet Transform
(DWT) which transforms sampled data into the wavelet coefficients. See [11] and
[22]. A square-integrable function f on [0, 1] can be expanded into a wavelet series:

(12) f(t) =
2j0∑
k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(t),
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where θ̃j,k = 〈f, φj,k 〉, θj,k = 〈f, ψj,k 〉 are the wavelet coefficients of f .
We now give a detailed description of the wavelet thresholding procedure BlockJS

in this section and study the properties of the resulting estimator in Section 4.
We shall show that our estimator enjoys a high degree of adaptivity and spatial
adaptivity and are easily implementable.

Apply the discrete wavelet transform to the binned and transformed data Y ∗

given in (5), and let U = T − 1
2 WY ∗ be the empirical wavelet coefficients, where W

is the discrete wavelet transformation matrix. Write

(13) U = (ỹj0,1, . . . , ỹj0,2j0 , yj0,1, . . . , yj0,2j0 , . . . , yJ −1,1, . . . , yJ −1,2J −1)′.

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k

(j = j0, . . . , J − 1, k = 1, . . . , 2j) are empirical wavelet coefficients at level j which
represent fine structure at scale 2j . The empirical wavelet coefficients can then be
written as

(14) yj,k = θj,k +
1√
n

zj,k + ξj,k,

where θj,k are the true wavelet coefficients of H(f), and zj,k are i.i.d. N(0, 1),
and ξj,k are some “small” stochastic errors. The theoretical calculations given in
Section 6 will show that ξj,k is negligible. If the error ξj,k is ignored then we have

(15) yj,k ≈ θj,k +
1√
n

zj,k,

which is the idealized Gaussian sequence model with noise level σ = 1/
√

n. The
BlockJS [7] was originally developed for this ideal model. Here we shall apply block
thresholding to the empirical coefficients yj,k as if they were observed as in (15).

At each resolution level j, the empirical wavelet coefficients yj,k are grouped into
nonoverlapping blocks of length L. As in the sequence estimation setting let Bi

j =
{(j, k) : (i − 1)L+1 ≤ k ≤ iL} and let S2

j,i ≡
∑

(j,k)∈Bi
j
y2

j,k. Set J∗ = �log2
T

log1+γ n
�

with some γ > 0. At each resolution level j ≤ J∗, a modified James-Stein shrinkage
rule is then applied to each block Bi

j , i.e.,

(16) θ̂j,k =

(
1 − λ∗L

nS2
j,i

)
+

yj,k for (j, k) ∈ Bi
j ,

where λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3 (see [7], for
details), and 1

n is approximately the variance of each yj,k. For the gross structure

terms at the lowest resolution level j0, we set ˆ̃
θj0,k = ỹj0,k. The estimate of H(f(·))

at the equally spaced sample points { i
T : i = 1, . . . , T } is then obtained by applying

the inverse discrete wavelet transform (IDWT) to the denoised wavelet coefficients.

That is, {H(f( i
T )) : i = 1, . . . , T } is estimated by Ĥ(f) = { ̂H(f( i

T )) : i = 1, . . . , T }
with Ĥ(f) = T

1
2 W −1 · θ̂. The estimate of the whole function H(f) is given by

Ĥ(f(t)) =
2j0∑
k=1

ˆ̃
θj0,kφj0,k(t) +

J∗ −1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).

Once the estimator Ĥ(f) is obtained, the mean function f is estimated by applying
the inverse transformation H−1,

(17) f̂BJS(t) = H−1(Ĥ(f(t))).
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Remark. The value J∗ = �log2
T

log1+γ n
� is chosen for a technical reason. In Sec-

tion 6.2, it is shown that a good tail probability bound for ξj,k (given in equation
(31)) holds for all j ≤ J∗.

4. Asymptotic optimalities

In this section we investigate the theoretical properties of the procedures proposed
in Section 2. The asymptotic performance of our procedures is considered over the
Besov spaces. This is by now the standard analysis for wavelet regression methods.
Besov spaces are a very rich class of function spaces and contain as special cases
many traditional smoothness spaces such as Hölder and Sobolev Spaces. Roughly
speaking, the Besov space Bα

p,q contains functions having α bounded derivatives in
Lp norm, the third parameter q gives a finer gradation of smoothness. Full details of
Besov spaces are given, for example, in [23] and [12]. A wavelet ψ is called r-regular
if ψ has r vanishing moments and r continuous derivatives. For a given r-regular
mother wavelet ψ with r > α and a fixed primary resolution level j0, the Besov
sequence norm ‖ · ‖bα

p,q
of the wavelet coefficients of a function f is then defined by

(18) ‖f ‖bα
p,q

= ‖θ̃j0
‖p +

⎛⎝ ∞∑
j=j0

(2js‖θj ‖p)q

⎞⎠
1
q

,

where θ̃j0 is the vector of the father wavelet coefficients at the primary resolution
level j0, θj is the vector of the wavelet coefficients at level j, and s = α+ 1

2 − 1
p > 0.

Note that the Besov function norm of index (α, p, q) of a function f is equivalent to
the sequence norm (18) of the wavelet coefficients of the function. See [19]. Define
the Besov ball

(19) Bα
p,q (M) =

{
f ; ‖f ‖bα

p,q
≤ M

}
and set

(20) Fα
p,q(M, ε, v) = {f : f ∈ Bα

p,q(M), f(t) ∈ [ε, v] for all t ∈ [0, 1]},

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space
of the natural exponential family.

We first show that the center of the approximate Gaussian regression problem
remains in the Besov with the same index (α, p, q).

Lemma 3. For Hm defined in (2) there exists a constant M ′ > 0 such that

Hm (f) ∈ Bα
p,q (M ′)

for all f in Fα
p,q(M, ε, v) defined in (20).

The following theorem shows that our estimators achieve near optimal global
adaptation under mean integrated squared error for a wide range of Besov balls.

Theorem 2. Suppose the wavelet ψ is r-regular. Let Xi ∼ NEF (f(ti)), i =
1, . . . , n, ti = i

n . Let T = n
log1+ν n

with ν > 0. Then the estimator f̂BJS defined in
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(17) satisfies

sup
f ∈F α

p,q(M,ε,v)

E‖f̂BJS − f ‖2
2

≤
{

Cn− 2α
1+2α , p ≥ 2, α ≤ r, and 2α2

1+2α > 1
p ,

Cn− 2α
1+2α (log n)

2−p
p(1+2α) , 1 ≤ p < 2, α ≤ r, and 2α2

1+2α > 1
p .

For functions of spatial inhomogeneity, the local smoothness of the functions
varies significantly from point to point and global risk given in Theorem 2 cannot
wholly reflect the performance of estimators at a point. For local performance and
spatial adaptivity, it is more appropriate to use the pointwise mean squared error

(21) R(f̂(t0), f(t0)) = E(f̂(t0) − f(t0))2.

The local smoothness of a function can be measured by its local Hölder smooth-
ness index. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define the local Hölder class
Λα(M, t0, δ) as follows:

Λα(M, t0, δ) = {f : |f(t) − f(t0)| ≤ M |t − t0|α, for t ∈ (t0 − δ, t0 + δ)}.

If α > 1, then

Λα(M, t0, δ) = {f : |f (�α�)(t) − f (�α�)(t0)| ≤ M |t − t0|α′
for t ∈ (t0 − δ, t0 + δ)}

where �α� is the largest integer less than α and α′ = α − �α�. Define

Fα(M, t0, δ, ε, v) = {f : f ∈ Λα(M, t0, δ), f(x) ∈ [ε, v] for all x ∈ [0, 1]}.

In Gaussian nonparametric regression setting, it is a well known fact that for
estimation at a point, one must pay a price for adaptation. The optimal rate of
convergence for estimating f(t0) over function class Λα(M, t0, δ) with α completely
known is n−2α/(1+2α). Lepski [18] and Brown and Low [5] showed that one has to
pay a price for adaptation of at least a logarithmic factor. It is shown that the local
adaptive minimax rate over the Hölder class Λα(M, t0, δ) is (log n/n)2α/(1+2α).

The following theorem shows that our estimators achieve the optimal local adap-
tation with the minimal cost.

Theorem 3. Suppose the wavelet ψ is r-regular with 0 < α ≤ r. Let t0 ∈ (0, 1) be
fixed. Let Xi ∼ NEF (f(ti)), i = 1, . . . , n, ti = i

n . Let T = n
log1+ν n

with ν > 0.

Then for f̂ = f̂BJS

(22) sup
F α(M,t0,δ,ε,v)

E(f̂(t0) − f(t0))2 ≤ C ·
(

log n

n

) 2α
1+2α

.

Theorem 3 shows that the BlockJS estimator is spatially adaptive, without prior
knowledge of the smoothness of the underlying functions.

5. Discussions

The general principle of turning complicated statistical models into simpler ones is
practically important and appealing. We developed in this paper an explicit and
practical procedure which turns nonparametric regression in natural exponential
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families into a standard Gaussian nonparametric regression. The method and the
results extend the scope of those introduced in [3]. A key component of the proce-
dure in [3] is the use of a mean-matching VST and its inverse. The mean-matching
VST only exists in natural exponential families with a quadratic variance function.
This thus limits the applicability of the method. In addition, although the use of
the mean-matching VST and its inverse reduces the bias due to the transformation,
it does not completely eliminate the transformation bias. As a result the bin size
needs to be a power of n and as a consequence the regression function f is required
to be smoother than that needed in the present paper.

In our setting the bin size m is logarithmic in n, smaller than the choice m � n1/4

in [3]. As a result, the discretization error is smaller in our analysis. Consequently,
the procedure proposed in this paper attains the optimal rates of convergence over
a wider range of Besov classes as shown in Section 4. In Theorem 2 we require
2α2

1+2α > 1
p , i.e., α − 1

p > 2α
1+2α which is weaker than the condition 3

2 (α − 1
p ) > 2α

1+2α

in Theorem 1 of [3]. Similarly the local adaptation optimality in Theorem 3 is
attained for α > 0, while α > 1/6 was assumed in [3].

Technical analyses are more challenging in this paper. Since m � log1+ν n, it is
easy to see m−D for each finite D > 0 is no longer o(n−2α/(2α+1)). Actually we
have m−D � n−2α/(2α+1), thus the polynomial tail bounds obtained in [3] are not
negligible anymore. In this paper, we provide a finer analysis with exponential tail
bounds. Note that exp(−c log1+ν1 n) = o(n−2α/(2α+1)) for any c > 0 and ν1 > 0.

6. Proofs

In this section we give proofs for Theorems 1 and 2. Theorem 3 can be proved in a
similar way as Theorem 4 in [2] by applying Proposition 1 in Section 6.2. We begin
by proving Lemmas 2, 3 and 4. Lemmas 2 and 4 are needed to establish Theorem 1
in which an approximation bound between our model and a Gaussian regression
model is given explicitly. Finally we apply Theorem 1 and risk bounds for block
thresholding estimators in Proposition 1 to prove Theorem 2.

6.1. Proof of preparatory technical results

Proof of Lemma 2. Write

G

(
X

m

)
− Gm (μ) − 1√

m
Z

=

[
G

(
X

m

)
− G

(
μ +

√
V

m
Z

)]
+

[
G

(
μ +

√
V

m
Z

)
− G (μ) − 1√

m
Z

]
+ [G (μ) − Gm (μ)] .

Taylor expansion yields

G

(
X

m

)
− Gm (μ) − 1√

m
Z = G′ (μ∗

1)

(
X

m
− μ −

√
V

m
Z

)

+ G′ ′ (μ∗
2)

V

m
Z2 + G (μ) − Gm (μ) .

From Lemma 1 we have

P

(
m

∣∣∣∣Xm − μ −
√

V

m
Z

∣∣∣∣ > a

)
≤ c1 exp (−c2a) ,
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Since Z is standard normal, Z2 has an exponential tail

P

(
m

∣∣∣∣VmZ2

∣∣∣∣ > a

)
≤ c3 exp (−c4a) .

It is easy to see that

|G (μ) − Gm (μ)| = O

(
1
m

)
.

(cf. [3], Lemma 1). Note that for any ε > 0,

P(|μ∗
1| > μ + ε) ≤ c5 exp

(
−c6ε

2m
)
, and P(|μ∗

2| > μ + ε) ≤ c7 exp
(

−c8ε
2m

)
,

Thus we have

P(m|ξj | > a) ≤ c9 exp (−c10a) + c11 exp (−c12m) .

Proof of Lemma 3. For f(t) ∈ [ε, v] uniformly over all t and f ∈ Bα
p,q(M), if cl =

supy∈[ε,v] |H(l)(y)|, l = 0, . . . , �α� + 1, are finite constants independent of m, then
we have H(f) ∈ Bα

p,q(M ′) where

M ′ = c0 + cM

⎡⎣�α�+1∑
l=1

clv
l−1 + c�α�+1

⎤⎦
for some c > 0, according to Theorem 3 on page 344 and Remark 3 on page 345
of [21]. Now we show cl are finite constants independent of m. Recall that H(μ) =
EG[(X1 + · · · + Xm)/m]. For K = �α� + 1 > 0, Taylor expansion yields

H (μ) − G (μ) = E
[
G
(
X̄
)

− G (μ)
]

= E

{
K∑

k=1

G(k) (μ)
k!

(
X̄ − μ

)k +
∫ X̄

μ

G(K) (t)
K!

(
X̄ − t

)K
dt

}
= R1 (μ) + R2 (μ) .

It is easy to see supμ∈[ε,v] |R(l)
1 (μ)| is bounded, since [E(Xi − μ)k](l) and G(k+l)(μ)

are bounded over μ ∈ [ε, v], and k ≤ K finite. The distribution of X̄ is from a
natural exponential family

q(x|θ) = emθx−mψ(θ)hm(x)

(cf. [1]). Note that supμ∈[ε,v] |R(l)
2 (μ)| is bounded by supμ∈[ε,v] | dl

dθl R2(μ(θ))| up to
a constant factor. That fact together with some straightforward calculations gives,
for 1 ≤ l ≤ K,

sup
μ∈[ε,v]

∣∣∣R(l)
2 (μ)

∣∣∣ ≤ CK sup
μ∈[ε,v]

E

[
l∑

k=1

∣∣X̄ − μ
∣∣K−k+1 ·

(∣∣mX̄ − mμ
∣∣l−k + m(l−k)/2

)]

= CK sup
μ∈[ε,v]

E

[
l∑

k=1

ml/2−K/2−1/2
(∣∣√

m
(
X̄ − μ

)∣∣K+l−2k+1 + 1
)]

which is at an order of m−1/2, and thus bounded.
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The variance stabilizing transformation considered in Equation (1) is for i.i.d.
observations. In the function estimation procedure, observations in each bin are
independent but not identically distributed. However, observations in each bin can
be treated as i.i.d. random variables through coupling. Let Xi ∼ NEF (μi), i =
1, . . . , m, be independent. Here the means μi are “close” but not equal. Let Xi,c be
a set of i.i.d. random variables with Xi,c ∼ NEF (μc). We define

D = G

(∑m
i=1 Xi

m

)
− G

(∑m
i=1 Xi,c

m

)
.

If μc = maxi μi, it is easy to see ED ≤ 0 since Xi,c is stochastically larger than Xi

for all i [see e.g. 17]. Similarly ED ≥ 0 when μc = mini μi. We will select a

(23) μ∗
c ∈

[
min

i
μi, max

i
μi

]
such that ED = 0, which is possible by the intermediate value theorem. In the fol-
lowing lemma we construct i.i.d. random variables Xi,c ∼ NEF (μ∗

c) on the sample
space of Xi such that D is very small and has negligible contribution to the final
risk bounds in Theorems 2 and 3.

Lemma 4. Let Xi ∼ NEF (μi), i = 1, . . . , m, be independent with μi ∈ [ε, v], a
compact subset in the interior of the mean parameter space of the natural exponen-
tial family. Assume that | mini μi − maxi μi| ≤ Cδ. Then there are i.i.d. random
variables Xi,c where Xi,c ∼ NEF (μ∗

c) with μ∗
c ∈ [mini μi, maxi μi] such that ED = 0

and
(i)

(24) P ({Xi �= Xi,c}) ≤ Cδ,

(ii) and for any fixed integer k ≥ 1 there exists a constant Ck > 0 such that for
all a > 0,

(25) P(|D| > a) ≤ c1 exp
(

−c2a
2m

)
+ c3 exp (−c4m) .

Proof of Lemma 4. (i). There is a classical coupling identity for the Total variation
distance. Let P and Q be distributions of two random variables X and Y on the
same sample space respectively, then there is a random variable Yc with distribution
Q such that P(X �= Yc ) = |P − Q|TV . See, for example, page 256 in [20]. The
proof for the inequality (24) follows from that identity and the inequality that
|NEF (μi) − NEF (μ∗

c)|TV ≤ C|μi − μ∗
c | for some C > 0 which only depends on the

family of the distribution of Xi and [ε, v].

(ii) Using Taylor expansion we can rewrite D as D = G′(ζ)
∑m

i=1
(Xi −Xi,c)

m for

some ζ in between
∑m

i=1
Xi

m and
∑m

i=1
Xi,c

m . Write∑m
i=1 (Xi − Xi,c)

m
=

∑m
i=1 (Xi − EXi)

m
−

∑m
i=1 (Xi,c − EXi,c)

m

+
∑m

i=1 (EXi − EXi,c)
m

.

Since the distributions Xi and Xi,c are in exponential family, we have

P

(∣∣∣∣∑m
i=1 (Xi − EXi)

m

∣∣∣∣ ≥ a

)
≤ c1 exp

(
−c2a

2m
)
,

P

(∣∣∣∣∑m
i=1 (Xi,c − EXi,c)

m

∣∣∣∣ ≥ a

)
≤ c3 exp

(
−c4a

2m
)
.
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(cf. [15]). Note that ∣∣∣∣∑m
i=1 (EXi − EXi,c)

m

∣∣∣∣ ≤ c5δ.

Thus we have

P

(∣∣∣∣∑m
i=1 (Xi − Xi,c)

m

∣∣∣∣ > a

)
≤ c6 exp

(
−c7a

2m
)

when a > 2c5δ. The equation is apparently true when a ≤ 2Cδ. Since Xi − Xi,c are
independent, it can be shown that Note that Thus the first inequality in (25) follows
immediately by observing that G′(ζ) is bounded with a probability approaching to
1 exponentially fast, since for any ε > 0,

P(|ζ| > μ + ε) ≤ c8 exp
(

−c9ε
2m

)
.

6.2. Proof of Theorem 1

From Lemma 4, there exist Y ∗
j,c where Xi,c ∼ NEF (f ∗

j ) with

f ∗
j,c ∈

[
min

jm+1≤i≤(j+1)m
f

(
i

n

)
, max
jm+1≤i≤(j+1)m

f

(
i

n

)]
as in equation (23) such that

E
[
Y ∗

j − Y ∗
j,c

]
= 0,(26)

P(|Y ∗
j − Y ∗

j,c| > a) ≤ c1 exp
(

−c2a
2m

)
+ c3 exp (−c4m) .(27)

Let f ∗
j,c = f(j∗/T ), where jm + 1 ≤ j∗ ≤ (j + 1)m, by the intermediate value

theorem. Lemmas 1 and 2 together yield

(28) Y ∗
j = H

(
f

(
j∗
T

))
+ m− 1

2 Zj + ξj , j = 1, 2, . . . , T,

and

(29) P(|ξj | > a) ≤ c1 exp
(

−c2a
2m

)
+ c3 exp (−c4m) .

Theorem 1 then follows immediately by combining equations (26) – (28).

6.3. Proof of Theorem 2

We first collect a few technical lemmas.
From (10) in Theorem 1 we can write 1√

T
Y ∗

i = H(f( j∗
T ))√

T
+ Zi√

n
+ ξi√

T
. Let (uj,k) =

T − 1
2 W · Y ∗ be the discrete wavelet transform of the binned and transformed data.

Then one may write

(30) uj,k = θ′
j,k +

1√
n

zj,k + ξj,k,

where θ′
jk are the discrete wavelet transform of (H(f( j∗

T )))/
√

T ) which are approx-
imately equal to the true wavelet coefficients of H (f), zj,k are the transform of the
Zi’s and so are i.i.d. N(0, 1) and ξj,k are respectively the transforms of ( ξi√

T
). We

may obtain the following result on the risk bound for a single block. Its proof is
close to that of Proposition 2 in [6].
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Proposition 1. Let the empirical wavelet coefficients uj,k = θ′
j,k + 1√

n
zj,k + ξj,k be

given as in (30) and let the block thresholding estimator θ̂j,k be defined as in (16).
Then for all j ≤ J∗ we have

(i) for εn = o (1/
√

m) and some constant C > 0,

(31) P
(√

n |ξj,k | ≥ εn

)
≤ C

[
exp

(
− 1

C
ε2
nm

)
+ exp

(
− 1

C
log1+γ n

)]
,

(ii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such
that for all (j, k) ∈ Bi

j

(32) E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′
j,k)2 ≤ min

{
4

∑
(j,k)∈Bi

j

(θ′
j,k)2, 8λ∗Ln−1

}
+ Ln−2+τ ;

(iii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such
that for all (j, k) ∈ Bi

j

(33) E(θ̂j,k − θ′
j,k)2 ≤ Cτ · min

{
max

(j,k)∈Bi
j

{
(
θ′

j,k

)2}, Ln−1

}
+ n−2+τ .

The first part plays an important role to prove the last two parts. It follows from
classical concentration inequalities for sum of independent random variables with
exponential moments. We use the second part to prove Theorem 2. The third part
is needed to prove Theorem 3.

For 0 < d ≤ 1, define the Lipschitz class Λd(M) by

Λd(M) = {f : |f(t1) − f(t2)| ≤ M |t1 − t2|d 0 ≤ t1, t2 ≤ 1}.

and
F d(M, ε, v) = {f : f ∈ Λd(M), f(t) ∈ [ε, v] , for all t ∈ [0, 1]},

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space
of the natural exponential family.

The following is a standard bound for wavelet approximation error. It follows
directly from Lemma 1 in [8].

Lemma 5. Let T∗ = 2J∗ and d = min(α − 1
p , 1). Set ḡJ∗ (x) =

∑T∗
k=1

1√
T∗

×
H(f(k/n))φJ∗,k(x). Then for some constant C > 0

(34) sup
g∈F α

p,q(M,ε)

‖ḡJ∗ − H (f) ‖2
2 ≤ CT −2d

∗ .

Let H̃(f) = max{Ĥ(f), 0}. We have

E‖f̂ − f ‖2
2 = E‖H−1[H̃ (f)] − H−1[H (f)]‖2

2 = E‖(H−1)′ (g) [H̃ (f) − H (f)]‖2
2

≤ CE

∫
V
(
H−1 (g)

)
[Ĥ (f) − H (f)]2 dt,

where g is a function in between H̃(f) and H(f). We will first give a lemma which
implies V (H−1(g)) is bounded with high probability, then prove Theorem 2 by
establishing a risk bound for estimating H(f). See [3] for a proof.
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Lemma 6. Let Ĥ(f) be the BlockJS estimator of H(f) defined in Section 2. Then
there exists a constant C > 0 such that

sup
f ∈F α

p,q(M,ε,v)

P
{∥∥∥Ĥ (f)

∥∥∥
∞

> C
}

≤ Cln
−l

for any l > 1, where Cl is a constant depending on l.

Now we are ready to prove Theorem 2. Note that H−1 is an increasing and
nonnegative function. Lemma 6 implies that there exists a constant C such that

sup
f ∈F α

p,q(M,ε,v)

P
{∥∥V

(
H−1 (g)

)∥∥
∞ > C

}
≤ Cln

−l

for any l > 1. Thus it is enough to show supf ∈F α
p,q(M,ε,v) E‖Ĥ(f) − H(f)‖2

2 ≤
Cn− 2α

1+2α for p ≥ 2 and Cn− 2α
1+2α (log n)

2−p
p(1+2α) for 1 ≤ p < 2 under assumptions in

Theorem 2.
We are now ready to prove our main results.

Proof of Theorem 2. Let Y and θ̂ be given as in (3) and (16) respectively. Then,

E‖Ĥ (f) − H (f) ‖2
2 =

∑
k

E(ˆ̃θj0,k − θ̃j,k)2 +
J∗ −1∑
j=j0

∑
k

E(θ̂j,k − θj,k)2 +
∞∑

j=J∗

∑
k

θ2
j,k

≡ S1 + S2 + S3.(35)

It is easy to see that the first term S1 and the third term S3 are small.

(36) S1 = 2j0n−1ε2 = o(n−2α/(1+2α))

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

(37) ‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 .

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk |p)1/p ≤ M . Now (37) yields that

(38) S3 =
∞∑

j=J∗

∑
k

θ2
j,k ≤ C2−2J∗(α∧(α+ 1

2 − 1
p )).

Note that

(39)
∣∣∣∣H(

f

(
j∗
T∗

))
− H

(
f

(
j

T∗

))∣∣∣∣ ≤ CT −d
∗ .

Proposition 1, Lemma 5 and equation (39) yield that

S2 ≤ 2
J∗ −1∑
j=j0

∑
k

E(θ̂j,k − θ′
j,k)2 + 2

J∗ −1∑
j=j0

∑
k

(θ′
j,k − θj,k)2

≤
J∗ −1∑
j=j0

2j/L∑
i=1

min

⎧⎨⎩8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫⎬⎭ + 10
J∗ −1∑
j=j0

∑
k

(θ′
j,k − θj,k)2

≤
J∗ −1∑
j=j0

2j/L∑
i=1

min

⎧⎨⎩8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫⎬⎭ + C (T∗)−2d(40)
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we now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n].

So, 2J1 ≈ n1/(1+2α). Then (40) and (37) yield

(41) S2 ≤ 8λ∗

J1−1∑
j=j0

2j/L∑
i=1

Ln−1+8
J∗ −1∑
j=J1

∑
k

θ2
j,k+C

(
T

log1+γ n

)−2d

≤ Cn−2α/(1+2α).

By combining (41) with (36) and (38), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for

p ≥ 2.
Now let us consider the case p < 2. First we state the following lemma without

proof.

Lemma 7. Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, . . . , k}.

Then supx∈S

∑k
i=1(xi ∧ A) ≤ B · A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 � n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑
i=1

⎛⎝ ∑
(j,k)∈Bi

j

θ2
j,k

⎞⎠
p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 7 that

(42)
J∗ −1∑
j=J2

2j/L∑
i=1

min

⎧⎨⎩8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫⎬⎭ ≤ Cn− 2α
1+2α (log n)

2−p
p(1+2α) .

On the other hand,

J2−1∑
j=j0

2j/L∑
i=1

min

⎧⎨⎩8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫⎬⎭
(43)

≤
J2−1∑
j=j0

∑
b

8λ∗Ln−1 ≤ Cn− 2α
1+2α (log n)

2−p
p(1+2α) .

Putting (36), (38), (42) and (43) together yields E‖θ̂ −θ‖2
2 ≤ Cn− 2α

1+2α (log n)
2−p

p(1+2α) .
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