IDENTICAL LOCI AND RELATIONSHIP
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1. Introduction

I shall call identical loci, two loci bearing genes identical by descent; that is,
going back to the same locus of one common ancestor.

If we consider one diploid individual called K, his two homologous loci may
be identical if he is “inbred”; that is, if his two parents I and .J have some
common ancestors A; (figure 1).
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Figure 1

Example of identical loci due to common ancestors.

The probability of identity of his two homologous loci is named his coefficient
of inbreeding fx,
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where A ; are unrelated ancestors. Tt is remembered that 1 — fx is the probability
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of nonidentity; that is, the probability that the two homologous loci trace back,
as far as we go back, to different ancestors. They are then ‘“independent” in the
probabilistic sense; this means that they may or may not possess the same gene
(a for instance), but knowing one of the two genes does not imply anything
about the other. We call ¢ the probability that a random locus bears the gene a
with 1 — ¢ = p being the overall probability of the other alleles grouped under
the symbol A. The independence of the two loci gives for the three genotypes
aa, ad, AA, the probabilities g%, 2pq, and p?; whereas the identity of the two
loci gives the probabilities ¢, 0, p. So the a priori probabilities that a random
individual K bears either of the three genotypes are

(12) P=Q0-fo)g*+fxqg, 2Q=21-fx)pg, R =1 —fr)p*+fxp.
The probabilities of the homozygotes are, in case of inbreeding, greater than in
cases of random mating. The probabilities (and then, in general, the frequencies)
of heterozygotes, are decreased by random mating. The variance of a quan-
titative character increases by inbreeding when the gene effects are additive.
Now we may define more generally the coefficient of kinship of the two individuals
I and J. We shall define it in such a manner as to obtain, if they are parents
of an individual K, the coefficient of inbreeding of K. The coefficient of kinship
of I and J is the probability that one locus chosen at random among the two
loci of I, and one locus chosen at random among the two homologous loci of J,
are identical. So, the coefficient of inbreeding of K is equal to the coefficient of
kinship of his parents I and J

(13) fK = f[J.

If we account for mutation, which can modify a locus transmitted from parent
to child with probability u, we have

14) fr = (L= Wi
and ‘ ’
s fa=2[5a -0+ 1.

2. Coefficient of kinship

In a natural population, the probability of two individuals I and J bearing,
in randomly chosen homologous chromosomes, two identical loci decreases when
their distance increases because the probability of common ancestors decreases.
It is the phenomenon of isolation by distance, going up to racial unlikeness if
the distance is so large that there are very few identical loci between I and J.
It is possible to calculate, as a function of the distance between I and J, their
coefficient of kinship; that is, the probability for two randomly chosen loci in
each to be identical. This function is dependent on the migration law; that is,
the probability law ruling the distance between the birthplace of the child and
the birthplace of his parents, called the parental distance, whereas the distance
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between the birthplace of the two parents of each individual will be called
marital distance. We shall call z the parental distance from child to parent.
This z is an oriented vector in the two dimensional plane, but the arrows will be
omitted for typographical simplicity. The coordinates of z will be called z; and
22; points of the plane, locating positions of individuals will be called b, and so
forth, with coordinates b;, by, and so forth. The elementary area of location of
an individual will be called db; db; = db or if this is the birthplace of parent,
dx, drs = dz. The migration law, the probability law of parental distance, will
be characterized by the probability density £(z1, x,), the elementary probability
{(x1, 22) dx1 dxs = £(z) dz for shortness, or the distribution L(zi, x»), with dL =
£ dz in the continuous case.

With the assumption of separate generations, let us consider two individuals
I and J, belonging to the same generation F,, and separated by vectorial dis-
tance y, with coordinates y; and y,. Their coefficient of kinship will be called
oa(y); it is obviously related to the coefficient of kinship of previous generations.
If we were allowed to suppose that the parents of I and J are always distinet,
we would have

@.1) on®) = (1= 0? [ eualy + 2 — ) dz da,

where u is the mutation rate.

X2

Figure 2

Distance between two individuals I and J, and the
parents Pr and P; supplying the two loci.

But formula (2.1) does not account for the possibility that Pr and P, the
parents who supplied the two loci chosen in I and J, are the same individual,
which is possible since the adults are in limited number. Indeed, Pr and Py may
be the same if they are born in the same elementary area dz, occupied by & dx
individuals, for which the corresponding probability is

(2.2) ' {(z) dz {(—y + ) du,
and if also they are the same, the probability of which is 1/5 dx. So, the prob-
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ability of P; and P; being the same individual located at distance x from [ is
(2.3) {(x)(x — y) dz/s.

REmaRrk 1. The reasoning may also be used in the discontinuous case with
partition into separate groups of N individuals each, the probability of migra-
tion from a group at vectorial distance d being ¢(d), with d having discrete,
perhaps entire, coordinates. The probability that the parents come from the
same group is then £(d){(d — y), and the conditional probability that they are

the same is 1 divided by N. The probability of being the same individual located
at distance d from I is then

(2.4) £(d)e(d — y)/N.

When we tend to the case of a continuous distribution, we obtain formula (2.3).
RemARK 2. In the previous reasoning, sex was not yet taken into account.

If we now suppose the densities of males and females are 8, and 8; per unit area,

the parents Pr and P; who have the randomly chosen loci of T and J may both

be males (with probability 1/4) and identical with conditional probability of

location

2.5) U)oz — y) da/b,

or they may both be females with probability 1/4 and identical with conditional
probability of location

(2.6) L) (x — y) dz/8e.

So formula (2.3) is valid if we put 1/46; 4+ 1/45, = 1/5. If 8, and &, are equal,
then & = 28;, and is then total density; but in the general case 6 is only double
the harmonic mean between &, and &,.

2.1. Refinement of equation (2.1) to account for finiteness of population. We
have to replace some infinitesimal terms of (2.1) corresponding to the same
location of parents; that is, to the relation y + z = z and dz = dx. In cases of
probability 1/6 dz, the coefficient of kinship ¢,—1(0) of neighboring but distinct
individuals is to be replaced by the probability that two loci given to I and J
by the same parent P; were the same. This probability is 1/2 + fo/2, where f; is
the coefficient of inbreeding of P;. So we have to add to formula (2.1) the cor-
rective term

en  a—w [[0+0 - 0] ot - s
We shall now put

28) (504 = era®] /5= 12> 0

as a correction for the same parent. We have now to calculate the function ¢,(z)
and the constant s,; giving the coefficient of inbreeding f,, by solving equations
of which onc is the finite difference integral equation

(2.9) o) = (1 = W? [ pusly + 2 — () dzdz
+ (1 — w)? s f ()t — y) d.
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It is easy to see that, because the factor (1 — u)? is less than one, the function
en(y) tends to a limit ¢(y) as n tends to infinity. If we call s the limit of s,_;;
that is, if we put

1+ fo — 2¢(0) -

(2.10) 5

and if we put, for simplicity,

(2.11) (I — wi(x) = g(x)
giving us

(2.12) f g@)de = (1 — w)

(instead of f £(x) dz = 1), we now have to solve

213) o) = [l + 2~ D9 dzdr + s [ gtz — y) da.

The convolutions in (2.13) will be replaced by algebraic multiplications if we
introduce the following bidimensional Fourier transforms (where v is an arbitrary
vector of coordinates v; and vy):

(2.14) Qo) = _/ ey (x) dx (vectorial form)
= f gontvmdg(y, 1,) dr;y dr,, (scalar form)
(2.15) K@) = f eMo(y) dy = f ety yo) dys dys.
By multiplying each member of (2.13) by
(216) eivy = eiv(y+z—z)e—1'vzeivz - eivxe—iv(x—y)

and integrating with respect to y, we obtain the formula
(2.17) K@) = K@)G(—v)G{®) + sGw)G(—v)
which gives

Gw)G(—v)

Then the inversion of Fourier transform (2.15) gives
(2.19) o(y) = 4—1—”2 / e~ K (v) dv (vectorial form),
= 21% e~ towmte) K (y, o) dv; dos (scalar form).

These formulas may be simplified in the isotropic case where the migration
law, defined by £(x1, 2), or by g(x1, x2) = (1 — u)f(x1, x2), is only dependent on
the absolute value, or “norm’” of vector z; that is, (2} + 23)V2 = r.

We then have, putting ; = r cos 8 and x» = r sin 6,

(2.20) £(xy, x2) dxy dze = £(r)r dr db.



322 FIFTH BERKELEY SYMPOSIUM: MALECOT

G(v) given by (2.14) is then dependent only on the norm [v] = (¢ 4 )17,
and is then known to be the “Hankel transform”

(2.21) G(lo]) = 2r(1 — w) ﬁ] T Tolrlo)re(r) dr.

We use the notation G(Jv]) to indicate a function depending only on the norm
|v] of vector »: and we shall henceforth omit the sign | | and write only G(v).
The same can be said about equation (2.15), which gives the Hankel transform
of the coefficient of kinship ¢(y1, ¥2). But it is better to use the inverse transform
(2.19) thus putting (¥} 4 ¥3)'/2 = q, ¢(y) = ¢(a), and K(vy, v2) = K(|v]) = K(v)
the value of K(v) being given by (2.18).
Then we may write

+ o
(2.22) ola) = -21; ﬁ wJo(alo)) K (v) dv.
Combining formulas (2.18), (2.21) and (2.22), we have
(2.23) 0w = (1 — ) ﬁ) T Jo(r)2art(r) dr
s [T= G*(v)
(224) (p(a) = 2—7rﬁ Z)Jo(al’) r'TZ;TI)) dl),

formulas which express the coefficient of kinship of I and J as a function of
their distance @, in the stationary case, provided we know the migration law
defined by the probability density 2#r{(r) of the parental distance r (that is,
the distance between parent and child).

REMARK. Another interpretation is that, in the present isotropic case

— —
G (Jo|) = G@)G(—v) is, apart from the factor (1 — «)?, the Fourier transform

. — —
of the difference of two independent vectors z and z, each having as probability
law the migration law; so, in the case of complete random mating, G*(v) is the

FIiGure 3

Interpretation as the difference of two independent vectors.
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bidimensional Fourier transform of the vectorial marital distance, or the Hankel
transform of the absolute marital distance; then the distribution of marital
distance may be introduced directly in (2.24). We put

(2.25) M@) = (1 — w)? ﬁ) *° Jo(ro)m(r) dr,

where m(r) is the probability density of the marital distance, and M (v) is,
when v increases from zero, a decreasing function with the initial value M(0) =
(1 — w)?% Then we have

+
(2.26) ola) = és_ﬁ % Jo(av)v dv.

X

3. Application to a normal migration law

If, for the marital distance, m(r) is normal (the distribution of the parental
distance is then itself normal, in case of complete random mating), we have
M@) = (1 — u)?exp (—oW?/4), where ¢2 is the second moment of the marital
distance and

s T2 (1 — w)?exp (—o%?/4)
2r Jo 1 — (1 — u)2exp (—oWw?/4)
which gives by way of an easy integration

(3.1 e(a) =

Jo(av)v dv,

- -5 Qe ~ Sl (L)
3.2) »(0) = s log[1 — (1 —w)?] 3 log (2u>
Recall that s is related to ¢(0); see the last paragraphs. In case of “complete

random mating’’ where fo = ¢(0), we get ([1], p. 59)

(3.3) 00) = fo = [1 + 2702 /log <%>]_1

To obtain an asymptotic expression of ¢(a) when a is large, we shall use,
taking account of the smallness of the mutation rate, the asymptotic properties
of the Fourier-Hankel transform. From (2.26) we see that ¢(a) is (apart from
the factor s/2w) the transform of M(v)/[1 — M (v)] which, in the vicinity of
v = 0, is very large, equivalent to 1/2u; and then decreases quickly from 1/2u
to zero (when v increases); the principal part of ¢(a) for a large is given by the
first derivatives (for » = 0) of the function M(»)/[1 — M (v)], which are also
the first derivatives of

(1= w1l — o%¥/4) 1
1— (1 — w21 — o%2/4) ~ 2u + ot?/4

The Hankel transform of order zero of (m? + v2)~! is Ko(am) ([2], p. 282), and
thus we obtain

(3.5) (@) ~ % K, [g (8u)1/2]

(3.4)
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whence, using a well known equivalence

2[__mo |2 _a 1/2].
(3.6) o) ~ 2o e [ -2 8w

This asymptotic form was given by me in 1959 ([3], p. 191) with the notation
o? instead of ¢2/4 (variance of parental distance along an axis, instead of var-
iance of marital distance in the plane) using another method of approximation
from ([4], p. 210) replacing the difference equation of p. 188, extended to two
dimensions, by the partial differential equation

_ A , A\ _1— (0 .. . N

3.7 2ue(z,y) — 2m ( v + 6y2> =N times a Dirac distribution.
The isotropic solution ¢(z, ¥) = ¢(a) of the homogeneous equation is given by
0% , 1d¢ u

(3.8) 9a2 " ada m

The general solution ([5], p. 114) is a linear combination of Iy[a(u/m)'/?]
and Kola(u/m)'?]; but ¢ must be bounded, and is then proportional to
Ko[a(u/m)V?]; that is, to

o P RO

The variance of parental distance along each axis is ¢2 = 2m in [3], in which
I gave

. |
(3.10) (p(_'l;) = I(:I;le e Qu'i2r/a

on p. 191. Weiss and Kimura ([6], p. 142) have shown that the same formula
numbered (4.40) is valid in the two dimensional discontinuous case, thus cor-
recting my first approximation of this case ([7], p. 55). In this 1950 paper, I
had already extended the formula for the discontinuous unidimensional case
to a general migration law, with rate ma; between places separated by distance
J. Supposing m small and % small with respect to m, I obtained (pp. 51-52)

G o5 = i) = fs ~ Kt ~ K oxp [ ~(grrgs) "l = ]

which is still the same formula (putting 3", 2mn%a, = ¢?) as in the continuous
unidimensional case ([8], p. 52). The analogous two dimensional comparison
may be made between my ‘continuous normal case’’ bidimensional result
dealt with in ([1], p. 59), recalled in ([8], p. 53, formula 5), and completed in
the present paper and the discontinuous bidimensional case of Weiss and
Kimura ([6], p. 139 and p. 146).

The asymptotic reasoning in the normal bidimensional case may be extended
to every law giving a quickly decreasing Hankel transform M (v) of the form

(3.12) M@) =1 —uw?— k24 o@?)
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(implying the existence of a second moment, equal to 4k, of the marital distribu-
tion). This will be verified, in the next paragraph, for the interesting case of a
“K distribution.” A further step would be to investigate the case of a Beta
distribution without second moment.

4. Application to a ‘K distribution”

By “K distribution” we shall mean the distribution of elementary probabil-
ity, where K is the modified Bessel function of the second kind,

1
- B8+1 -
4.1) %G T 1) Kp(rh) (hr)8+! d(hr), B> —1.
Its Hankel transform (or characteristic function) is
h2 s+1
When 8 = —1/2, we have the exponential distribution, the limiting case between

a ‘“‘continuous” distribution (when 8 > —1/2), and a distribution infinite at
x = 0 (when 8 < —1/2).

The usefulness of the K distribution as a two dimensional isotropic distribu-
tion is that every convolution of K distributions with the same parameters A is
itself a K distribution, since the powers of the characteristic functions are of
the same form and the parameters 8 + 1 add up. (This is the same property in
the two dimensional case as that of Gamma distributions in the one dimensional
case.) So all convolution formulas will be easy to deal with; in particular, it is
equivalent to suppose a K distribution for the parental distance or for the
marital distance (in the case of complete random mating). Let us suppose that
the marital distance obeys the K law with parameter 8 + 1 = b for the sake
of simplicity. Now b is >0 and we have

(4.3) M@) = G*v) = (1 — uw)2(1 + v2/h2?)~?
and then, from (2.24) (with the approximation (1 — u)? — 1 ~ —2u),
“+
_ S Jo(av)v dv .
449 ela) = %L A+ o2/hR) — 1 + 2u

This integral is uniformly convergent if b is assumed >1, where a is 2 0.
If b is an integer, let us call w; the b distinct roots of the equation w® = 1 — 2u,
given by the formula w;, = (1 — 2u)V® exp (2iwk/b); we then may write

1 _ s Ay ,
T+ o/h) —wb ~ &1 1+ v2/h — wy

with 4, = wi/(1 — 2u)b, so that

_ sh* & W e Jo(av)y dv
(4.6) ol@) = 50 &, a- 2u)bfo R — w) + o2

- (4.5)
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Each integral is easily calculated by the formula
2 Jo(av)o dv

o mrtt

see Guelfand and Chilov ([2], p. 282) which gives

(4.7) = Ko(am);

4.8) ola) = 32 él sy Kalah(l — ]

The expression (1 — w)? may be chosen with an argument between —=/4
and +=/4.

If a is large, this sum > }.; contains a term much larger than the others;
indeed, the root wy = (1 — 2u)¥* ~1 — 2u/b is (if b is not large), much
nearer 1 than the others, making the corresponding value of |Ky| much larger
than the others (the real part and the modulus of ah(l — ws)¥/? being much
less than those of ah(1 — wy)V/2if k = b). Therefore,

4.9) (@) ~ S Kolah(u/b)1"] = - Kola(8u/ M),

(The second moment M, is 4b/h%.)
The analyticity of (2.24) with respect to b > 1 ensures validity even when
b > 1 is not an integer. Then we may apply the approximation

Rl D S sy S
(4.10) eol@) ~ 53 [2ah(2u/b)1/2] e

_ 25 [ wM2 PR euspaan
T wM. | 2a(8u)l? ¢

which is the same as in the case of the normal law.
For a = 0, formula (2.24) gives directly

_ah [T+ oy
(4.11) ?(0) = 4—”/; 1+ v2/R%> — 1 + 2u

_g_ﬁ/“ dz
T4 )1 2—142u

which is convergent only if b > 1. In the vicinity of z = 1, we now write

2t =14 w, bz1dz = dw,

(4.12)

o= [ du .
@ b Jo  Cu+ w1 + w)®-DA
Because u is small this incomplete B integral is equivalent to
1
dw 1
(4.13) ,/o Tt w ™ —log (2u) = log 5
When ¢(0) = f,, which is the case of completely random mating, we have, by

replacing s with [1 — ©(0)]/25, and 4b/h? with the second moment M,, the
relation
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(4.14) o(0) = fo = [1 + Sabs / (h2 log 21_u>]-1

= [1 + 2x My 5 / <log -2%)]_1-

Again, the formula is the same as for the normal law. (See [1], p. 59.)

5. Calculation of f,

5.1. Complete random mating. If there is complete random mating within the
local gametic pool (not excluding the possibility of the two uniting gametes
coming from the same individual; that is, allowing self-fertilization), there is
then equality between f,, which is the probability of identity of the two loci of
the same individual, and ¢(0), which is the probability of identity of two random
loci of two individuals born at distance 0. Then s is equal to {1 — ¢(0)]/28,
as was supposed in my previous works ([1], p. 57, compare with previous
formula; [4], p. 209).

A more general case, leading to nearly the same results, will be dealt with
hereafter. :

5.2. Exclusion of some malings of high consanguinity. In human genetics,
the inbreeding coefficient fo of an individual K is equal to the coefficient of
kinship of his two parents I and J, who are not independently chosen random
individuals; given their vectorial distance y (at their birth), they are chosen so
as to exclude the nearest type of matings. Thus, their coefficient of kinship is
not ¢(y) (valid only for random individuals of distance y), but a new function
¥(y), which we shall calculate by assuming that the first possible common
ancestor of the mates I and J is of order p (p = 0 corresponding to allowance
of self-fertilization, and p = 1 to allowance of brother-sister mating) ; the prob-
ability distribution of location of each ancestor of order p will be called ¢®,
defined by the convolution

(5.1) (P (z) = j’ L@z — 2') e
with £V = £, Putting ¢'”(z) = (1 — w)?®z, we have
(5.2) / eigw (z) de = Go(v).

If we suppose that the two ancestors, A; and A, of order p who may have
given the chosen loci of I and J have been randomly chosen (we will call this
“p removed random mating”), their joint probability law of location in places
z and z is £ (2)(® (2) dz dx; their probability of being the same individual
(in place z) is

(5.3) (@ ()@ (x — y)/8] da.
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Figure 4

Determination of joint probability law of location of two ancestors,
and of the probability of their being the same individual.

So ¥(y) is given by

64) v = [ oy + 2~ DgP@gV@) dzdz + s [ ¢P@)gP (@ — ) dz

with, as before,

(5.5) s = [1 ;f“ - tp(O)]/&.

Compare (5.4) to (2.13).
The Fourier transform gives

(5.6) HQ) = [[ em@) dy = KOIGW] + s[60)]
= 8G2(v) 2p = ﬂ
= [1—4G2(0)+8]G (1)) —Sl _G2;
using (2.18).
Hence,

+
61 v = g [ @ ar= & [ s .

It is now possible to calculate f,. If we suppose we know the bidimensional
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probability density mi(y) of ‘“vectorial marital distance” between I and J and
the corresponding transform

(5.8) (1 — w? [ emmy) dy = M()

(M (v) is now not equal to G%(v), owing to the fact that the two mates I and J
are not independently chosen), we have

(5.9) o= [ (= v dy

which may be calculated by noting that ¢(y) = ¥(—y), and introducing (with
arbitrary z) the convolution

(5.10) (1 — w2 [ myWe — y) dy = 06),

of which the Fourier transform is

(5.11) [ e70() de = M@)H).

The value f,, being equal to #(0), requires the reciprocal formula

(5.12) 06) = 43 / =M (0) H () do,

whence,

(5.13) fo= 412 / M @)H (v) dv (two dimensional integral).
In the same manner, formulas (2.18) and (2.19) give

(5.14) (0) = i / K@)dv = — / Gt gg ®) dv (two dimensional integral).

Comparing (5.13) (where H (v) is given by (5.6)) with (5.14) and with the
definition of s (2.10), we are now able to calculate the three constants s, ¢(0),

and fo.
(5.15) 268—1+42/M() Géz)()d—%,iflfgz(v)d

or in polar coordinates, with unidimensional integrals

(5.16) 25 = 1+ f M) & é';’('l) 5 bl i
2s (T2 @) Io|ldo].

T 2r 1 — G3(Jv])
This equation, where the sign H will now be omitted, gives the numerical value
of s, from which using (2.24), (5.6) and (5.7) and putting |y| = a gives

+=
(5.17) pla) = = ﬁ Jolar) 120 8( v ds

and

+ o
(5.18) Wa) = 5 f Jo(an) 7 ((;”2)( v .
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3.3. Numerical results. We have

- B 1 [T 2600) - U @)G0) ]
(019) § = [25 -+ 2—‘"_/ 1= Gz( ) dv ’
(5.20) 0) —if“--m o

' VT e 1@
s [T° @G
(5.21) ¥(0) = o ]0 —@? dv,
and, by (5.13),
s [t
(5.22) fo= 5 ﬁ M) Go

5.4. Particular case: K distributions. All the formulas are easy to work out
if the parental distance and the marital distance are “K distributed,” the
Hankel transform for law of parental distance being

(5.23) 6o) = (1 - (1+ 5

For simplicity let us put G*(v) = M(»). (Accounting for nonrandomness of
mating could be done by taking for m(r) a K distribution with a parameter
different from b, but this correction has a small effect on formulas (5.19) and
(5.22)). We then have

(5.24) G = (1—u) (1 + }Pl_j)"’.

The calculation of the integral in (5‘.21) is easy and gives the integrals in
(5.20) and (5.22) (with M (v) = G?(v)). All integrals are convergent if b is sup-
posed >1. Let us write

+ Ggp
(5.25) I, = . 1-G"° dv

) " e (1 + v2/h2)—t» v?
=1 —w '/; 1— (1 — w2+ 02/h2)—bd (§>,

which, putting z = 1 4+ v?/h? is

w f R . S
— P —
(5.26) 1—w 7). T-a=w% 2,
or, again putting

2t =1 4 wetbz>1dz = dw.
(5.27) 2 [+= +1/b

Ip=(1—u)2pi/ (1+w) ’

2b 14+w—(1-— u)2

The two equations (5.20) and (5.22) then give, jointly with the relation
280 = 1+ fo — 2¢(0),
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(5.28) 26 =1+ 2% Ip41 — 2I)

teo —1—-p41/6 _ ~1+1/b
_ ﬁ’f/ (1 +w)~1-2+1 — 2(1 4 w)
1+ u)"zwb . T—d—=w'Fw dw.
The rapid increase of the denominator from the very small initial value
1 — (1 — u)? ~ 2y allows us to replace the integral by the approximation

1 1
-1
(5.29) ﬁ mrat =" ]o log (2u + w) ~ log 2u.

Replacing (1 — u)?? by 1 (since p is not very large) and 4b/h? by M,, we obtain

1.8 - log (1/2u)]“1
(5.30) 286 — 1 -7 log 2u, s [26 + s

which is a particular case of formula (5.19). Then

2 2
(5.31) fo= Zhwr and  o0) = 2 I;

or I, and I, are, by the same reasoning, equivalent to

Rt (1 dw 2 1
We then have
s 1 1\7!

This differs very little from the case of complete random mating.

In the case of a normal law, the result would be the same (and also in the case
of other laws of finite second moment M,). It remains to investigate the case
of migration laws without a second moment.

I am grateful to the Berkeley Symposium and to the Universities of Hawaili,
Stanford, and Michigan State for the help they offered to me by their kind
invitation to discuss this paper in their lectures or seminars.
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