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1. Introduction

This paper is more mathematical than that of Professor Dobzhansky [3].
However, it is similar in raising more questions than answers. It is designed to
present the same set of problems in a way that it is hoped will be somewhat
more precise and "comfortable" to mathematicians, although time and space do
not permit any very detailed presentation except for a few elementary examples.
We shall be concerned mainly with natural selection. There are two main

kinds, intrapopulational and interpopulational. Most attention has gone to
intrapopulational selection, which is highly opportunistic and short sighted.
An individual at a certain stage in the life cycle leaves more offspring that
reach the same stage in the life cycle, and thus its genes are increased in number
in the next generation. If the selective pressures keep changing from generation
to generation, the population keeps trying to be adapted to conditions prevail-
ing in the previous generation. Furthermore, there is no way for a gene or gene
combination that will be good at some future time, say of catastrophe, but
leaving relatively fewer descendants Inow, to become established. If, however,
it can hang on, even at low frequency until the catastrophe, it may become
established.
On the other hand, all populations and species we see now are descendants

of populations that have survived all of geologic time. The populations that
opportunism drove into dead ends are dead, and those that solved short term
problems in a way that happened to be good over the long term survived. This
is the process of long term interpopulation selection. The mathematics of inter-
population selection has been largely ignored. Selection between species was
considered by Voltera, Lotka, and others, and between potentially interbreeding
Mendelian population by Wright [38] to some extent. Levins, [16] to [20], and
Lewontin [22], [24] have considered optimal strategies for populations. Those
populations that hit on good strategies will be preserved, so that existing popu-
lations should mirror, in many ways, the optimal strategies. Even if optimal
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strategies are rarely attained by intrapopulation selection, interpopulation selec-
tion will insure that they are greatly overrepresented in living populations.
We find that many or most Mendelian populations have genetic diversity or

polymorphism, so this must be either a good strategy per se, or be a byproduct
of a good strategy. Professor Dobzhansky has suggested reasons why diversity
may be good in the long run, and Levins has studied mathematical conditions
under which polymorphism is advantageous. In the present paper we consider
mainly the genetic mechanisms that lead to genetic diversity in populations by
intrapopulation selection.

2. Intrapopulation selection and mutation

In the earliest work on intrapopulation selection, Fisher [3], Haldane [4],
and Wright [29], the mathematical treatment was of one locus with alleles
Al, * * *, Ar present with gene frequencies (ql, * * *, qr) = q and considered the
stochastic process followed by the vector q in time, usually for I = 2. This
was extended early in principle to J loci, the jth locus having Ij alleles, and
the population being specified by the random matrix (qji), where qji is the
frequency of the ith allele at the jth locus, and Ei qji = 1, but very few actlual
solutions were obtained. It now turns out that this model has limited appli-
cability and that we must specify gametic frequencies qili2 iJ of gametes
A ijA2i2, *... , Ass, so that the iiumber of q is ]IlI rather than E Ij. This is
because the theoretical relationi of e(1uilibrium in the absence of selection

(2.1) qiii2 .. =I qi2i

iio longer holds if there are specific interactions in selective value between loci,
so that the selective value of genotype A jA lij,, * *- Asi,Aiit, cannot be predicted
from the selective values of A1iiAli,, A2i2.42i'2, and so forth, considered individu-
ally. This more complicated model is onily niow beiiig satisfactorily attacked,
in part by Lewontin, who participated in this Symposium [25]. Finally, there
are cases, largely unexplored, where the population must be specified by the
frequency of diploid genotypes, giviing (1i][j)(1 + H[IIj)/2 parameters q.

All these cases can be attacked on various levels. If the population is con-
sidered infinitely large, with constant selection pressures, the process becomes
deterministic. We can then ask whether there is an equilibrium with not all
of the q equal to 0 or 1, which q reach fixation at 0 and at 1, and what is the
rate of approach to the final state. Even here gaps are bigger than our knowledge.
If the population is finite, all of the q reach fixation with probability unity,
unless there is mutation or migration from an infinite population, when there
is a nondegenerate stable equilibrium. The expected rate of approach to fixation,
in the one case, and the stable distribution in the other, have been found ex-
plicitly for certain special cases, and in symbolic form in more general cases.
(See, for example, Feller [4], Fisher [5], Kimura [12], Moran [30], Wright [33],
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[36], [38], and the papers by Bodmer, Karlin, and McGregor [1], [9] in this
Symposium.)

If the population is considered as infinite, with no mutation or migration,
and selective values are random variables, there is the phenomenon which
Kimura [12] called quasifixation, in which the probability distribution of the
gene frequency q becomes concentrated very close to zero and one. This be-
comes more intuitive if one looks at z = log [q(l - q)]. Then z tends to -X
or +00, as q tends to 0 or 1, and quasifixation is simply escape to infinity. The
stochastic process for z is essentially a random walk in the discrete generation
case, and a Wiener process in the continuous case. On the case of most interest,
where the mean displacement of z is zero, the probability that z will be in any
fixed finite interval tends to zero with time, but, nevertheless, the process does
return to the origin infinitely often with probability one. Thus, quasifixation
differs from true fixation in that it is certain to end ultimately. In both the
case of fixation and quasifixation there may be limiting distributions conditioned
on a < q < b for fixeda > 0 and b < 1.

Mathematically, the problem of genetic diversity within a population is
whether there is a nontrivial stable equilibrium or stable steady state distribu-
tion. In some cases there may be a nontrivial equilibrium to which the popula-
tion usually returns when disturbed, even though it eventually escapes to
fixation or quasifixation. For example, there may be strong selection pressures
of the sort to be discussed below which would lead to equilibrium in an infinite
population. In a finite population with no mutation ultimate fixation is certain,
but selection will usually return q to its equilibrium value after any random
departure. Such quasiequilibria are of mathematical interest, but practically
are true equilibria and become so with more realistic models.
A very low rate of mutation, of such a nature that it is possible to go from

any allele at a locus to any other in a bounded number of steps, is sufficient to
make the process of change of gene frequencies ergodic, and insure a stable
equilibrium or distribution. In nature, mutation rates are usually small, of the
order of 10-5 or 10-6. Thus, in a small population the steady state distribution
may assign very large probabilities to the "trapping states" 0 and 1, and a
population reaching one of these states may stay there a long time before
a chance mutation starts the process of fluctuation in motion again. Further-
more, even in infinite populations, selective forces are usually so much bigger
than mutational forces, that mutation acting against directed selection can
maintain only a very low gene frequency for the allele that is selected against.
In higher organisms there are tens of thousands of loci and a large number of
these produce deleterious alleles by mutation. While each such allele will have
a very low frequency in the population, the sum of all variation so generated
at all loci may be considerable. However, in general, mutation is not an inter-
esting source of polymorphism, even though it is the ultimate source of all
genetic diversity. Accordingly, we shall turn our attention to various kinds of
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selection. Also, because the determiniistic case is much b)ettcr uinderstood thlanl
the stochastic case, we shall confine our attentioni in the se(uel to the deter-
ministic case except when otherwise specified.

3. Simple selection

To fix our ideas, let us consider three simple models of niatural selection that
will recur in our further discussionis. The first is genic selectioni with twvo alleles,
whicih is equivalent to selection in haploids or to selection betweeln two species.
There are two alleles, A1 and A2, at a given locus, each individual carrying olle
of them; the alleles having frequencies q and 1 - q, respectively. If the expected
number of offsprinig of A1 and A2 individuals are W1 and W2, the value of q in
the next generationl is

(3.1) l W1q + JI2(l -q)

Since this is homogenieous of degree zero in W, any numbers proportionial to
Wi and W2 will do, and it is customary to set one of the W equal to 1, say
W1 = W, W2 = 1. These W (or W1 and W2) are called adaptive values or
selective values. It is often more convenienit to let W 1 - s, where s is
called a selective coefficient, or W = ell, where m is called a MIalthusian param-
eter. If selection is weak, W- 1 and s and mn are close to zero, furthermore,
-s = m + m2/2 + *.. - ' m. If q(T) is the value of q after T generations, this
case permits the simple solution

(3.2) q(T)~[ - (0)WI
(3.2) q(7D) = [I -q(0)] + q(0) WT
There is no c(luilibrium except the trivial neutral e(quilibrium q(7') = (j(O)
wheni W= 1.
The seconid model involves a diploid locus with two alleles, one reeessive,

TABLE I

RESULTS OF RANDOM MATING UNDER MODEL 2
(D)iploid locus with two alleles, one recessive and one dominant)

Genotypes aa aA AA Sum

Frequency before selection q2 2q(1 -q) (1 q)2

Adaptive values (I -s) = 11 _

Numbers proportional to fre-
queney after selection (1 -s)q2 2q(l -q) (1 -q)2 IV = 1 - sq2

one dominiant. With random mating we have the results showii in table I. The
gene frequency in the next generation is
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(3.3) q' = [(1 -s)q2 + 2q(l - q)/2](W)1/2 = q(1 - sq)/(l -sq2).
There is no simple formula for q(7') except for the case of a recessive lethal
where W = 0, giving s = 1, and

(3.4) q(T,) - (o)(3. ) 2( ) ~~~~1+ Tq(0)

Again, there is no equilibrium except a neutral one when W = 1.
The third model is the most general one for a single locus with random mating.

There are I alleles, the ith having frequency qi, and genotype A iAj has adaptive
value Wij =I - 8sij. Then, after one generation,

Eqiqj
(3.5) qi W

where

(3.6) W = qiqjWij
is the weighted mean adaptive value. It can be shown that W', the mean adap-
tive value usiIng the q', is greater than W unless the gene frequencies are sta-
tionary, so that equilibrium poinits may be found by maximizing W. For gen-
eral I there can be at most one stable equilibrium point with all qi > 0; its
existence involves certain matrix conditions (see, for example, Levene, Dob-
zhansky, and Pavlovsky [12], and Mandel [24]); there is no simply verifiable
condition on the W. However, for I = 2 there is an equilibrium with

(3.7) q,
(W12 - W22)(3.7) qi = ~~(Wl12 - WV22) +I (Wl12 - W11~)'

which is stable if and only if W12 > Wn and W12 > W22; that is, the heterozygote
is superior to both homozygotes. This is called the condition of overdominance,
or heterosis, or hybrid vigor. For more alleles the W.j must roughly be bigger
than the Wii but in precise terms this is neither necessary nor sufficient.

4. Multiple niches

We nlow consider the behavior of these simple models when there are mul-
tiple ecological niches; that is, a number K of subpopulations each with differ-
ent values of the W. Again there are various models. The present author [13]
first considered the case where the kth niche contributes a constant fraction of
individuals Ck to the imext generationi, where after selection iindividuals from all
niches form one big random matinig population, and where the newly formed
zygotes are assigned to niiches at ranidom regardless of genotype. For genic
selection

K

(4.1) = Ckkf
k=l
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where

(4.2) q Wkq + (1 -q)'
and the adaptive values in the kth niche are Wk and 1. There will be a stable
equilibrium if E, ckWk > 1 and ckl/Wk > 1, or in other words if T > 1 and
Wh < 1, where I is the mean of the Wk weighted by the niche sizes Ck but
not by the q and Wh is the correspondingly weighted harmonic mean of the Wk.
The same result holds for a recessive.

For the diploid case with two alleles and WI, = W, W12 = 1, W22 = V, there
will be a stable equilibrium if Wh < 1 and Vh < 1, a weaker condition than the
one we might expect that T < 1 and V < 1. Furthermore, the condition on
the harmonic means is sufficient but not necessary. No simple conditions are
known for more than two alleles.
Dempster [2] has pointed out that the above results do not hold if the Ck

depend on the value of q. In particular, if the adaptive values Wijk in the kth
niche are considered as absolute expected number of offspring rather than as
relative values, conditions for equilibrium are no weaker than in the one niche
case. In fact this model is equivalent to a single niche model with Wij = S2k Wiik
My model was chosen deliberately to show increased opportunity for equi-

librium even in an unfavorable case. There are two simple ways of making it
more realistic and also increasing the opportunity for equilibrium. One which
seems not to have been treated mathematically is to permit zygotes to select
the niche where they will develop. For example, with the genic selection model
and two alleles, suppose there are two niches, that haploids of type Al have
probability a, of going to niche 1 and 1 - a, of going to niche 2, while A2 have
probability 1 - a2 of going to niche 1 and a2 for niche 2. If ai = a2 = 1/2, we
have the previous model with cl = C2 = 1/2. If a, = a2 = 1, there will be equi-
librium as long as Ai can survive in niche i, i = 1, 2. Suppose that 1 is the
better niche for A, and 2 for A2, and a, and a2 > 1/2, there will be increased
opportunities for equilibrium. This model can be extended to diploids with two
alleles, but we must then decide whether to give heterozygotes their own niche,
or divide them up in some way, and also whether to assume a Levene or
Dempster type model. One can make guesses as to the results, but no algebraic
analysis has yet been done.
Moran [29] considered the case of two populations essentially of equal size

where mating is random within each population, but after reproduction there
is migration so that the next generation in each population consists of a fraction
1 - m from that population and a fraction m from the other. If m = 1/2, this
reduces to Levene's case with Ck = 1/2, while if m = 0, each population goes
its own way. Moran only considered the case where W12 is halfway between
Wn, and W22. This is essentially the same as genic selection. He further special-
ized the model to the symmetric case where Wl/ and W22 are interchanged in
the two populations. Thus, if there is an equilibrium, the average q in the two
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populations is 1/2. Moran finds that there is always a stable equilibrium if
m < 1/2. Letting W1I = 1 -s, W12 = 1, W22 = 1 + s, the equilibrium value
of q will be near 1/2 in each niche if m >> s, while it will be near 0 in one and
1 in the other if m << s. The algebra for this symmetric case is not trivial, and
while Moran says his results can be extended to different strengths of selection
in the two populations as long as selection is in different directions in the two,
and heterozygotes are intermediate; and to unequal migration in the two direc-
tions, he gives no details. Extension to more than two populations introduces
completely new problems as to whether all m should be small but equal, or
migration should be greater from "nearby" populations (suitably defined) or
only from "neighbors" plus perhaps a fraction from the mean of all populations.
Such models have been studied by Wright [37], Mal6cot [27], Pollak [31],
Weiss and Kimura [32], and by Moran in this same paper, but from the sto-
chastic point of view, and, for the most part, with selection absent or identical
in all subpopulations. Here, particularly, there is still much to do.
The case of one population, but W changing from one generation to the

next was considered by Dempster [2] and by Haldane and Jayakar [7]. For
genic selection there is no equilibrium except the neutral one when I Wi = 1.
However, for a recessive there is equilibrium when

T T
(4.3) F, MIT > 1, (II Wt)IIT < 1,
that is, the arithmetic mean of the Wt > 1 and the geometric mean of the
wt< 1.
For the general 2 allele case with W12 = 1 there will be equilibrium if the

geometric means of the W for the homozygotes are both less than 1. Where
the temporal change is due to the Wijt being independent observations on the
same random variables Hij, the effect of the variance of W is to make equilibrium
more difficult to attain than if Wij= E(Hij).
Another case of considerable interest is that in which W for a genotype is a

decreasing function of the frequency of that genotype. This would occur, for
example, in niche selection, considered above, if there were many niches and
rare genotypes sought out the niches in which they were best adapted, while
common genotypes would also perforce have to occupy niches to which they
were less well adapted. Wright and Dobzhansky [39] considered this possibility,
and Wright found q for a simple case. Levene, Dobzhansky and Pavlovsky [15]
and Lewontin [21] observed such cases and discussed its implications, and
Haldane and Jayakar [8] considered it at more length. They showed that for
genic selection, if the fitness of A1 relative to A2 is 1-+(q), there is stable
equilibrium with q = Q if +(Q) = 0 and

(4.4) 0 < +'(Q) <Q(1 - Q)

They point out that a model with overlapping generations gives rather different
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results than the discrete generationi model, since O will then depend on t,he
values of q at various times. This is uilike the cases we have discussed so far,
where overlapping generations, or even a continuous model, makes little differ-
ence to equilibrium. Another new phenomenon here is that if +'(Q) is very
large, populations may overshoot the equilibrium value instead of approachinig
it asymptotically from one, side, aiid may eveii go iiito unidainped oscillations.
Haldane and Jayakar find similar results for a recessive and for general selection
in diploids with two alleles.
No mathematical analysis has been made for Ehrmaii's case of better mating

ability of rarer genotypes, discussed in Dobzhansky's paper [3], but it should
again lead to equilibrium.

5. The case of multiple loci and the optimum model

Recently much work has been done on the case of two or more loci, whieh
may be linked, with recombination fraction r _ 1/2, with r = 1/2 if the loci
are not linked. The interesting, and probably more important, case is where
there are epistatic interactions on fitness; that is the fitness is not an additive
function of the effects of the two loci separately. Here the poorly named phe-
nomenon of "linkage disequilibrium" enters. We must work with the frequenicies
of gametes like A iBj and the frequency of such a gamete is no longer (fre(q A i)
(freq Bj).
Let us conisider two loci A and B, eachl with two alleles, and let the alleles

A1, A2, B1, and B2 have genie frequencies q, 1 - q, p, 1 - p, respectively. Unider
random mating, genotypes A1A1, A1A2, A2A2 will have frequencies q2, 2q(1 -q),
and (1 - q)2 after one generation. However, if the initial gametic frequencies of
A1Bj, A1B2, A2B1, A2B2 are fly, f2, .f2, r'2, with q = fl + f12 and p = fnl + f2l,
the equilibrium frequencies fil = qp, anid so forth, will be approached onily
asymptotically. At equilibrium
(5.1) D = f -lf22-f2f2l = qp(l - q)(I - p) - q(l -p)p( - q) = 0,
so that D is a measure of what is called linkage disequilibrium. If the crossover
frequency r is the total frequency with which a heterozygote (A1B1)/(A2B2)
formed from the two gametes indicated forms the other two kinds of gametes
(AlB2) and (A2BA) taken together, then r = 1/2 if the two loci are oni different
chromosomes and r < 1/2 if they are linked (oni the same chromosome). Then,
under ranidom mating, the value of D in the tth generationi is

(5.2) De = (1 - r)'Do -0 if r > 0.

This formula holds in the absence of selection. With selection, D -O 0, trivially
if either locus reaches fixation, and also if each locus reaches e(quilibrium with
additivity between the loci. If, on the other hand, there are epistatic interactiolis
between the loci and either r is small enough or the interactions are large enough
(even for r = 1/2), D will tend to a limit other than zero, and there is linkage
disequilibrium. (See, for example, Lewontini and Kojima [26].)
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Only the deterministic case has been conisidered in any detail, and except for
particularly simple and symmetric sets of adaptive values, it has been necessary
to resort to computers rather than analytic solutions. It would be easy to intro-
duce a stochastic element by Monte Carlo runs, but the difficulty would be to
do enough to obtain any real insight.
A particularly interesting case is the "optimum model" first formally devel-

oped by Wright [33]. Here, there is an underlying quantitative variable x that
is influenced by several loci, each of which may involve several alleles. There
is an optimum value G and the fitness of a genotype depends on its expected
phenotype x by the relation W = f(x), where f(x) has a maximum fo at G and
decreases monotonically to zero as x goes away from G. For x sufficiently close
to G, such a function can be represented by fo - c(x - G)2, and
W = fo - c(x - G)2 has been called the quadratic deviation optimum model.
This model gives impossible negative W if x is too far from G. This can be
avoided by using Malthusian parameters, and setting m = Fo- C(x - G)2.
Then,

(5.3) W = eFo-C(X_G)2 = foe-C(x

which has the bell shape of a normal curve with its maximum equal to fo when
x = G.

For any form of the optimum model, and for any reasonable model on the
original x scale, there will be strong epistatic interactions. In particular, this
will be so if the genetic effects on the x scale are linear anid additive.
Now for the optimum model let us suppose that the differential effect of the

A locus on the underlying character x is -a, Ha, a for A A1, A1A2, and A2A2,
respectively, and these numerical values are the same for each locus involved.
There is no loss of generality in supposing that H _ 0. If H = 0, the hetero-
zygote is exactly intermediate; if H = 1, there is complete dominance; and if
H > 1, there is overdominaince. It was shown by Wright [34] that there will
be no equilibrium for the special cases H = 0 and H = 1, and hence, one would
suppose, for intermediate values of H, but Kojima [13] showed that equilibrium
is possible for other values of H, and that in the absence of linkage there are
constanits C1 > 0 and C2 < 1 such that there can be stable equilibrium if
(C, < H < C.2 and if the optimum value of x, G lies between limits depending
oi0 H. However, his results were partly incorrect because he assumed linkage
c(luilibrium in his calculations. This has been a frequent stumbling block in
work with more than one locus, since it greatly simplifies the algebra, but it
must be justified in every case or errors result. Jain and Allard [10] allowed
for linkage disequilibrium and found that in the absence of linkage slightly
more stringent requirements were needed, with a smaller maximum value of G
and with C2 also smaller.
NOTE ADDED IN PROOF. Lewontin [40] shows that the reverse is true, and

that allowing for linkage disequilibrium relaxes the requirements for gene
equilibrium.
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Lewontin [23] generalized Kojima's model to the special case of more than
two loci given above. While he also neglected linkage disequilibrium, his con-
clusions are essentially correct. He pointed out that in order to keep L loci
polymorphic, the optimum G has to be close to GI + (2L - 1)a where the value
of x is G, when all the loci are homozygous for the minus allele and G1 + 2La
when they are all homozygous for the plus allele. Since selection keeps x near
the optimum, it will be close to the maximum permitted by the genes present
in the population and there will be little genetic variance in the character x.

In fact, Lewontin showed that the more loci are kept in stable equilibrium
the smaller the total genetic variance will be. Furthermore, all the gene fre-
quencies will be close to fixation of the plus allele if many alleles are being
kept in equilibrium. Thus, there is opportunity for chance fixation at some
loci; when this occurs frequencies of the plus alleles at the remaining loci can
fall, and total variance go up, until ultimately a situation is reached with only
one segregating locus, with both alleles quite common, and simple overdomi-
nance on the fitness scale.

If there is linkage between loci, polymorphism is easier to achieve and there
can be more genetic variance. Polymorphism is also easier if there is over-
dominance on the x scale at some or all of the loci, or if there is a direct selective
advantage to heterozygotes over and beyond that calculated from their x value.
Perhaps the most obvious generalization of the Kojima-Lewontin model would
be to have a constant a at all loci, but H at half and -H at half, so that at
half the loci the plus allele was partially dominant and at half the minus allele
was partially dominant. This would allow an optimum near the midrange of
x values. Even if it should turn out that gene frequencies were still near zero
or one, such a situation would permit the population to respond to fairly large
changes in the optimum value by changes in gene frequencies under natural
selection.

It is probable that the specific mechanisms for maintaining genetic diversity
within a population are inadequate, even if added together, to maintain the
amount of diversity that is usually found in random mating populations. How-
ever, it is clear that the true situation involves all of them acting together, as
well as others still unsuspected, and that their joint effects will probably be
much greater than their simple sum. In particular the combination of numerous
loci, interacting under the optimum model or by other mechanisms, with an
environment varying both temporally and spatially in complex fashion, and
with selective forces dependent on genotype frequencies, allows tremendous
scope, both for genetic variation and for mathematical sophistication, even in
the deterministic case.
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