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1. Introduction

The purpose of this paper is to survey some recent results obtained in the
solution of the model for the general stochastic epidemic, which was originally
proposed by Bartlett [3]. Various aspects of the general epidemic, particularly
in the stationary state, have previously been considered in detail by Bailey
[1], [2], Whittle [9], Foster [4], and Kendall [7], among others. Around October
1964, Siskind at University College, London, and I at Michigan State Univer-
sity, Lansing, independently arrived at explicit time dependent solutions for
this model; our complementary results, which differ in various details, have
appeared in Biometrika (1965; Vol. 52, Parts 3 and 4). What I shall attempt to
outline here is an improved method of solution for the general stochastic epi-
demic; this is, I believe, simpler than any so far proposed, and provides greater
insight into the structure of the model. The same approach can also be used to
attack recurrent epidemic processes for which a solution has been sketched
(cf. Gani, [6]).
The stochastic epidemic model considered is that for which at time t> 0,

there are in circulation in a closed population of size n + a with n, a >_ 1,
(i) 0 _ r S n uninfected susceptibles,
(ii) 0 . s _ n + a - r infectives,

the remaining n + a - r - _. 0 individuals having been removed through
immunity or death. At time t = 0, the population is known to consist of n sus-
ceptibles and a infectives.

Let the probabilities of possible transitions in the interval (t, t + At) be

(1.1) Pr{r, s r-1, s+ 1} = rsat+ o(.t),
Pr{r, s- r, s- 1} = ps8t + o(5t),

where for convenience the usual infection parameter j3 is set equal to 1 and
p denotes the (relative) removal parameter. The process {r, s} is Markovian,
and the transition probabilities of r susceptibles and s infectives at time t > 0,
(1.2) p78(t) = Pr{r, s at time tin, a at time 0}
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satisfy the equations

(1.3) dp.rs = (r + 1)(s - 1)Pr+l,s-l- s(r + p)prs + p(s + l)P1,s±+b
0 _ s _ n + a - r;O r < n,

where the pij = 0 if i or j are outside their appropriate ranges. The initial con-
dition is pna(O) = 1.

It is well known that the associated probability generating function (p.g.f.)

(1.4) ll(z, w, t) = E3 pI.(Oz'?V, lzl, |w| < 1
r,s

satisfies the partial differential equation

all t321 anl(1.5) I = w(w - z) aa + p(l - w)

with the initial condition ll(z, w, 0) = ZnWa.
The essence of both Siskind's and my own methods of solution consists of

noting that if we write
n

(1.6) II(z, W, t) = E Zrfr(w, t)
r=O

where.fr(W, t) = -TW_pS(t), then the order of the partial differential equa-
tion (1.5) may be reduced to the first. Substituting (1.6) in (1.5) and equating
coefficients of zr on right and lefthand sides, we obtain

(1.7) afn af-((n+ p)w ap)arfn
afr W2 + 1) afr+1 ((r + p)w -p) aw (r= , 1,* n - 1).

At this stage Siskind proceeds by direct recursive integration of the fr(Wv, t).
My own approach makes use of Laplace transforms

(1.8) Fr(w, s) = fo e-18fr(w, t) dt, Re(s) > 0

to reduce the equations (1.7) to

(1.9) sFW,(w, s) - Wa= -((n + p)w p) aFn
a)w

sFr(W, s) =w2(r + 1) aFr+1 ((r + p)w p) aFr r =O,** *, n-1,

for which recursive solutions are also found. I think it could be fairly said of
both methods that they involve a good deal of untidy algebra; the following
approach may simplify the solution while at the same time clarifying the struc-
ture of the process.
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2. The solution in matrix form

Let us write (1.9) in the matrix form

(2.1) A(w) aF + sF = waE

where F(w, s) and E are column vectors whose transposes are F'(w, s) =
{Fn(w, s), * * X Fo(w, s)} E' = {1, 0, , 0}, and

(2.2) A (w)
(n+p)w - p

-nw2 (n-1 + p)w-p 1
= -(n-1)w2 (n-2 + p)w-p

-2w2 (1 + p)w- p
L -~~~~~~~~W2pw-p

Now we may write Taylor's theorem for F(w, s) in the form

(2.3)

F(w, s) = F(O, s) + wF(')(O, s) + 2w, F(2)(0, s) + * + w+a F(n+a)( s),(n + a)!
where, since the highest degree (of the polynomial Fo(w, s)) in w is n + a, the
series must terminate with the term involving the (n + a)th derivative of
F(w, s) at w = 0, namely F(n+a)(0, s).
From (2.1) it is possible to express all higher derivatives in terms of F(O, s).

For, it is seen directly that A(0)F(O)(O, s) = -sF(O, s), or from (2.2), since
A(0) = -pl,

(2.4) F(1)(O, s) = - F(O, s).
p

Differentiating (2.1) with respect to w, we obtain

(2.5) {A(1)(w) + sI}F(M(w, s) + A (w)F(2)(w, s) = aw-lE, a _ 1

whence setting w = 0,

(2.6) F(2 (A, s) = - [{A(l)(O) + sI}F(1)(0, s) -a!aE]

with bij as the Kronecker delta, and A() (0) the diagonal matrix

(2.7) A (')(O) = [- .. 1
2p

The next derivative can be found from (2.5) as
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(2.8)
A(2)(w)F(1)(w, s) + {2A(')(w) + sI}F(2)(w, s) + A(w)F(8)(w, s) = a(a -)Wa-'E,
or setting w = 0,

(2.9) F(8)(0, s) = - [{2A(1)(0) + sI}F2) (0, s) + A(2)(0)F(1)(0, s) -a%aE]
p

where

(2.10) A(2)(0) =-2 [n 0 10

1 0
We may show in general that the following (2n + 2)-rowed vectors satisfy the
equations

(2.11)

[F"$+1)(0,a)] 1I {iA(1)(0) + sI} i A1 A(2)(0) [ Si.

F(i)(0, s) I 0 H
(i = O, 1, * )

where F(-1) 0, FM0) = F(0, s). This may be simplified by rewriting the vectors
in the form

(2.12) 0(i+1)(O, s) = Bi -i)- aiaE, i = 0, 1, *p

where E is now a (2n + 2) X 1 column vector.
It follows that for a > 1, we can write

(2.13) 0(i) = B ), =1 a,

Bo}4 pO){a! +Bj}E, i = a + 1,... n + a +1
where IIa-a+l B, is defined as 1, and the products 1I[f B, = Bi-, ... Bo, and
11--al+l Bi = Bi-, ... Ba+, must be carried out in the particular order indi-
cated.

Thus, since

(2.14) n+a+l Wi n+a+1 Wi F(i)1 F(w, s)1
(i= i=- i [Lw F(v, s) dv]

we obtain that

r F(w, s) 1 n+a+l ri-i BI
(2.15) F(v, s) IIO B3 L ( i aI+a+lwIB̂p} E,

[Lw F(v, a) dvj i! ..=O i..Ji Pt-+l
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where, as above, H=-kl Bj is defined as I. The unknowin o) = [F(OX s)] may
be found by equating the first n + 1 rows of (2.15) to zero, since these are
coefficients of Wwn+a+l, which is a degree higher than that of any of the poly-
nomials in F(w, s).
We see that this gives

(2.16) {.IIBn } [F(O, s)]- aI LaF(n+a (0,

so that

(2.17) F(O, s) = n-I-a ;-' [aI{n }B ],
j=O n+1 P j=a+l n+1

where {.}n+, indicates the truncated (n + 1) X (n + 1) matrix of the first
n + 1 rows and columns. It is clear that

rn+a
(2.18) ][IB

j =O jn+1

is nonsingular, since from the structure of A(l)(0), A(2)(0) this product is seen
to be a triangular matrix with nonzero eigenvalues for Re(s) > 0.

3. An illustration of the method: the 2-person family

Let a = 1, n = 1; then

(3.1) A(')(0) = [1 0+ p °] A(2)(0) = [_° O

The matrices Bi are readily seen to be

1 0 0 0 10 0 0(3.2) B1[ 0 0_ B [_+ + 0 0_

B2= ° 2p+s -2 0,

i p B0 a 1 0 0 0

_ 0 0 0_

and the required products B,Bo and B2B,Bo are therefore
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(3.3) s(l+ p+8) 0 0 0

p2

B1B0= 0 ~s(p +s) 0 0
p2B,Bo =

s 0 0 0p
0 - 0 0p

s(l + p + s)(2 + 2p + s) 0 0 0
p.
_2s s(p + s)(2p + s) 0 0

B2B1B0= p2 p3
s(l +p+S) 0 0 0

p2
0 s(p S) 0 0

Following the theory outlined in the previous section exactly, we find that

(3.4) F(O, s) = [B2BBo]2-1 [1 B2 E

pf6
s2(1 + p + s)(2 + 2p + s)(p + s)(2p + s)
[s(p + s)(2p + s) 0 21 p ]_

2s s(l+p+s)(2+2p+s) o
L + )(1p2P+3+

s(l + p + s)
2p2

s(P+s)(2p+s)(I +p+s)
The full solution to the 2-person epidemic may then be obtained by

taking only the appropriate parts of the upper left (2 X 2) matrix in
{I + wBo + (w2/2!)B1Bo}j(0), and for simplicity (instead of carrying out in
detail the algebra involved in the right-hand part of equation (2.15)) deleting
any terms in powers of w which are known not to appear in any Fr(w, s). Hence
we find that

(3.5)
[i+ Ws 0 (+p+s

F(w, s)-=
0i (%D S) =WS +2S(p + s) 2p2

p 2! p2 S(p + s)(2p + s)(I + p + s)_
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This method has been successfully applied to higher values of n and a by
J. Moreno of Michigan State University.

4. Total size of the epidemic

One of the advantages of the previous analysis of the epidemic process is
the simplicity of the resulting formulae for the distribution of the total size
of the epidemic. These have already been discussed in several different (alge-
braically complex) ways by Bailey [1], Whittle [9], Foster [4], and Siskind [8].

Consider the probabilities {Pn_r} of an epidemic of total size n - r, not
counting the initial cases; then 0 < r _ n will be the number of susceptibles
remaining after the epidemic is over. It is not clear that

(4.1) Pn-r = lim pro(t)
to:

= lim sF,(O, s).

In matrix terms,

(4.2) [Po [Fn(O, s)1
p = .1= lim s . = lim sF(O, s).

1. 80 . 8 0

LPJ LFO(0( s)J
We have seen in (2.17) that

(4.3) {H Bj F(0, s) = af II Bj} E
j=O0 1n+l P j=a+l n+1

and since

-I O
(4.4) Bo= p ]

_I 0_
we may write (4.3) asrn+a A jna A
(4.5) rI Bj} sF(O, = a!{ II Bj}E-.tje1 un+1 j=a+1 n+1

It is readily found by taking limits as s 0 that this leads to

Fn+a A(l)(0) A(1A(2)(0)
(4.6) F 2p lim sF(O, s)

a!
n+a F A(')(0) 2p2 A2)01 EI='LI L I
j=a+l~~~~
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from which the vector P of probabilities of total epidemic size can be expressed as

{fl+GLA1~Xi -1) A(2)(O)(4.7) P = a! II p 2p E.

0 nJ1X{n+a XiA()° 2p) A(2)(0)}E

This result involves only a set of direct matrix operations. It is clear, as it was
earlier at the end of section 2, that

rrj j(j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i-1)A(2))
(4.8) J; Ap2( ())]}

is nonsingular, since this product results in a triangular matrix with nonzero
eigenvalues.

In the case of the 2-person epidemic, for example, we readily obtain from
(4.7) the known result (cf. Bailey, [2])

. {(+P) 0 0l (I+P) 0: :

5_2p207°_______ Z2

p~~~~~~~~~~~ (lp

K1~ 1K] 2(1+p)2+ p

E 1 1 .

1 +p_
The simplicity of the equation (4.7) for P, provides a straightforward method
for the numerical evaluation of probabilities of total epidemic size for large n
and a, given any suitable numerical values of p.
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