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Abstract: The article touches on two themes in which Larry Brown has been
interested, namely foundations, and mathematical analysis of Bayesian deci-
sion theory.

In the section on foundations, a new formulation of the problem of testing is
given, and is theoretically explored. The formulation strikes a balance between
false discoveries and missed discoveries. Basic higher order asymptotic theory
for the α level that this formulation would imply is then worked out. Accuracy
is investigated and examples are given.

In the section on Bayesian decision theory, first, the Brown identities are
connected to a set of inequalities of elliptic boundary value problems. It is
shown by four specific results that sometimes a result in that field can lead
to new results in Bayesian decision theory, and sometimes a result in decision
theory can give surprisingly useful information about a problem in that field.
For instance, Brown identities can provide amazingly good estimates of best
constants in the Nash inequalities over Sobolev spaces.

The article ends with a result on the modern theory of high dimensional
Gaussian mean estimation. By means of a triangulation of the Brown identity,
the Rayleigh-Ritz variational formula of boundary value problems, and the
famous Donsker-Varadhan result connecting the Rayleigh-Ritz formula to the
absorption time of a Brownian motion into the boundary of a smooth bounded
open domain, we show that the minimax risk of estimating the Gaussian mean
can be approximated by chasing a Brownian motion to the boundary of the
parameter space. This link should be tested by simulation.

1. Foreword

Although my failing eyesight has limited my normal activities, when the editors
of this volume kindly invited me to write an article, I knew that it was an honor
that I could not pass. I first corresponded with Larry Brown around 1982, when I
was a PhD student at the Indian Statistical Institute in Calcutta. In the 30 years
that have followed, I have learned from and have been inspired by Larry Brown’s
signature humility, and his work in numerous areas, including decision theory and
mathematical analysis of difficult Bayesian problems, foundations, asymptotics, and
theoretical validation of methodologies. This article touches on two of these themes,
which form an extremely small corner of Larry Brown’s work. These are among the
main topics on which I have myself corresponded with him, or have worked with
him. It is my greatest pleasure to present these few calculations in honor of Professor
Brown.

Here is a summary of what is in this article and where the ideas may or may
not go. Section 2 gives a formulation of the problem of testing of hypotheses that
attempts to strike a balance between false discoveries and missed discoveries. The
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traditional Neyman-Pearson formulation and the current work in the popular area of
multiple testing place an asymmetric emphasis on false discoveries. In the symmet-
ric formulation of Section 2 of this article, it is argued, via appropriate asymptotic
expansions, that the traditional α levels are quite possibly too large in some prob-
lems and that the level α should go down to zero at a suitable rate, depending on
the particular problem, and depending on which particular alternatives are practi-
cally significant in that problem. Mathematically, this requires the specification of
a density g on the alternative. The asymptotic expansions show the rate at which
α should go to zero, and this rate depends on the smoothness of g at the bound-
ary. The exact asymptotic expansions should not be taken literally. Asymptotic
expansions often produce ugly coefficients, and here too they do. The expansions
should be separated from the formulation and the outcome that α should go to
zero at some suitable rate, which is not universal, but depends on the problem.
Coming from other angles, this has been argued in some of the Bayesian literature,
for example [3]; also see [16]. Section 2.4 offers some thoughts on where this general
approach might next go.

The final section, Section 3, goes back to where many of us, including Larry
Brown himself, started. It is the mutual connection of various Bayesian techniques,
tools, and theorems and risk based decision theoretic properties, such as minimaxity.
Of course, admissibility is also mostly about Bayes, but it is not mentioned here.
Diaconis and Holmes [21] is a very good place to look for new possibilities and
good connections. The main thesis of Section 3 is that there are aspects of the
Brown identity [8] that have unexplored connections to a very well developed area
of analysis, namely inequalities of elliptic boundary value problems. Typically, such
an inequality is of the form ‖f (k)‖q,G ≤ K(‖f ‖α

p,G)(‖f (n)‖β
r,G) for some suitably

large class of Sobolev type spaces of functions f on some subset G of an Euclidean
space, and for flexible p, q, r, k, n, with the restriction that 0 ≤ k < n. The
inequality is supposed to hold with a universal constant K = K(G, k, n, p, q, r).
When the smallest possible universal constant has been found, one calls it the best
constant for that inequality. Usually, best constants are very hard to find, and
appear to be known analytically only in isolated cases.

The link of all these to Bayesian decision theory is through the Brown identity
for Bayes risks. The Brown identity showed that the Bayes risk in a multivariate
normal mean problem is related to the Fisher information of the marginal, which
is essentially the square of the L2 norm of the gradient of the square root of the
marginal density. Once this identity is at hand, the inequalities of boundary value
problems, such as the ones mentioned above, lead to a large collection of connec-
tions, and these connections go both ways. Section 3 shows that sometimes a known
result in boundary value problems can lead to a result in decision theory, with the
Brown identity being the link; and sometimes, quantities in Bayesian decision the-
ory lead to information about a question in boundary value problems, for example,
how small can the best constant in an inequality possibly be? Four such specific con-
nections are laid out in Section 3, by using a generalized Heisenberg’s uncertainty
inequality, an inequality of the HELP type, the Nash inequality, and an inequality
of Landau (although commonly ascribed to Kolmogorov and Landau). The num-
ber of such connections would be essentially unlimited, with the Brown identity
always being the link. Diaconis and Saloff-Coste [22] have used Nash inequalities to
study the speed of convergence of some finite Markov chains to stationarity. So, in
some sense, there is a history of the Nash inequalities being linked to problems in
mathematical statistics. Hopefully, someone will pursue these connections to bring
further insights and other concrete results to the statistical community.
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There is one aspect of Section 3 that would be of interest in the modern theory
of high dimensional Gaussian mean estimation. One often assumes in such prob-
lems that the mean vector belongs to a suitably small convex compact domain Ω
in some Rd. The minimax risk over this domain is a quantity of interest. In some
sense, the area seriously started with the work of David Donoho and Iain John-
stone [24]. Wasserman [38] gives an immensely readable review of the work up to
that time. We show that the minimax risk should be theoretically and also numer-
ically approximable by triangulating three things; namely, the Brown identity, and
the Rayleigh-Ritz variational principle of boundary value problems, and the prob-
abilistic connection of the Rayleigh-Ritz principle itself to the absorption time of a
Brownian motion into the boundary of our domain. Theorem 7 gives an inequality.
We conjecture that asymptotically, the inequality should be essentially an equality.
There should be such a theorem.

2. A new formulation of testing

As much as the Neyman-Pearson theory of testing has had a tremendous impact on
how we do and think about statistics, some apparent difficulties with its formulation
have been widely noticed. The aspect that we focus on is the asymmetric nature of
the formulation of the Neyman-Pearson theory vis-a-vis the null and the alternative
hypotheses. In the Neyman-Pearson formulation, the null hypothesis has a special
role. We first protect against false rejection of the null, and then try to do something
about the false rejection of the alternative. In the terminology of modern multiple
testing problems, in the Neyman-Pearson formulation we would consider preventing
a false discovery our first goal, and preventing a missed discovery a secondary goal.
One could potentially argue that there should be some balance between the two
errors in the formulation of the problem.

At an even more classic level, in an elementary class, an instructor would test one
hypothesis A against another, say B, usually with some simple minded data, and
pick A as the null and end up rejecting A at a 5% level. Occasionally, an inquisitive
student would later ask why was that particular hypothesis chosen as the null. It
will often turn out, causing some embarrassment, that if the choices of the null and
the alternative were reversed, then with that same data, and once again at the 5%
level, the hypothesis B would now be rejected in favor of A. As a matter of fact,
if the true parameter value is somewhere in between A and B, then this anomaly
will occur with a very large probability, because under the true parameter value,
the acceptance probability of either hypothesis, A or B, would be a large deviation
type probability, and so typically it will be exponentially small.

Lehmann [34], TSH, 2nd Edition, comments tangentially about a symmetric
formulation of testing problems, while pointing out possible formulations in which
the well known discrepancies between Bayesian posterior probabilities and classical
P-values will disappear ([3, 36]).

We present a symmetric formulation of the testing problem in this section, and
then work out some asymptotic theory about it. The main point where this for-
mulation differs from the traditional one is that the α level is not prespecified. It
is determined from the symmetry of the formulation, and it will depend on n, the
sample size. Furthermore, as n increases, the implied α level will decrease, and quite
typically will converge to zero. The asymptotic calculations that we do here are di-
rected towards understanding this main point of divergence from the traditional
formulation.
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We consider only the one dimensional case in this first paper. The multidimen-
sional case should be considered, but the asymptotic expansions will be even harder.
The case of one dimensional continuous exponential families should be similar to
the developments here. The asymptotic approximations derived here tell the reader
that the level α ought to go down to zero at a rate which, to the first order, is
( log n

n )α, for a suitable explicit α > 0. It has been sporadically commented on in
the literature that α should depend on n in Neyman-Pearson testing. Apparently,
Neyman himself thought so (private correspondence with the late Prem Puri).

2.1. An illustrative example

We start with an illustrative example.

Example 1 (Illustrative Example). Suppose on the basis of n iid observations
X1, X2, . . . , Xn ∼ N(θ, σ2), we wish to test H0 : θ = θ0 against H1 : θ > θ0; σ2

is assumed to be known. We may take θ0 to be zero. The Neyman-Perason tests
reject H0 for large values of X, and if we reject when X > σzα√

n
, where zα is the

standard normal percentile Φ−1(1 − α), then the test has type I error probability
α, and type II error probability

β = β(α, n, θ) = Φ
(

zα − θ
√

n

σ

)
, θ > 0.

For example, if α = .05, n = 20, and σ = 1, then the type II error probability at
θ = .5 is Φ(1.645 − .5 ×

√
20) = Φ(−.59) = .2776. On the other hand, at any fixed

alternative, eventually, i.e., as n → ∞, the type II error probability β(α, n, θ) will
converge to zero, while by choice the type I error probability remains fixed at the
specified α.

We want to look at symmetric formulations of the following kind. Consider Pit-
man alternatives θ = Δ√

n
first. Then the type II error probability is β(α, Δ) =

Φ(zα − Δ
σ ). Let g : R+ → R+ be a density function, and let β(α, g) =

∫ ∞
0

Φ(zα −
Δ
σ )g(Δ)dΔ. We seek a level α = α(g) such that β(α, g) = α. Note that use of
Pitman alternatives eliminates the role of n; the final α level depends only on the
user’s g. If we were to use g(Δ) = e−Δ, then calculation reduces the level α to be
the unique root of

α = 1 − α − φ(zα)
1 − Φ(zα − σ)

φ(zα − σ)
(1)

⇔ α =
1
2

− φ(zα)
1 − Φ(zα − σ)

2φ(zα − σ)
,

where φ is the standard normal density.
For example, if σ = 1, then the unique root is α = .348835. The α level works

out to a large number with g(Δ) = e−Δ because g places a lot of emphasis near
Δ = 0. For choices of g that place less emphasis near zero, the α level will work out
to a smaller number. It will always depend on the chosen g.

Let us see what happens if we consider fixed alternatives. If we take fixed alter-
natives, then the role of n will not be eliminated. Indeed, if we seek a level α such
that α = L(α, g) =

∫ ∞
0

β(α, n, θ)g(θ) dθ, then on a small amount of algebra, the
equation reduces to

α = 1 − 1√
n

∫ ∞

0

[
1 − Φ

(
zα − θ

σ

)]
g

(
θ√
n

)
dθ.
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This representation is going to be useful in seeing why the behavior of g near θ = 0
is critical in determining the value (and more importantly, the order of magnitude)
of the required level α.

Consider now, as an example, g(θ) = θe−θ. This choice of g places less emphasis
near the null value θ = 0 than does g(θ) = e−θ. The α levels, which are the roots of
the equation α =

∫ ∞
0

β(α, n, θ)g(θ) dθ, work out as follows for some selected values
of n.

n 10 20 30 50 100 200 500
α .088 .060 .047 .034 .021 .013 .0065

The values tell us that according to the symmetric formulation that we have laid
out, with the fixed alternative approach, the choice of the α level should be smaller
for larger n, and that the conventional 5% level is somewhat too large for large
sample sizes. However, the example also suggests that the conventional 5% level
is about right for sample sizes in the range n ≤ 50, depending on g. The choice
of g will be governed by the problem, namely which alternatives are practically
important in that problem. A plot of L(α, g) for three choices of g illustrates the
role of g in the α level that solves α = L(α, g).

One may interpret the finding of this example and the plot to be suggestive of
both Neyman’s uncanny wisdom when he suggested the 5% convention, and at the
same time, the criticism of the Bayesians that the 5% level is sometimes too low.
This example sets the tone for our theorem below in the next section.

2.2. An asymptotic expansion

Theorem 1. Let X1, X2, . . . , Xn
iid∼ N(θ, σ2), where σ2 > 0 is assumed to be

known. For given α, 0 < α < 1, and n, consider the nonrandomized test that rejects
H0 : θ = 0 in favor of H1 : θ > 0 if X > σzα√

n
. Let β(α, n, θ), θ > 0 be its type II
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error probability function, and g a probability density on R+. Assume the following
conditions on g:

1. g(0) < ∞.
2. There is a nonnegative finite integer m such that g(j)(0) = 0 for j = 1, . . . , m,

and g(m+1)(0+) 	= 0.
3. g is (m + 2) times continuously differentiable on (0, ∞) and g(m+2) is ab-

solutely uniformly bounded on (0, ∞).

(A) Let Γ(c, x) denote the incomplete Gamma function Γ(c, x) =
∫ ∞

x
e−ttc−1dt,

c, x > 0. Then
∫ ∞
0

β(α, n, θ)g(θ)dθ admits the asymptotic expansion

∫ ∞

0

β(α, n, θ)g(θ)dθ

=
σg(0)√

n
[zα(1 − α) + φ(zα)] +

σm+2g(m+1)(0+)
nm/2+1(m + 1)!

×
[
zm+2
α (1 − α)

1 − m

2
+ zm+1

α φ(zα) + zm+2
α (1 − α)

m(m + 1)
2(m + 2)

(2)

+
1√
2π

m+1∑
j=0

(
m + 1

j

)
2

j
2 zm+1−j

α

Γ(1 + j
2 )

j + 1

+
1√
2π

m+1∑
j=1

(
m + 1

j

)
(−1)j2

j
2 zm+1−j

α

Γ(1 + j
2 ,

z2
α

2 )
1 + j

]

+ O(n−(m+3)/2).

(B) In particular,

(a) If g(0) > 0, then

∫ ∞

0

β(α, n, θ)g(θ) dθ

(3)
=

σg(0)√
n

[zα(1 − α) + φ(zα)] + O(n−1).

(b) If g(0) = 0, g′(0+) > 0, then

∫ ∞

0

β(α, n, θ)g(θ) dθ

(4)
=

σ2g′(0+)
n

×
[
z2
α(1 − α)

2
+

zαφ(zα)
2

+
zα√
2π

+
1
4

− α

2

]
+ O(n−3/2).

Sketch of the Proof. The derivation of the expansion follows the usual technique of
a pointwise Taylor expansion of the integrand, while ensuring that the error remains
of the claimed order after integration.
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Write∫ ∞

0

β(α, n, θ)g(θ)dθ

=
∫ ∞

0

[
1 − Φ

(
θ

√
n

σ
− zα

)]
g(θ) dθ

=
σ√
n

∫ ∞

−zα

[1 − Φ(x)]g
(

σ(x + zα)√
n

)
dx

=
σ√
n

∫ ∞

−zα

[1 − Φ(x)]

[
m+1∑
j=0

(σ(x+zα)√
n

)j

j!
g(j)(0) +

(σ(x+zα)√
n

)m+2

(m + 2)!
g(m+2)(x∗)

]
dx

(because the remainder term in the Taylor expansion has such a representation by
the continuous differentiability of g(m+2))

=
σ√
n

g(0)
∫ ∞

−zα

[1 − Φ(x)] dx

+
σ√
n

g(m+1)(0+)
∫ ∞

−zα

[1 − Φ(x)]
(σ(x+zα)√

n
)m+1

(m + 1)!
dx

+ O(n−(m+3)/2)

(since |g(m+2)| is assumed to be uniformly bounded)

=
σ√
n

g(0)
∫ ∞

−zα

[1 − Φ(x)]dx

+
σm+2

n
m
2 +1(m + 1)!

g(m+1)(0+)
[m+1∑

j=0

(
m + 1

j

)
zm+1−j
α

∫ ∞

−zα

xj [1 − Φ(x)]dx

]
(5)

+ O(n−(m+3)/2).

Now use the following integration formulas, which we do not derive here:∫ ∞

−zα

[1 − Φ(x)] dx = zα(1 − α) + φ(zα);

For j ≥ 1,

∫ ∞

−zα

xj [1 − Φ(x)] dx = (−1)j zj+1
α

j + 1
(1 − α) +

1√
2π

2
j
2 Γ(1 + j

2 )
j + 1

+
1√
2π

(−1)j2
j
2 Γ(1 + j

2 ,
z2

α

2 )
j + 1

.

Then, use the following special values for the terms below:

m+1∑
j=0

(
m + 1

j

)
(−1)j

j + 1
=

1
m + 2

; and for j = 0, Γ
(

1 +
j

2
,
z2
α

2

)
= e− z2

α
2 .

On substituting all of these above expressions into the expression (5), the asymp-
totic expansion of the theorem follows on collecting the terms and simplification.
This additional detail is omitted.
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2.3. Asymptotic approximation to the level α

The asymptotic expansion for
∫ ∞
0

β(α, n, θ)g(θ) dθ is useful for finding an asymp-
totic approximation for the α level that solves the equation α =

∫ ∞
0

β(α, n, θ)g(θ)dθ.
We provide such an approximation in this section. The approximation is based on
inverting an asymptotic expansion; the technique has been used before, e.g., in [28]
for writing Cornish-Fisher expansions.

A word of caution and apology is in order. The asymptotic approximation to
the α level does not come with an order for the error of the approximation. We
have not proved any such rate. Therefore, although the approximation given below
is quite accurate (as we will see), we have refrained from stating it as a theorem.

We first explain the method for deriving an asymptotic approximation to the α
level in the case g(0) > 0. For reference below, we denote σg(0) = c and σg(0)

√
2π =

a. In this case, Theorem 1 says∫ ∞

0

β(α, n, θ)g(θ) dθ ≈ c√
n

[zα(1 − α) + φ(zα)].

Setting α = c√
n
[zα(1 − α) + φ(zα)], and by transposition we get

α ≈ zα + φ(zα)
√

n
c + zα

⇒ 1 − Φ(zα) ≈ zα + φ(zα)
√

n
c + zα

⇒ φ(zα)
zα

≈ zα + φ(zα)
√

n
c + zα

⇒ z2
α ≈

√
n

c
φ(zα)

(on cancelling the zαφ(zα) term from two sides of the formal equation)

⇒ z2
αe

z2
α
2 =

√
n

c
√

2π
=

√
n

a
.

A first approximation to the root of this equation is z2
α = log n − 2 log log n − 2 log a,

which, by plugging back into the basic equation α = σg(0)√
n

[zα(1−α)+φ(zα)], results
after additional algebra, and collection of terms, in the first approximation for our
required α level when g(0) > 0, namely

(6) α ≈ σg(0)

√
log n

n

[
1 +

√
1

2π log n
− log log n + log a

log n

]

where we recall that a = σg(0)
√

2π.
Next, consider the case when g(0) = 0 and g′(0+) > 0. We denote σ2g′(0+) = d,

and d
√

π
2 = b. From Theorem 1,

∫ ∞

0

β(α, n, θ)g(θ) dθ ≈ d

n

[
z2
α(1 − α)

2
+

zαφ(zα)
2

+
zα√
2π

+
1
4

− α

2

]
.
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Once again, setting

α =
d

n

[
z2
α(1 − α)

2
+

zαφ(zα)
2

+
zα√
2π

+
1
4

− α

2

]
,

after some algebra, we get the approximation

z3
α +

√
2
π

z2
α +

zα

2
≈

[
2
d
n + 1

]
φ(zα).

A first approximation to the root of this equation is z2
α = 2 log n − 3 log log n −

log(8b2). Plugging this back into the defining equation α = d
n [ z2

α(1−α)
2 + zαφ(zα)

2 +
zα√
2π

+ 1
4 − α

2 ], further calculations give the first approximation for α when g(0) =
0, g′(0+) > 0, as

(7) α ≈ σ2g′(0+) log n

n

[
1 +

1√
π log n

−
3
2 log log n + 1

2 log(8b2) − 1
4

log n

]

where we recall that b = σ2g′(0+)
√

π
2 .

Example 2 (Accuracy of the approximation of α). We investigate the accu-
racy of our two theoretical approximations derived above for the α level that makes∫ ∞
0

β(α, n, θ)g(θ) dθ = α. The exact value is found by programming in Mathe-
matica; the approximations are found by using the two approximations derived
immediately above in (6) and (7). The choices of g are g(θ) = e−θ and g(θ) = θe−θ.
The second choice places smaller emphasis for alternatives close to the null, and in
that case the α level works out to numbers smaller than traditional levels, such as
5%, even for moderate n. The approximation to α is very accurate for g(θ) = θe−θ,
and is acceptable for g(θ) = e−θ.

n g(θ) = e−θ g(θ) = θe−θ

(Approximate in parentheses) (Approximate in parentheses)
50 .143(.173) .0339(.0393)

100 .115(.141) .0212(.0251)
200 .091(.111) .0130(.0154)
500 .066(.080) .0065(.0077)

1000 .051(.061) .0038(.0045)
2500 .036(.043) .0018(.0021)

We now mention the case of general m. Recall that m is the first integer such
that g(m+1)(0+) 	= 0. Denote

σm+2g(m+1)(0+)
(m + 1)!

= cm;
cm

√
2π

m + 2
= am; a2

m(m + 2)m+3 = γm.

Then, assuming also that g(0) = 0, by using Theorem 1, a formal first approxima-
tion to

∫ ∞
0

β(α, n, θ)g(θ) dθ is∫ ∞

0

β(α, n, θ)g(θ) dθ

≈ cm

nm/2+1

[
zm+2
α (1 − α)

m + 2
+

1 − m

2
zm+1
α φ(zα) +

zm+1
α√
2π

+
m + 1

4
zm
α − m + 1

2
zm
α

]
.
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This gives, on rearrangement of terms,

(8) α ≈
zm+2

α

m+2 + zm+1
α√
2π

+ m+1
4 zm

α + 1−m
2 zm+1

α φ(zα)

nm/2+1

cm
+ zm+2

α

m+2 + m+1
2 zm

α

.

This gives a first approximation for z2
α:

z2
α ≈ (m + 2) log n − (m + 3) log log n − log γm.

Now we plug this back into our basic equation. We expand the numerator and
the denominator separately, combine them, and collect terms. Then we obtain an
approximation to the required α level as

α ≈ σm+2(m + 2)
m
2 g(m+1)(0+)

(m + 1)!

(
log n

n

)m
2 +1

(9)
×

[
1 +

√
m + 2

2π log n
−

m+3
2 log log n − m+1

4 + 1
2 log γm

log n

]

where γm is as defined in the above.

2.4. What next

It should be emphasized that the thesis of a symmetric formulation of the testing
problem that we propose here should be separated from the asymptotic expansions.
The expansions are not meant to be taken literally. They serve as a guide, and not
as a prescription.

Second, the formulation and the results given here should have extensions to
various situations. The most interesting of such extensions could be to the case
of multiple testing. There has been an overwhelming amount of stress on limiting
false discoveries. A symmetric approach to the multiple testing problem along the
lines here could be both refreshing and important. A simple formulation could be
to write a density g(θ1, θ2, . . . , θp) for θ = (θ1, θ2, . . . , θp)′ in the alternative, and
make the expected number of false discoveries and missed discoveries the same.
Other formulations, more sophisticated, should be quite possible.

The multidimensional case would be good to work out. The obvious question is
whether the level α will depend on the dimension, if asymptotic expansions similar
to the ones in this article are carried out in higher dimensions, and if so, exactly
how.

It would also be good to work out some theory corresponding to our symmetric
formulation when the test used is a nonparametric or a robust test, for example, the
Wilcoxon test, or a similar rank based test. Highly interesting rank methodologies
in multiple testing problems have most recently been invented in [30, 31], and it
may be similarly useful to extend our symmetric formulation to nonparametric
situations.

Textbook confidence intervals, such as the t confidence interval, or the Wald
interval for a proportion often run into problems when used in inappropriate sit-
uations. For the t interval, the problems occur with skewed data (see [29], and
[20]), and for the Wald interval for a proportion the problem is the inaccuracy of
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the central limit theorem [12]. It could be of some use to know how the coverage
probabilities behave when the nominal coverage is 1 − αn, with αn as in this article
(i.e., αn roughly like log n

n , or some power of it). The calculations will need a new
Edgeworth expansion.

3. The Brown identities, inequalities of boundary value problems, and
the Donsker-Varadhan principle

Two identities on Bayesian estimation of a d-dimensional multivariate normal mean
θ were presented in an unconspicuous manner in [8]. The identities are now generally
referred to as the Brown Identities. The first identity gives a representation for the
mean of the posterior distribution of θ, and the second a representation for the
Bayes risk in terms of the Fisher information operator. Here are the two identities
in their simplest form.

Theorem 2 (The Brown identities). Let X ∼ Nd(θ, σ2Id), and let P be a prior
probability distribution on θ. Let

m(x) =
∫

Rd

1
(2πσ2)d/2

e− 1
2σ2 (x−θ)′(x−θ) dP (θ)

denote the marginal density function of X. Then,

(10) (a) E(θ|X) = X + σ2 ∇m(X)
m(X)

,

where ∇m is the gradient vector of m.

(11) (b) r(P ) = Em(‖θ̂ − θ‖2) = dσ2 − σ4I(m),

where I(g) =
∫

Rd

‖ ∇g‖2

g is the Fisher information operator on the class of functions

G = {g : g ≥ 0, and is absolutely continuous}.

The first applications of the Brown identities were in establishing admissibility;
see, for example, [8] and [9]. A second spate of applications came in deriving bounds
on Bayes and minimax risks; see, for example, [4, 5, 6, 10, 11, 37].

Brown identities were applied in classical asymptotic theory in [20] for deriving
stochastic expansions, and hence cube root central limit theorems for the difference
of the MLE and the posterior mean of a one dimensional normal mean for priors
with smooth densities. The methods used there should apply to higher dimensions,
although they have not been done. It would be good to derive these stochastic
expansions in the multidimensional case, using the Brown identity.

The applicability of Brown identities to classical asymptotics indicated that the
full potential of the Brown identities has not yet been exploited. A few results in
this section will hopefully give further credence to this thesis. The applications
indicated here are of an entirely different nature.

Theorems 4 and 5 show that there is a mutual give and take between the Brown
identity for Bayes risks and the seemingly completely unrelated problem of inequal-
ities in boundary value problems, and in particular the problem of best constants in
such inequalities. At the least, it seems interesting that the extremely hard problem
of finding best constants in variational inequalities can be usefully approached by
using mathematical statistics as a tool.
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Theorem 7, on the other hand, shows that a triangulation of the Brown iden-
tity, a variational representation of the principal eigenvalue of the Laplacian over
smooth domains, and a Brownian motion representation by M.D. Donsker and
S.R.S. Varadhan of that same principal eigenvalue leads to a result in Gaussian
mean estimation. The result is a bound on the minimax risk in terms of absorption
times of a Brownian motion into the boundary of the domain in which the Gaussian
mean lies.

3.1. Variational inequalities and Bayes risk bounds

For the specific links that we show in the examples and in Theorems 4 and 5, the
following analytic inequalities would be used. They are stated together for easy
reference.

Theorem 3. (a) (Heisenberg uncertainty principle) Let p, q, r be constants,
with p > 1, q = p

p−1 , r > −1. Let f : R+ → R be such that f ∈ C1(R+), and each

of x
r
p f , x

r+1
p−1 f , f ′ ∈ Lp(R+). Then,

∫ ∞

0

xr |f |p ≤ p

r + 1

( ∫ ∞

0

xq(r+1)|f |p
)1/q( ∫ ∞

0

|f ′ |p
)1/p

.

(b) (Kolmogorov-Landau inequality) Let 1 ≤ p, q, r ≤ ∞ and 0 ≤ k < n be
such that

(i) k, n are integers;
(ii) n−k

p + k
r ≥ n

q .

Let

α =
n − k + q−1 − r−1

n + p−1 − r−1
, β = 1 − α.

Let f : R → R be such that f ∈ Lp,R, f (k) ∈ Lq,R, f (n) ∈ Lr,R. Then, there
exists a universal constant K = K(n, k, p, q, r) such that

‖f (k)‖q ≤ K
(

‖f ‖p

)α(
‖f (n)‖r

)β
.

(c) (HELP inequality) Let f : R → R be such that f, f ′ are absolutely contin-
uous, and f, f ′, f ′ ′ ∈ L2(R). Then for any real number τ , there exists a universal
constant K(τ) such that

(∫ ∞

− ∞
[(f ′(x))2 − τf2(x)] dx

)2

≤ K(τ)
∫ ∞

− ∞
f2(x) dx

∫ ∞

− ∞
[f ′ ′(x) + τf(x)]2 dx.

In particular, K(τ) may be taken to be 1 for all τ ∈ R.
(d) (The Nash inequality) Let d ≥ 1 and let f : Rd → R be such that

f ∈ L1(Rd) and f belongs to the Sobolev space

W 1,2(Rd) = {u : u, ‖∇u‖ ∈ L2(Rd)}.

Then there exists a universal constant C = CN,d such that

( ∫
Rd

f2

)1+2/n

≤ CN,d

(∫
Rd

‖∇f ‖2

)( ∫
Rd

|f |
)4/n

.
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For the inequalities in part (c) and part (d) in this theorem, we refer respectively
to Benammar et al. [2], and Carlen and Loss [15]. For the inequality in part (a), we
refer to Zwillinger [39], and for the inequality in part (b), we refer to Babenko [1]
and Hardy, Littlewood and Pólya [32].

We start with a simple, and yet, effective illustrative example of the interplay of
the Heisenberg uncertainty principle and the second Brown identity.

Example 3 (Heisenberg’s inequality and Bayes risk upper bounds). Let
X ∼ N(θ, 1) and suppose θ ∼ P , a probability distribution on R. Suppose that
under P, θ and −θ have the same distribution (that is, the distribution of θ is
symmetric about zero). As above, let m(x) denote the marginal density of X. Note
that m(x) is an even function of x. Using f(x) =

√
m(x) in Heisenberg’s uncertainty

principle, with p = 2, and writing r + 1 = α > 0, we have for each α > 0 such that
EP (|θ|2α) < ∞,(∫ ∞

0

(m′)2

4m

)1/2( ∫ ∞

0

x2αm

)1/2

≥ α

2

∫ ∞

0

xα−1m

⇔ 1
2

(
1
2

∫ ∞

− ∞

(m′)2

m

)1/2(1
2

∫ ∞

− ∞
|x|2αm

)1/2

≥ α

2
1
2

∫ ∞

− ∞
|x|α−1m

⇔ I(m)
∫ ∞

− ∞
|x|2αm ≥ α2

( ∫ ∞

− ∞
|x|α−1m

)2

(12)

⇔ r(P ) ≤ 1 −
α2

[
Em|X|α−1

]2
Em|X|2α

,(13)

where r(P ) denotes the Bayes risk under our prior distribution P and Em denotes
expectation under the marginal density of X. By taking an infimum of the rhs over
α, we get a Bayes risk upper bound that involves only moment calculations under
the marginal:

(14) r(P ) ≤ 1 − sup{α>0:EP (|θ|2α)<∞}
α2

[
Em|X|α−1

]2
Em|X|2α

.

Note that in the special case when the prior distribution P is normal, the bound
is exact; i.e., the ultimate lower bound given in the line above coincides with the
exact Bayes risk. But the bound itself is for any symmetric prior distribution P .

The next theorem gives a lower bound on Bayes risks by using the HELP in-
equality in Theorem 3. The lower bound involves only the first two derivatives of
the density of the prior distribution, and is, therefore, easy to compute.

Theorem 4 (HELP inequality and Bayes risk lower bounds). Let X ∼
N(θ, 1) and let θ have an absolutely continuous prior distribution P with a density
g such that

(i) g is logconcave;

(ii)
|g′ |
g

≤ α < ∞;
|g′ ′ |
g

≤ β < ∞.

Then,

(15) r(P ) ≥ 1 − (5α2 + 8β) +
√

25α4 + 80β2 + 80α2β

2
.
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Remark. Note that it is possible that the lower bound turns out to be a negative
number, in which case the bound is not useful. So, a better way to think of this
bound is to think of it for general n, when the bound will read like

(16) rn(P ) ≥ 1
n

− (5α2 + 8β) +
√

25α4 + 80β2 + 80α2β

2n2

and so for large enough n, the bound will not be vacuous.

Proof of Theorem 4. We use the HELP inequality with the special choice τ = 0
and use f =

√
m. The following facts will be used during the proof, and we collect

them together for easy reference:

(a) By familiar arguments, supx
|m′(x)|
m(x) ≤ supθ

|g′(θ)|
g(θ) ≤ α, and supx

|m′ ′(x)|
m(x) ≤

supθ
|g′ ′(θ)|

g(θ) ≤ β.
(b) Since the logconcavity of g implies that P is strongly unimodal, and since

strong unimodality is closed under convolution, m(x) is also a logconcave
function.

(c) Therefore,

(17) (log m)′ ′ =
m′ ′

m
− (m′)2

m2
≤ 0.

(d) The first two derivatives of f =
√

m are

(18) f ′ =
m′

2
√

m
; f ′ ′ =

m′ ′

2
√

m
− (m′)2

4m3/2
.

(e) Moreover, we can rewrite f ′ ′ as

f ′ ′ =
√

m

[
m′ ′

2m
− (m′)2

4m2

]
(19)

=
√

m

[
m′ ′

2m
− (m′)2

2m2
+

(m′)2

4m2

]
.

We now use the HELP inequality in part (c) of Theorem 3, with τ = 0. Then, the
lhs of the inequality is (

∫ ∞
− ∞(f ′(x))2 dx)2 = I2(m)

16 . On the rhs,
∫ ∞

− ∞ f2(x dx = 1,
and ∫ ∞

− ∞
[f ′ ′(x)]2 dx

=
∫ ∞

− ∞

[{
m′ ′

2m
− (m′)2

2m2

}2

m +
(m′)4

16m4
m + 2

(m′)2

4m2

{
m′ ′

2m
− (m′)2

2m2

}
m

]
dx(20)

≤
∫ ∞

− ∞

[{
1
4

(
m′ ′

m

)2

+
1
4

(
m′

m

)4

− m′ ′(m′)2

2m3

}
m +

1
16

(
m′

m

)4

m

]
(21)

(because, by fact (c) stated above, the cross product term in the line before is ≤ 0)

≤
[
1
4
β2 +

1
4
α2I(m) +

β

2
I(m) +

1
16

α2I(m)
]

(22)
=

[
1
4
β2 +

{
5α2

16
+

β

2

}
I(m)

]
.
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Now, plugging this into the HELP inequality, we obtain

I2(m)
16

≤ 1
4
β2 +

[
5α2

16
+

β

2

]
I(m)

(23)
⇒ I2(m) ≤ 4β2 + [5α2 + 8β]I(m).

This last inequality is a quadratic inequality in I(m), and by solving for the larger
root of the corresponding quadratic equation, we get

(24) I(m) ≤ (5α2 + 8β) +
√

25α4 + 80β2 + 80α2β

2
,

and therefore by the Brown identity,

(25) r(P ) = 1 − I(m) ≥ 1 − (5α2 + 8β) +
√

25α4 + 80β2 + 80α2β

2
,

which is the stated lower bound on the Bayes risk r(P ).

3.2. The Brown identity and the best constant in the Nash inequality

The result that we next present shows the reverse side of a synergistic relationship,
namely that it will show that the best constant problem in the Nash inequality
can benefit from relating it to the Brown identity for Bayes risks. Additionally,
it will be seen that the estimate of the best constant that the Brown identity
produces is surprisingly accurate, while also being explicit and simple. In contrast,
the apparently common estimate of the best constant cited in analysis [15] involves
the first positive zero of the Bessel function of the first kind, Jν , with ν = d

2 , and
there are no formulas for the first positive root.

Theorem 5. Let X ∼ Nd(θ, Id×d) and suppose θ has a strongly unimodal prior
probability distribution P . Let h(x) = log m(x) and L(x) = Ld×d = ( −∂2h

∂xi∂xj
).

Let λ1(x) be the smallest eigenvalue of L(x). Then the best constant in the d-
dimensional Nash inequality satisfies

(26) CN,d ≥ sup{P :P strongly unimodal}

[
[infx λ1(x)]2

4π2[supx m(x)]2/d[d − r(P )]

]
.

In particular, by taking P to be the N(0, Id×d) distribution,

(27) CN,d ≥ 1
2πd

.

Discussion. The estimate of the best constant given in [15] is

(28) CN,d ≤
2(d

2 + 1)1+2/d

dw
2/d
d k2

d

,

where wd = πd/2

Γ( d
2 +1)

is the volume of the d-dimensional unit ball, and kd is the first
positive zero of the Bessel function J d

2
(x). The following short numerical table illus-

trates the surprising effectiveness of the lower bound CN,d ≥ 1
2πd . The lower bound
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1
2πd can be improved by using strongly unimodal priors P that are nonnormal. The
main purpose of Theorem 3 is to show the connection of the best constant to the
supremum over strongly unimodal priors of the quantity on the rhs in the theorem.
However, we do not know which prior P , if any, will result in the Carlen-Loss upper
bound. In any case, the simple bound 1

2πd is already impressively accurate; here is
a table.

First positive Carlen-Loss Theorem 5
d zero of Jd/2 upper bound lower bound
1 π .170979 .159155
2 3.83171 .086721 .079578
3 4.49341 .058515 .053052
4 5.13562 .044344 .039789
5 5.76346 .035799 .031831
6 6.38016 .030074 .026526

10 8.77148 .018508 .015916

Proof of Theorem 5. Once again, the function f to use is f =
√

m. We apply the
Nash inequality to this choice of f . However, notice that we must now deal with the
L1 norm of

√
m in order to apply the Nash inequality. It is for this purpose that the

strong unimodality of P will be helpful. Here is how we deal with the L1 norm of√
m. In the following, we use the notation u = argmax(h) = argmax(log m). Then,∫

Rd

√
mdx =

∫
Rd

elog
√

m dx =
∫

Rd

e
1
2 h(x) dx

=
∫

Rd

e
1
2 [h(u)+(x−u)′ ∇h(u)− 1

2 (x−u)′L(x∗)(x−u)] dx

=
√

m(u)
∫

Rd

e− 1
4 (x−u)′L(x∗)(x−u) dx(29)

≤
√

m(u)
∫

Rd

e− 1
4 (infx λ1(x))(x−u)′(x−u) dx

=
√

sup
x

m(x)
(

4π

infx λ1(x)

)d/2

.

We plug this bound on
∫

Rd |f | in the Nash inequality (see part (d) of Theorem 3).
Since

∫
Rd f2 = 1, and

∫
Rd ‖ ∇f ‖2 = 1

4I(m), the inequality given in Theorem 5 now
follows on simple manipulation, which is omitted.

We end with a result connecting the marginal density of X to the Fisher infor-
mation of the density of the prior distribution P . The result is obtained by putting
together three ingredients, namely the Brown identity, the Borovkov-Sakhanienko
lower bound on Bayes risks, and the Kolmogorov-Landau inequality in part (b) of
Theorem 3. The result essentially says that if the density of the prior distribution
is flat, so that its Fisher information is small, then the marginal density must also
be flat, because the supremum of the marginal density will be small. This is not
surprising; but the result below succeeds in quantifying the flatness of the marginal
density. We should add that the best constant K cited in the result below is known
in the Russian literature (see pp. 80 in [1]); but we could not acquire the article.
Here is what the result says.
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Theorem 6. Let X ∼ N(θ, 1) and let θ ∼ P . Assume that P is absolutely con-
tinuous with an absolutely continuous density g. Let K denote the best constant
K(1, 0, 2, ∞, 2) in the Kolmogorov-Landau inequality. Then,

(30) m(x) ≤ K2

2

√
I(g)

1 + I(g)
for all x.

Proof. Choosing k = 0, n = 1, q = ∞, p = r = 2 in the Kolmogorov-Landau
inequality, and using f =

√
m, we have

(31)
√

sup m = sup(
√

m) ≤ K

(
1
2

√
I(m)

)1/2

.

By the Brown identity and the Borovkov-Sakhanienko lower bound (also available
in pp. 1581, [10]),

(32) 1 − I(m) ≥ 1
1 + I(g)

.

Plugging this into (31), on a little manipulation, one gets

sup m ≤ K2

2
(
I(m)

)1/2 ≤ K2

2

√
I(g)

1 + I(g)
.

3.3. Brown identity, minimax risk over bounded domains, and chasing
a Brownian motion

We finish by drawing a connection between the minimax risk in estimating a d-
dimensional Gaussian mean constrained to lie in a bounded domain Ω, and the
time to absorption of a d-dimensional Brownian motion into the boundary of Ω.
We derive an inequality on the minimax risk, and then state a conjecture. Minimax
estimation of Gaussian means constrained to lie in some bounded domain now has
a huge literature. The first two key papers are [4], and [17]. For later developments,
see [24, 25, 23, 38, 13, 14], and [19], among numerous others.

To derive our inequality on the minimax risk, we will borrow two results from
probability and analysis. It would be helpful to gather these two results first.

Suppose Ω ⊂ Rd is a bounded open domain, with a smooth boundary. The result
we borrow requires the boundary to be sufficiently smooth for the Dirichlet problem
on Ω̄ to be solvable (the solid ellipsoids, solid cubes, etc., all will work).

Let c be a bounded and Hölder continuous real valued function on Rd. If a
function u and a real valued constant λ solve the equation

1
2

�u + cu = λu in Ω;

u continuous in Ω̄, u = 0 on ∂Ω,

then λ is called an eigenvalue of 1
2 � + c corresponding to the eigenfunction u.

It is known that there is a sequence of eigenvalues

∞ > λ0 > λ1 ≥ λ2 ≥ λ3 ≥ · · · ;
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the principal eigenvalue λ0 admits the Rayleigh-Ritz representation:

(33) λ0 = − inf
{h≥0: h∈L2(Ω)}

∫
Ω

[
ch2 + ‖∇h‖2

]
.

This result will be used by us. We refer to [18] for this result.
But λ0 also has a Brownian motion connection. Take an x ∈ Ω, and consider a

d-dimensional Brownian motion Wd(t), t ≥ 0, starting at x. Let τ be the stopping
time

τ = inf{t ≥ 0 : Wd(t) /∈ Ω}.

Then,

(34) λ0 = lim
t→∞

1
t

log sup
x

Ex

[
e

∫ t

0
c(Wd(s))ds

I{τ>t}

]
.

We refer to Donsker and Varadhan [26, 27] for this result.
With this background, we now proceed to draw the connection between the

minimax risk and τ . Suppose then that X1, X2, . . . , Xn
iid∼ Nd(θ, σ2Id). Suppose

θ ∈ Ω̄, a domain as specified in the above. Consider the minimax risk ρn,Ω =
infδ supθ Eθ ‖δ(X1, X2, . . . , Xn) − θ‖2. We recall the notation rn(P ) for Bayes risk
under a prior probability distribution P . Then,

ρn,Ω = sup
{P : P prob. measure on Ω̄}

rn(P )

= sup
P

[
d
σ2

n
− σ4

n2
I(m)

]
(Brown identity)

= d
σ2

n
− σ4

n2
inf
P

I(m)

≥ d
σ2

n
− σ4

n2
inf

{P : P has a density g}
I(m)

≥ d
σ2

n
− σ4

n2
inf
g

I(g)

(because I(m) ≤ I(g), Fisher information being a convex operator; Huber [33]
proves this convexity property)

= d
σ2

n
+

σ4

n2

(
− inf

g

∫ ‖ ∇g‖2

g

)

= d
σ2

n
+

4σ4

n2

[
− 1 − inf

{h≥0:‖h‖2=1}

∫
{−h2 + ‖∇h‖2}

]

(by writing h =
√

g)

= d
σ2

n
− 4σ4

n2
+

4σ4

n2
lim

t→∞
1
t

log sup
x

Ex

[
e

∫ t

0
(−1)ds

I{τ>t}

]

(by (34)).
We have thus derived an inequality on the minimax risk, and it is now stated

formally.
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Theorem 7. Let X1, X2, . . . , Xn
iid∼ Nd(θ, σ2Id). Suppose θ ∈ Ω̄ ⊂ Rd, where Ω

is a bounded open domain such that the Dirichlet problem on Ω̄ is solvable. Let
Wd(t), t ≥ 0, be a d-dimensional Brownian motion starting at x, x ∈ Ω, and

τ = inf{t ≥ 0 : Wd /∈ Ω}.

Then the minimax risk of estimation of θ satisfies

ρn,Ω = inf
δ

sup
θ∈Ω̄

Eθ

[
‖δ(X1, X2, . . . , Xn) − θ‖2

]

≥ d
σ2

n
− 4σ4

n2
+

4σ4

n2
lim

t→∞
1
t

log sup
x

Ex

[
e−tI{τ>t}

]
.(35)

The conjecture is that, asymptotically, i.e., for large n, the inequality should be
an approximate equality. In that case, we would be able to approximate the mini-
max risk in general dimensions over general smooth bounded domains by chasing
a Brownian motion to the boundary of the domain. Such a link should be quite
interesting. It will also enable one to numerically approximate the minimax risk
over arbitrary smooth bounded domains by using the following algorithm:

Step 1 Pick a (large) t and K random (or finely spaced) points xi, i = 1, 2, . . . , K
from Ω.
Step 2 Pick a (large) number N , and simulate a d-dimensional Brownian motion
starting at the origin N times.
Step 3 Shift it to start at xi. Evaluate τi, the time to absorption of the simulated
path into the boundary of Ω.
Step 4 Count M(xi), the number of simulated paths for which τi > t.
Step 5 Find c(t) = max1≤i≤K

M(xi)
N .

Step 6 Approximate the minimax risk as

ρn,Ω ≈ dσ2

n
− 8σ4

n2
− 4σ4

n2t
log(c(t)).

Step 7 Pick a larger t and repeat.
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