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1. Introduction and summary

This paper is concerned with two related computational problems: the precise
calculation of central moments of the chi random variable of v degrees of freedom,
and the use of these moments in computing the power curve of the t-test.
Whereas the methods are standard and available in various textbooks, the results
have at several points been pushed farther than we have seen them elsewhere.
We try to provide the formulas and coefficient tables that would be needed by
the computer, but make no attempt to review the extensive literature on chi
moments and t power.

Table A gives the coefficients required for obtaining the first twelve moments
in terms of the expectation e. In section 3 the general term of an asymptotic
series for log e, is derived, which provides in table C the early coefficients of the
series for e, itself. Section 5 presents a formula for the first three terms in the
series for moments of arbitrary order, supplemented in table E by additional
terms for the first twelve moments. With these coefficients it is relatively easy
to obtain precise values of the low moments for large v.

Section 6 presents a series for the power of the t test in terms of chi moments.
In favorable cases this method permits the precise computation of an entire
power curve. It also leads to a relatively simple normal approximation for t
power, accurate when v is not too small and the significance level is moderate,
and suggests an effective method of interpolation in the noncentral t tables.

2. The moments of chi in terms of its expectation
Let x denote the chi random variable with v degrees of freedom, and consider

its standardized form S = x/A/v. It is well known that

(2.1) ESP r( /2 r(v), p = 1,2, *-

and that both the original and central moments of S can be expressed in terms
of its expectation,
(2.2) ES= r + r
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The expressions for the moments can be written compactly in terms of the prod-
ucts of successive even or odd integers 7r = (v + q - 2) (v + q - 4) (v + q - 6)
... , q = 2, 3, 4, . .. , where the last factor is the smallest integer not smaller
than v. That is, 7r2 = v, 1r3 = V + 1, 14 = v(V + 2), 7r5 = (v + 1) (v + 3), and so
on, and for convenience we define rO= 7rW= 1. Application of the gamma
recursion formula to (2.1) gives, for a = 0, 1, 2, . . .*

(2.3) vaES2a = #2a, vaES2a+l = E17r2a+l.

These formulas give the even moments exactly. For the odd moments, one may
use the six decimal table 35 of e-, in Pearson and Hartley [7] to obtain six-figure
values. Greater precision is available by the methods developed in the next two
sections.

Consider now the central moments of S, say Mp = E(S -e )P. By expanding
the binomial and substituting (2.3), it can be seen that, for a = 1, 2, 3, **,

a /i2a2
(2.4)

i=O Ia(2.4) v'-2M2a = 1) a + i
aM2a+/4 = e [(2i ) 2a-2i+l (2 + 1) 2a]2iv

where conventionally we put (2a) = 0. The right sides of (2.4) are poly-
nomials in e2,, whose coefficients are themselves polynomials in P. The coefficients
of these latter polynomials are shown in table A for the first twelve central
moments. For example, M2 = 1 - E2 and vM3/e, = (1 - 2v) + 2ve2,.

Although table A makes it possible to compute Mp, for 2 < p < 12, once f, is
known, it should be noted that there is a loss of significant figures as p and v
increase. Since the coefficients increase with p, the number of correct decimals in
M, decreases. Further, since Mp tends to 0 as v increases (see section 5), the
number of significant figures may fall off rapidly. For example, M8 at v = 10
is not even reliable to one figure if one starts with a six-decimal value of elo.
Thus it may be necessary when using (2.4) to have c correct to many decimal

places. In the two following sections we give expansions that provide precise
values of e, for large v. For small v, one may use the following forms of (2.2)
which are convenient for use with a table of log factorials:

v/-7ra(2a) ! 22a+1/2(a!)2
(2.5) E12a a2a )2 ___a___(2.5) e2a=(a VE2 X+ (2a + 1)(2a)!

3. An asymptotic series for log E,

An asymptotic series of the form

(3.1) log fE =Li + L2 + L3 +
can be developed from the series for log r(p) in terms of the Bernioulli ilumbers
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(see Cram6r [1], p. 129). Substitution of the latter series into (2.2), with p re-
placed successively by v/2 and (v + 1)/2, gives

(3.2) log E = - 2 + V log (1 +)
X 22J-1B2 2[( l +1

On expanding the logarithm, it is seen that the first two terms on the right side
of (3.2) contribute to Lk the amount

(3.3)(_1)" (_ J)k+l F(k + 1)
Bo

(k + 1) 2B]
2(k +1) 2k(k+ 1

where we have used Bo = 1, B2 = -. On expanding the binomials, one sees
that the third term contributes to Lk the amount

(3.4) (_ 1)_ 22i-B2j (21+ m-
2j+m-1= k 2j(2j - 1) m

In this sum, m runs over the limits 1 < m < k - 1, with m + k + 1 even. Thus
(-1)m = (-l)k+l. Since B3 = B5 = ... = 0, we may allow m to run over all
integers from 1 to k - 1. Rearranging the coefficients, and changing variable to
k - m + 1 = q, (3.4) may be combined with (3.3) to give

(3.5) Lk = 2((ki)
k ql (k + 1) 2QB,.

This formula may be simplified with the aid of the identities (see Miller [4],
p. 90; Norlund [6], p. 22)

(3.6) k( ) 2,B, = 2k+lBk+l (2) = -2(2k - 1)Bk+1,

to yield Lk = (-1)k(2k+1 -)Bk+l/k(k + 1). That is, L2 = L4= * = 0,
whereas for b =1, 2, 3, ** *,

(3.7) L2b1= (4b - 1)B2b/(2b - 1)(2b).

The Bernoulli numbers have been extensively tabulated (see Peters [8], table 8),
making it possible to give explicitly as many terms of (3.1) as could be needed.
Table B shows the first twelve noinzero coefficients as fractions in lowest terms.
For higher coefficients there is an effective approximate formula. From the

bound on B2b (see [4], p. 101) it is seen that

(3.8) L2b-1 - (-1)b+l2(2b - 2)!/72b
with a relative error not greater than 2-2b+1. At L23 this approximation is already
correct to 11 figures. Thus, to the terms provided by table B one may add
additional terms computed recursively by

92b+l - -2b(2b 1) (L2b-1( 1(3.9) '\.~~~~~~~~~)( r
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TABLE B

COEFFICIENTS L2b-1 OF TiE SERIES FOlt log e-

b Numerator 1)enominiator

1 -1 4
2 1 24
3 -1 20
4 17 112
5 -31 36
6 691 88
7 -5 461 52
8 929 569 480
9 -3 202 291 68

10 221 930 581 152
11 -4 722 116 521 84
12 968 383 680 827 368

The series (3.1) is asymptotic, not convergent, and terms should not be added
beyond the point where they begin to increase. However, it is very effective when
v is not too small. As an illustration, table I shows the computation of log E40 to

TABLE I

CALCULATION OF log f

k- Lk/(4()k

1 -.006 250
3 651 041 666 6667
5 - 488 281 2500
7 926 4265
9 -3 2849

11 187
13 -2

log E40 = -. 006 249 349 445 691 4232
e40 = . 993 770 137 124 628 880

18 decimal places. The conversion from log e40 to E40 is immediate with the aid of
the 18-decimal table of e-I in National Bureau of Standards [5]. The value of
E40 may be substituted inito (2.4) to find central moments of S. For example,
3118 at v = 40 is

(3.10) (85008 + 1435080E4o + 75488Oe44 - 1881600E42o- 448000ec48)/64000
= .05 258 683 675 02.

If all the terms in table B are used together with (3.9), log E40 may be obtainied
to about 40 decimals. For conversion of log e1. to E, if more than 18 decimals are
wanted, the following method may be used. First find a 10-place value of IE from
the exponential table, and use the method of continued fractions to get a close
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rational approximation m/n to E,, where m and n are four-digit integers. Using
table 13 of Peters [8], one can find I = log v- log m + log n, to 48 decimals
if desired. Since q is small, only a few terms of E, = m(l + X + 2'X7 + .)/n
will be needed. The same technique gives e from 2i log e, for use in (2.4).

4. An asymptotic series for f,

The series (3.1) for log e-, can be converted into a series

(4.1) E= 1+El+E +
v v2

by formally expanding exp (log e,). The coefficients are

(4.2) Ek = Lk + 2!2 Lj1Lj, + 1 F,3 LjLjLj +**,

where Er is taken over all i1, i2, ir > 1 having il + i2 + + ir = k. We
have computed the first twelve coefficients. In order to simplify the denomi-
nators, table C gives 4kEk as a fraction in lowest terms, rather than Ek itself.
That is, these are the coefficients for the series in (4v)-k:

TABLE C

COEFFICIENTS OF THE SERIES FOR E,

4kEk
k k Ek

Numerator Denominator

1 -1 1 13 -104.762 957 37
2 1 2 14 26.614 715 5
3 5 2 15 1 933. 225 106
4 -21 8 16 -488.764 02
5 -399 8 17 -47 030. 779 9
6 869 16 18 11 855. 436
7 39 325 16 19 1 458 576.31
8 -334 477 128 20 -336 973. 7
9 -28 717 403 128 21 -56 169 531
10 59 697 183 256
11 8 400 372 435 256
12 -34 429 291905 1024

- 1 ~1 5 21
(4.3) fv = 1 (4p) + 2(4v)2 + 2(4v)3 8(4v)4

The exact coefficients rapidly become cumbersome, and table C gives the coef-
ficients from E13 to E21 in decimal form.
We do not know a simple closed form for Ek, but can give a fairly simple

expression for an approximation for large k. Because of the rapid increase of
IL2b-l1 (see (3.8)), the sum E, of (4.2) will be dominated by those terms
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Li,Li, - * * Li, where one ij is a large odd integer. Fix an odd n, k > n > 2k, and
collect the terms of (4.2) containing the factor Ln. They are

(4.4) Ln 2Lkn + 3 2 LiLi, + -} = E n3- ii+i2=k-n

The form of the next most important terms, whose factor Ln with largest sub-
script has n < 1k, depends on k mod 4. The resulting approximations

Eu = ElL4,1 + E3L4,-3 + -.. + E2_,L2c+l + -L22c_l

(4.5) E4,+1 = L4,+, + E2L4,1 + *-- + E2cL2±+l + -y-L2c-
E4C+2 = EjL4c+1 + E3L4c-1 + * + E2c-lL2c+3 + 1L2+1 + 5L2c_jL2c+1,
E4c+3 = L4c+3 + E2L4c+l + *-- + E2cL2c+3 - &L2c+ly

are good to about 8 figures at the limit of table C. Substitution of (3.8) into (4.5)
gives the relations

(4.6) E2b . - 4 L2_1 {1 - 32(2b - 3)(2b - 2) +

E2bl - L2*l{1 - 32(2b 1)(2b) + 0(b-4)}

When computing a precise value of e, for large v by series, one has a choice of
(3.1) or (4.1). The latter has the advantage of giving E directly, but the former
requires only half as many terms, and with the coefficients here provided is able
to give greater precision. For example, (4.1) and table C provides at most 27
decimals in E40, compared with 40 decimals available for log EQ. As shown in
table II, the direct series requires 14 terms to produce the 18-decimal value of

TABLE II

CALCULATION OF E40

k Ek/(40)k

0 1.
1 -.006 250
2 19 531250
3 610 351 562 5000
4 -4 005 432 1289
5 -475 645 0653
6 3 237 2773
7 915 6065
8 -6 0841
9 -3 2648
10 212
11 187
12 -1
13 -2

E40 = .993 770 137 124 628 880
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E40 that table I gives with 7 terms. While the L-series is computationally prefer-
able, we shall need the E-series for the development of the following sections.

5. Asymptotic series for Mp
As remarked in section 2, the computation of the central moments Mp by the

method of that section becomes awkward when v and p are large, and we now
develop asymptotic series for M,. Two approaches are used. One may substitute
the expansion (4.1) into (2.4), and this method was used to compute the supple-

TABLE D

THREE COEFFICIENTS OF SERIES FOR Mp

Even moments Odd moments
a

P2a 6CO2 540C2a) P2a+i 90C,+ 7560C2a+1

1 1 -3 -270 1 45 -12 285
2 3 -6 135 10 -27 -21357
3 15 -5 1 575 105 -99 -15471
4 105 4 2 826 1 260 -151 7 893
5 945 25 1 080 17 325 -163 41 847
6 10 395 62 -7 255 270 270 -115 70 095
7 135 135 119 -24 955 4 729 725 13 69 173
8 2 027 025 200 -51 580 91 891 800 241 12 929
9 34 459 425 309 -80 274 1 964 187 225 589 -120 757
10 654 729 075 450 -93 765 45 831 035 250 1 077 -341 013

TABLE E

SUPPLEMENTARY COEFFICIENTS FOR LOW-ORDER MOMENTS

Even moments
a

7560C2a 1680C2a 480C25) 64C2a 128C2n 128C8)

1 4 725 4 830 -1 590 -2 372 5 165 110 123
2 28 350 -3 570 -23 100 1 809 144 646
3 13 230 -65 870 -11 005 58 669
4 -142 632 -113 043 224 852
5 -440 073 130 643
6 -610 858

Odd moments

1008C2a+ 1 5760C2a 1280C2a 1024C2+1 2048C2a+1

1 -4 725 54 675 87 015 -122 101 -3 371 095
2 819 185 715 -7 921 -737 925
3 11 349 123 687 -329 165
4 17 229 -329 729
5 5 687
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mentary coefficients shown in table E. It is, however, applicable only for small p,
and another approach is used to find expressions valid for any p, leading to the
coefficients shown in table D. In what follows, we retain only enough terms to
make the method clear, although more terms were carried in deriving the values
shown in table D.
The chi density f,(x) xV-le -(l/2)z' may be expanded about vv-f1by making

the substitution x = VV- 1 + (Y/vi). To simplify the notation we write
/(__v- 1) = u, and find

(5.1) logfy(y) = const. - 2 + 2-3u 2 4u2 + 2-5u3
The expansion is, of course, not valid over the entire range -u < y < 0o. How-
ever, over the interval IYI < log v the remainder after the term in u-i is of
smaller order than u-i uniformly in y. Furthermore, the contribution to any
moment of Y outside this interval is negligible. This may be seen by comparing
the distribution of Y with that of a normal random variable D having ED = 0
and var D = 2. It is easy to check that the contribution of Idj > log v to any
moment of D is of smaller order than any inverse power of v. From the fact that

(5.2) dy fD(y) 2 {( u) }

decreases monotonely in y, it can be seen that the tails of Y are even less im-
portant than those of D. Accordingly, if in our expansions we retain all terms of
a given order in v, the resulting moment series will be valid to that order.

It is notationally convenient to express the series in terms of ju = 2v, and we
write V4 = v, noting that

(5.3) = v- -

Substitution of this expression in (5.1) gives

(5.4) log fy(y) = const.-_Y2 + 6!v--y -+ Y +v3Y +2 6v 8v 30v3

where in general the coefficient of v-i is a polynomial in y of degree j + 2 with
alternate terms vanishing.

Since we are interested in the central moments of S, we shift the origin by
Z = Y-EY = Y-veL + u = Y-(1/2v) + (5/8v3) + * ,finding

(5.5) logfz(z) = const. 2 3z + z + 2z2 z + *

where the coefficient of v-i is a polynomial in z of degree j + 2 with alternate
terms vanishing. Application of the exponential transformation gives

{fz= -3z + z3 -9 + 27z2 - 15z4 + z6 +(5.6)fzz) = CP(Z){ + 6v +72V2±..-
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where the coefficient of v-i is a polynomial in z of degree 3j with alternate terms
vanishing. Finally, C may be determined to make the probability equal 1, givinlg
(7)~ ~ -az-i+ z3 3+27z215z4+z6 +
57) fz(z) = ~o(z) + 3z z

+ 3+ 27Z2 -1v2 +Z

where the coefficient of v-i has the same structure as before.
From (5.7) it is now easy to express the moments of Z in terms of the even

moments of the standard normal distribution, say

(5.8) N2a = f Z2a O(z) dz = 1 3 5 - -.(2a - 1).

In the even case,

(5.9) EZ2a = N2a + 1 (3N2a + 27N2a+2 - 15N2a+4 + N2a+6) +

where in general the coefficient of /.-k is a linear combination of N2a, N2a+2, .**
N2a+6k. If we factor out N2a and note that M2a = EZ2a/Aa, it appears that

(5.10) M2_ P2a 1 +C C2 +

where P2a = N2a and where C2'a) is a polynomial in a of degree 3k. The first two
of these polynomials are

(5.11) 180'a) = 2a3- 6a2 - 5a,
9720C2a = 20a6 -300a6 + 512a4 + 3708a3- 4753a2 - 4047a.

The odd case may be handled similarly, giving

(5.12) M2a+i = .Ia+1 + + C2+l +
A .}2

where P2a+l = aN2a+2/3 and where C2"a+1 is again a polynomial in a of degree 3k.
We find

(5.13) 270C2a)+ = 10a3- 60a2 - 106a + 291,

68040C22a+1 = 28a6- 588a5 + 1372a4 + 18480a3
- 33377a2- 114993a + 18513.

Table D gives the values of these coefficients for the moments up to order 21,
while as mentioned earlier table E provides certain additional coefficients for
moments up to order 12. The use of these coefficients is illustrated in table III
for M8 at v = 40. As always, when using asymptotic series, one must be guided
by the rate of decrease of the successive terms in judging the resulting accuracy.
The numbers in table III suggest that the value of M8 should be good to about
eight figures. Comparison with the direct calculation (3.10) shows an error of 2
in the ninth figure. In this case, the series computation is much easier than the
direct calculation, which requires one to carry about 17 decimals in e404,0
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TABLE III

CALCULATION OF M8 AT v = 40 BY SERIES

k C8k)/(80)k
0 1.000 000 00
1 8 333 33
2 817 71
3 -36 85
4 -164
5 14

1.009 112 69

105
X -80)= *0° 258 683 673 = M8

6. Power of the t-test in terms of chi moments

The power of the t-test with v degrees of freedom can be expressed as an
asymptotic series involving the moments Mp of x/Av'J. In some cases, this series
is an effective way of computing precise values of t power. It also throws some
light on approximations and on the problem of interpolation in the noncentral
t tables.
Let X have the standard normal distribution, so that (X + 6)/S has the non-

central t distribution with v' degrees of freedom and noncentrality parameter 5.
For both one- and two-sided t-tests, the power can be expressed in terms of the
quantity ,B = P((X + 5/S) < t) = ED(tS - 5) where I' is the standard normal
cumulative. If we write w = te- 5 and expand 4(tS - 6) = 4(w + t(S -
about w, we have the asymptotic series

tP(6.1) 4)q(W) + T2 + T3 + * , Tp p-! Mp'P(P-1)(w).

The term Tp is a product of three factors, each depending on only one of the
variables t, v, w on which f3 depends. We have just seen how Mp can be computed
with considerable precision for low values of p. The factor tP/p! offers no prob-
lems. The normal derivatives are extensively tabled in Harvard Computation
Laboratory [2], and this table can, if necessary, be supplemented by the ex-
pressions
(6.2) po'(w) = -wm(w), p"(w) = (W2 -1)(W),

"'(w) = -(w3 - 3w),p(w),
of normal derivatives in terms of Hermite polynomials. Thus, it is feasible to
compute a number of terms of (6.1).
To gain an appreciation of the circumstances in which such a computation

will be effective, note that Ipo(-1)(w)J, and hence Tpl, is bounded in w for any
given p, v, and t. Therefore, for those values of v and t for which (6.1) works, it
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should do so for all w and hence for all &. If v is not too small, the order of magni-
tude of Mp will be given by the first term of the series (5.10) or (5.12). With this
approximation,

It2a
max IT2aI I(-) R2a, R2a = max I,,(2a-1)(W)I/a!2a,

(6.3) w \11 w

max T2a+1I (t2)a R2l R2a+1 = max Ijp(2a)(w)1/3(a - 1) !2a.

Some values of Rp are shown in table F. For both the even and odd cases, these
values change slowly enough so that, roughly speaking, the series of maxima of
the terms in (6.1) are like geometric series with ratio t2//,. This indicates that
(6.1) will work to the extent that t2/,g is less than one. Furthermore, the entries
in table F serve to indicate about how many terms of (6.1) will be required in
any given case.

TABLE F

FACTORS FOR MAXIMA OF JTPI

a R2a R2a+1

1 .1210 .0665
2 .0688 .0997
3 .0481 .1247
4 .0369 .1454
5 .0300 .1636
6 .0252 .1800
7 .0218 .1950
8 .0192 .2089
9 .0171 .2220

10 .0154 .2343

As an illustration, consider the case v = 40 and t = 2. Here t2/,u = , so the
terms of (6.1) will decrease rapidly. In order to find ,3 as a function of w, we shall
compute d for a few equally spaced values of w as a basis for interpolation. The
value w = 0 is attractive, since here the terms T2a vanish. Since T2a has the
same value at w and -w, and since T2a+i merely changes sign, it is convenient
to use values such as w = 0, w = ±i1, w = 4-2. If we carry 12 decimals in the
work, terms beyond T16 will not be needed. The computations are exhibited in
table IV, the necessary values of Mp having been found as indicated in table III.
The five values of ,B are recorded in table V, where the final figure is subject to
rounding error.
As a by-product of the series (6.1) and the menent series developed in section

5, one can obtain the Cornish-Fisher development for ,B. Substitution of (6.2),
(5.10) and (5.12) into (6.1) gives

(6.4) P2(w) + so(W) pi + P2 +
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TABLE IV

ILLUSTRATION OF (5.1) AT = 40, t = 2, w = 0, 1, 2

k tkMk/k! w = O w = w = 2

$(w) .500 000 000 000 .841 344 746 069 .977 249 868 052
2 .024 841 829 119 -6 010 995 390 -2 682 468 728
3 .03 209 580 665 -83 610 588 33 946 388
4 .03 308 608 225 149 348 312 -33 324 113
5 .06 518 651 54 6 207 361 -2 509 970 -1 400 125
6 .05 257 823 31 -3 743 142 2 505 623
7 .0' 641 896 -384 119 248 512 -38 122
8 .07 164 243 6 79 484 -76 262
9 .09 531 26 22 254 -16 969 7 142
10 .010 856 35 -580 878
11 .0" 331 7 -1 251 976 -469
12 .012 382 1 -87 69
13 .01" 167 69 -50 20
14 .014 150 9 -7
15 .016 7 -4 2
16 .017 5 -1

where Pk is a polynomial in t and w, of degree 2k - 1 in w. This, in turn, can be
written in the form

(6.5) W + Ql + !2 +

where Qk = qkO + qklw + * + qk,2k_lW21-w and the qkj are polynomials in t. In
this development, some of the higher terms in t have coefficient 0, and some of the
qkj vanish. After some straightforward algebra one finds for the first five Qk the
expressions

2qu, = -t2;
6q20 = -t3, 8q21 = t2(3t2 + 2), 6q22 = t3;

12q,o = t3(3t2- 1), 16q31 = -t2(5t4 + 6t2 - 4),
12q32= -t'(5t2- 1);

240q40 = -t3(75t4 + 18t2- 65), 1152q4l
= t2(315t' + 316t4 + 108t2 -360);

(6.6) 240q42 = t3(175t4 + 36t2- 65), 72q43 = t4(8t2- 9),
40q44 =-t5;

48Oq,o = t'(175t' + 165t4 - 339t2 + 375);
2304q5l = -t2(567t' - 308t6 + 2068t4 - 3240t2 + 3312);
480q52 = -t3(525t' + 427t4 - 583t2 + 375);
576q53 = -t4(288t4 - 316t2 + 144), 80q54 = 3t0 (3t2-1).

These formulas throw some light on the problem of interpolation with respect
to 5 in the noncentral t tables of Resnikoff and Lieberman [9] and Locks et al. [3].
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TABLE V

VALUES OF (3 FOR v = 40, t = 2

w (

2 .974 569 020 346
1 .835 477 157 175
0 .499 922 233 722

-1 .164 518 287 827
-2 .025 496 009 322

It is not at first sight obvious how to extract four decimal values from a table
in which the consecutive entries are, to take an extreme example, .4123, .0055,
and .0000. Because of the vanishing of some of the terms qkj, we see from (6.6)
that with an error of order ,-4, 4-1(,B) is a quadratic function of w and hence of 6,
whereas it is a quartic function of w with error of order ,u6. Thus, three- or
five-point interpolation of 4b-r(1) with respect to 5 should give good results in
these tables. This is especially convenient in the Locks table since there the
entries are equally spaced in 6, permitting the use of Lagrange coefficients.

In the example of table IV, five-point interpolation based on the values at
w = 0, 41, ±t2 reproduces the computed values at w = 4.5, +1.5, ±t2.5 with
an error in the eleventh decimal place, while three-point interpolation based on
w = 0, ± 1 gives about seven decimals of accuracy. Thus the computation of j
by means of (6.1) need be carried out at only a few values of w to provide the
entire power curve with high precision, at least when v is large and t is moderate.
The good results obtained from quadratic interpolation based on the values of

3 at w = 0, ± 1 suggests a simple approximation for large ¢i and moderate t.
If we fit a quadratic to b-l(I) at the points w = 0, ±1, we obtain from (6.6) the
approximation
(6.7) 4-(A, + Alw + A2w2)
where

A, = q20 + L30 + 940 + T50,
A2 A3 A

(6.8) Al = 1 + q1 + 2 + + q 4 + 6 5
A A2 ~~3 A4 5

A2 = + 2 + q42 + q44 + q52 + q54
I.'JA A 4 A5I

In the example of table IV, this approximation appears to have a maximum
error of about .075 over the entire range of w. Even if v is reduced to 10, the
approximation is good to the four decimals of the noncentral t tables. Since in
those tables it is often necessary to interpolate with respect to all three argu-
ments, the approximation (6.7) is in many cases easier to use than the tables,
as well as being more accurate.
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