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1. Let yi, Y2, * be independent random variables having the distribution
(1.1) g(y) dy, -00 < y <o,

where g(y) is an even function of y, and let Rm and Sm be defined for m > 1 by

(1.2) S.Sm=Yl+Y2++ " +Ym,
R( = min (0, SI, S2, * * * , Sm);

let k be a constant in the range 0 < k < 1. This paper is concerned with the
function

(1.3) C(z!x) = E (1 - k)mP{x + R., > 0, x + S,,, < z,
m=1

where x > 0 and z > 0, which we shall study by the methods of Frank Spitzer
[6], [7], [8]; the results will then be applied to an astronomical problem formu-
lated in the first part [3] of this paper.
From theorem 4.1 of [6] (or from an earlier theorem of Faul L6vy) we know

that lim sup Sm = + o0 and that lim inf Sm = -oo, with probability one, so
that infinitely many terms of the sequence
(1.4) x+Sl,x+S2,
will be zero or negative. Let the first such nonpositive term and all succeeding
terms (of either sign) be removed from (1.4). Let a biased coin show heads with
probability k and tails with probability (1 - k), and in an infinite sequence of
independent throws (independent also of the y) let the first head occur at the
Mth throw; we then remove the Mth and all subsequent terms from the sequence
(1.4) (if they still survive). The quantity C(zlx) defined at (1.3) above will then
be the expected number of terms x + Sm in the curtailed sequence which lie in
the half-open interval (0, z]. It is not clear from this definition that C(zlx) is
finite, but this will be proved in due course.

In the astronomical problem C(zlx) is the expected number of complete circuits
described round the sun by a comet initially in the positive energy state x,
Formerly Skynner Student in Astronomy, Balliol College, Oxford.
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122 FOURTH BERKELEY SYMPOSIUM: KENDALL

wvhen we count only those circuits during which the energy state lies in the
interval (0, z]. Here "energy state" means the negative of the total energy per
unit mass (and is zero for a cornet at test at infinity). Comets in zero or negative
energy states are unbound and escape from the solar system on parabolic or
hyperbolic orbits; this is why we reject x + Sm and all subsequent terms if
x + Sm is zero or negative. The y represent the perturbations in energy state
acquired by passage through the planetary zone, just before and just after
perihelion, so that x + Sm is the energy state of a comet which has survived
m perturbations. At each perihelion passage we allow the possibility (with small
probability k) that the comet will disintegrate; this is the reason for the second
curtailment of the sequence (1.4). Finally C(zlx) itself is needed to permit the
calculation of the theoretical "z-spectrum" (the law governing the distribution
of the sun's family of comets among the various energy states). Further details
of all this will be found in the preceding part [3] of this paper.

2. It will be convenient to introduce auxiliary random variables A and B inde-
pendent of one another and of all those previously mentioned and having the
distributions

e aAadA, 0<A <m,
e-,B#dB, O < B < x

respectively, so that we can employ the method of "collective marks" devised
by the late David van Dantzig. Consider the random event

(2.2) {A + S, > 0, A + S2> 0, , A + Sm > 0, A + Sm, B)-,
where at any point we are at liberty to weaken or sharpen the sign of inequality
because of the absolute continuity of the A-, B-, and y-distributions (we shall
frequently do so without further comment). One evaluation of its probability is

(2.3) f f0 Pf{x + R, > 0, x + Sm < z' e-ca-fzda dz,

while another is

(2.4) E[f e-aA-(A+&) a dA]
A>- ?R

where E(*) denotes integration with respect to the probability measure for the y.
On equating the two evaluations we obtain the identity

(2.5) f J7 C(zlx)e a-dx dz

= ,B '(a + )1 E (1 - k)m E{e(a+°6)R-Ift}
m=l

for all positive a and ,B.
We now appeal to a celebrated identity of Frank Spitzer ([6], theorem 6.1;

for a simpler proof see J. G. Wendel [9]), which in the present circumstances
assures us that
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(2.6) 1 + E (1 - k)m E{e(a+P)R.- -,}
m=1

= exp (E (1-k) E{e-als-I + e-9s.1I
when a, ,B, and k are restricted as before. (In the first instance we obtain (2.6)
for k > 0. The monotone convergence theorem then shows that it also holds for
k = 0.) Another result of Spitzer ([7], lemma 4) tells us that the series

(2.7) E n-' E{e -XIs,l}
n=1

is convergent for each positive X, and so the right side of (2.6) is finite for all
positive a and ,B, even when k = 0. On putting (2.5) and (2.6) together we find
that

(2.8) 1 + /3(a + /3) f lC(zfx)e azdxdz
- exp (E (1 2nk) E{e-als'I + e-PIS-I}

where the right side is finite.
We shall transform (2.8) into a more convenient form, but first we use it to

prove a number of useful qualitative facts about C(zlx). It is clear from (1.3)
that C(zlx) increases (in the weak sense) when z increases and x is fixed; it can
also be seen that it increases in the weak sense when x increases and z - x is
fixed. Now suppose it possible that C(z'lx') = 00; then it would follow that
C(zjx) = X whenever both x > x' and z > z' + (x - x'), and this would con-
tradict the fact, obvious from (2.8), that C(zjx) is finite save at most on a set of
planar Lebesgue measure zero. Thus we conclude that C(zlx) is finite for all
positive x and nonnegative z. From this, and from the fact that the second sign of
inequality in (1.3) can be written both sharply and weakly, it at once follows
that C( ix) is continuous on z 2 Ofor each fixed x > 0. [In particular, C(0+ jx) =
Q(0Ix) = 0.] The fact that each term of (1.3) is dominated by the corresponding
term in C(ZIX) when x < X and z < x + (Z - X) further shows that C(zI.)
is continuous on x > 0 for each fixed z _ 0.
The continuity of C(zlx) in x and in z and the fact that it is nonnegative show

(via Lerch's theorem) that C(zjx) is in principle uniquely determinable from
(2.8). Again from (2.8) we see, because of the weakly increasing character of
C(I x), that

(2.9) e-ax [e-zC(ZIx)] dx _ A _ e-- [f* e-zC(z|x) dz] dx,

and the right member of this inequality tends to zero when Z -> 00. Thus we
can integrate by parts and replace the left side of (2.8) by

(2.10) 1 + (a + ,3) f0 edx J0 e-C(dzIx).
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We can also transform the right side of (2.8) with the aid of the integral formula

(2.11) c XIsi = ifJ e± du, X > 0,

and on introducing the characteristic function

(2.12) +(t) = | eityg(y) dy, -0 < t < o0,

we obtain
THEOREM 1. The nonnegative quantity C(zjx) is finite for all x > 0 and z _ 0,

and depends continuously on x and also on z. It is uniquely determined by the
identity

(2.13) 1 + (a + e3)ex dx f e-zC(dzlx)
= exp [fk(a) + fk(0)1, a, 3 > 0,

where

(2.14) fk(X) = log {1-(1-k)d(uu)}1U > O.

The integral at (2.14) is absolutely convergent.
The final step in the proof of (2.13) involves the equality (for X > 0) of

(1 (1 - k) l [O(Xu)]n du(2.15) E n 1 + Ud
and

(2.16) log - 1-11 - (1- k)(uf1 + U21
there is no difficulty in establishing this when k > 0, but when k = 0 a special
argument is required, as follows. As in Spitzer's proof of the finiteness of (2.7)
we can find positive numbers A and T such that

(2.17) 1|(t)| _ e-'
when ItI < T, and we shall have

(2.18) sup |+1) - < 1.

Thus
~ ~ 2ir 1/2

1/2(2.19) E +U du < X=-1 En 7 n_
-

and the right side is finite. Thus the series of integrals can be evaluated as desired,
by absolute convergence, and incidentally we have shown that the integral in
(2.14) is absolutely convergent even when k = 0.
3. We now investigate the limiting behavior of C(zlx) when x I. 0; the im-
portance of this (in connection with Oort's theory of the origin of comets) was
made clear in [3]. We start with the inequalities
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(3.1) E_ (1 - k)mP{Rm 0, X + Sm _ Z} .: C(z|x)

< (1 k)mP{x +Rm> 0,Sm<Z},
rn-i

and we note that the terms on the left increase and those on the right decrease
when x X 0; also the series on the right is finite because it has the sum
C(z + xlx). We can therefore invoke the principle of monotone convergence
and in this way we find that C(zIO+) exists and is finite and is given by

(3.2) C(Z10+) = E (1 - k)m P{Rm 0, Sm < z}.
m=1

Proceeding as before we get

(3.3) fo C(z10 +) e-zf3dz = E (1 - k)m P{Rm = 0, Sm < B}~~~~~r
= E (1-k)m J e -SdP

in Rm=O

= E (1 - k)m lim E{e(a+B)Rs--S-}.rm-I at"
We can take the limit as a T o outside the summation sign, because the terms
decrease weakly as a increases and the series is known, from (2.6), to be con-
vergent for each finite positive a; thus we find that

(3.4) 1 + fo" C(z10+) e-z,- dz = exp [fkQ3)],
on using the Spitzer identity and making another appeal to the monotone con-
vergence principle.
The continuity of the nonnegative function C(. 10+) for z _ 0 can be deduced

from (3.2) by imitating the earlier argument, and so the formula just written
down determines C(zlO+) uniquely. The integral which occurs in it must con-
verge, and so, because C(ziO+) increases with z, we see that

(3.5) C(zlO+) = o(eez)
as z -x o, for each positive e. This fact enables us to integrate by parts, and so
we have
THEOREM 2. The limit C(zIO+) exists for each z _ 0 and determines a finite

continuous increasing function of z whose Laplace-Stieltjes transform is given. by

(3.6) 1 + iO e-AC(dzJ0+) .= exp [fk(o)], 3 > 0,
where fk(8) is given by (2.14).

4. The absolute continuity of the y-distribution implies that.we can write

(4.1) P{Rm = 0, S, <z} = fam(t) dt,
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where a.(.) is nonnegative and summable [indeed it is easy to express am(-) in
terms of the function g(.)]; thus we must also have

(4.2) C(ZjO+) = floc(t) dt,

where

(4.3) c(t) = (1 - k)m am(t),
m=1

so that c(.) is nonnegative and summable on bounded Borel sets and C(zjO+)
is absolutely continuous and has c(z) as its derivative almost everywhere (in
the Lebesgue sense). We shall have

(4.4) go e-#izc(z) dz = exp [fk(#)] - 1, 3> 0.

We now write

(4.5) c(z|x) = c(lz - xl) + f in(z) c(x - t)c(z - t) dt, x > 0, z _ 0,

this function being defined everywhere in the (x, z) plane; its values will be
nonnegative but we cannot be sure that they are finite. We shall calculate the
double Laplace transform of the function

(4.6) K(zlx) = f0 c(slx) ds.

A repeated application of Fubini's theorem shows that

(4.7) f1 f0 e-a$xzK(zlx) dx dz = #-'(a + 13)-'{y(a) + y(#) + y(a)'y(1)},

where y(X) denotes the Laplace transform of c(.), given at (4.4) above. On
comparing this with (2.13) we find that

(4.8) f0'a fo0 e-' -PK(zIx) dx dz = f0o f0o e-z -C(zlx) dx dz, a, 1B > 0,

and that K(zlx) (which is plainly nonnegative) is finite for almost all pairs (x, z).
Now if we put C(z) for C(z10+), and substitute for c(8lx) from (4.5) into the
expression for K(zlx), we find that

(4.9) K(zlx) = C(x) + C(z - x) sgn (z - x)

+fn(xz)C(z-t)c(x-t) dt,

and the last term on the right side can be written as

(4.10) C(z - x + T)c(T) dr,

so that K(zlx) increases, in the weak sense, (a) when x is constant and z in-
creases, and (b) when z - x is constant and x increases. The argument following
equation (2.8) then shows that K(zlx) is finite for all positive x and nonnegative zj
so that c(. {x) is summable over bounded Borel sets and consequently K(> Ix) is
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(absolutely) continuous. The last two formulas and the known fact that C(*) =
C(- 10+) is continuous yield the further conclusion that K(zI *) is continuous oIn
x > 0. Lerch's theorem then tells us that K(zlx) = C(zlx), and we have proved
THEOREM 3. The functions C(* Jx) and C(*) = C( 01+) are absolutely con-

tinuous and so can be expressed as the indefinite integrals of their derivatives c(zlx)
and c(z). These derivatives are determined up to sets of measure zero by the formulas

(4.11) c(zlx) = c(lz - XI) + m cn(x)C(x - t)c(z - t) dt

and

(4.12) fo e-zc(z) dz = exp [fk(3)]-1, d > 0,

where fkQ() is the fun ction defined at (2.14).

5. We now return to the astronomical problem (see [3] for the notation and
terminology). Formula (2.19) of [3] shows that we can now write

(5.1) R(ZIx) = V(x)H(x - Z) + f V(z)c(zlx) dz
2~~~~~

where Z > 0, and by proceeding as in section 4 of [3] we find that the adjusted
z-spectrum (adjusted so as to incorporate the chance that a comet will have
approached perihelion during the period T) consists of

(a) a concentration of pT "new" comets in the energy state x, and
(b) an absolutely continuous component with density pTc(zlx) at the energy

state z, where 0 < z < -.
On combining this result with theorem 3 we have in principle a completely

general solution to the problem of the z-spectrum. In practice there may be
some difficulty in inverting the Laplace transform for the function c(z).

6. In order to illustrate the form of the solution we will give the details for the
special case

(6.1) g(y) dy = 2-eHl'b -Y, - < y < x,

already studied in [3], and for another special choice of g(y) which will supple-
ment the earlier result in a useful way.
We shall now have +(t) = (1 + b2t2)-', and so

(6.2) fk(X) log = + b2X2u2 du log + X
2ir ~ k+ 11XU2+ u2 = lg k + bX

where the last evaluation is an easy consequence of the elementary integral
formula

du
(6.3) 7'log (1 + C2U2) 1 U2 log (1 + Ici).
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Thus we must have

(6.4) e-zc(z) dz = k + bf3
and

(6.5) c(z) dz= 1 b exp dz,

and this confirms formula (4.3) of [3]. The general z-spectrum in the case of
double-exponential perturbations can then be found by inserting (6.5) into our
formula (4.11) [which incidentally explains and generalizes the curiously sym-
metrical role played by x and z, partly obscured by the earlier formulas in [3]
because we worked then with the integrated z-spectrum C(zlx) instead of with
the density c(zlx)].

In [3] the theoretical z-spectrum was only calculated when the perturbation
distribution had the double-exponential form (6.1), and it is of course very
desirable to know whether the general conclusions arrived at in that paper
would be much altered by a change in the form of the perturbation distribution.
It is therefore of interest that we are now able to calculate the theoretical
z-spectrum in another special case; this is the convolution of (6.1) with itself,

(6.6) g(y) dy = 4(1 + Jl)e-y/b dy, -00 < y <00,

which differs qualitatively from (6.1) in that g(-) no longer has a "corner" at
y = 0; in fact (6.6) is appreciably nearer than (6.1) to the Gaussian form of
perturbation distribution studied in [2] by J. M. Hammersley and R. A.
Lyttleton.
We now have +(t) = (1 + b2t2)-2, and so

(6.7) fk(X) = I r log ++ b2X2u2 d+ bb22U2j du
2wr j ~ c + b2X2u d + b2X2u21 1 + U2'

where c and d denote 1 i (1 - k) I/2. Thus we must have

(6.8)

f()=log 1.+ bX + log 1 + bX =lg(1+ bX)2
f\(+/+ bX V + bX b2X2 + (c+ Vd)bX + vk

and theorem 3 then shows that the continuous part of the z-spectrum is deter-
mined by

(6.9) c(z) dz

-
f{(1 -Vd)2 exp Z\d (VCc-1)2 exp _z Vc)} dz,

where c = 1 + (1 - k)112 and d = 1 - (1 - k)
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When k = 0, then d vanishes, and c(z) assumes the form

(6.10) C( ) = ( ) exp(-b)W~~ 2b b I

this is to be compared with c(z) = l/b when the perturbation distribution has
the double-exponential form (6.1). Thus, when k = 0, we get a "flat" z-spectrum
(apart from the concentration at z = x) with the perturbation distribution (6.1)
but not uwith the perturbation distribution (6.6). This amounts to a formal disproof
of H. N. Russell's law [4], according to which the z-spectrum should be flat
when k = 0, whatever the form of the perturbation distribution.
The use of the parameter b in (6.1) and (6.6) is not very satisfactory, because

it is not related to the standard deviation a of the perturbation distribution in
the same way in the two cases; in fact we have a = bv\2 for (6.1) and oa = 2b
for (6.6). It is therefore more convenient when k = 0, to write for (6.1),

(6.11) c(z) = V/2
a'

and for (6.6),

(6.12) ( ) 2 724exp 2-\/2 -)

These formulas show that the effect of switching from (6.1) to (6.6) is to depress
the initial value of c(z) to about 83 per cent of its original value. It should be
noticed that the two formulas agree to within one per cent as soon as z is as
large or larger than a (about 75 in our customary numerical units).
The function c(zlx) when k = 0 now easily follows on substituting from (6.11)

and (6.12) into (4.11). We obtain, for the distribution (6.1),

(6.13) c(zlx) = -+-2 min (x, z),

in agreemenit with (3.14) of [3], while if the perturbation distribution is (6.6),
then

(6.14) c(zlx) = \/2V 4 2,/2 Z
z x + 2 min (x, z)

3 V2 {4 exp[22min (x, )]z }{exp[-2V2] +exp[-2V Z]}

17-4 {exp[4 min (x, z)] -1}exp [2 x + Z]

Similar formulas can be obtained when k > 0, but we shall not write them out
here; in practice it may be preferable to compute c(x) from (6.9) and then to
substitute in (4.11) and carry out the integration numerically.
Now that c(zlx) is known we can repeat all the numerical calculations con1-
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tained in [3], but employing the perturbation distribution (6.6) instead of (6.1).
This program is carTied out in section 12 below.

7. We now return to the general problem, so that we no longer make any par-
ticular hypothesis about the form of the perturbation distribution, and we study
the function c(z) whose Laplace transform is given by (4.12) and (2.14) and
which determines the density c(zlx) of the continuous part of the adjusted
z-spectrum via formula (4.11).
We introduced c(z) as the derivative (almost everywhere) of C(zlO+), hence

as the density of the continuous part of the adjusted z-spectrum when (as in
Oort's theory) the initial energy state of a "new" comet is close to zero. But
from (4.11) we now see that there is a second interpretation; for almost all x,
we shall have

(7.1) c(x) = lim C(z x)
z1O Z

To prove this, it is easiest to return to the formula found for K(zlx), which we
now know to be identical with C(zlx), just before the statement of theorem 3.
This shows that

(7.2) C(zlx) _C(x) -C(x-z)+1ifz G ( )(7.2) CZI = QX z -Z + 1z C(u)c(x -z + u) duz z zJ

when 0 < z < x. Now we know that C(-) is continuous and that C(0) = 0, so
that 0 _ C(u) < e if 0 . u _ z and z is small enough, and thus the last term on
the right side is nonnegative and does not then exceed

(7.3) e A c(v) dv = e Qx) C(x z)}

But [C(x) - C(x - z)]/z converges to a finite limit c(x) for almost all x, when
z I 0, and so, e being arbitrarily small, we obtain (7.1).
The limit at the right side of (7.1) plays an important role in the investigations

of Hammersley and Lyttleton [2], and its values for a wide range of values of x
have been computed by J. M. Hammersley and K. Wright in the special case
when k = 0 and the perturbation distribution has the Gaussian form

(7.4) g(y) dy = V exp_ 2)dy, _00 < y < 0o.

Thus an analytical study of the function c(.) has a double value, and may also
lead to useful numerical comparisons. Moreover our formula (4.11), when coupled
with the Wright-Hammersley computations, will give a complete solution to the
problem of the adjusted z-spectrum when k = 0 and the perturbations are
Gaussian. In the remainder of this paper we shall exploit these various
possibilities.
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8. The function c(.) is determined up to a set of measure zero by the relation

(8.1) 1 + f0 e2/zc(z) dz

= exp (- | log{ - (1- r}1 + > 0,

and we shall begin by considering the important special case when k = 0. By
Karamata's theorem (Widder [10], chapter 5, theorem 4.3) we can evaluate the
limit of C(z)/z when z T oo by dividing each side of (8.1) by u and then letting
,u tend to infinity. Obviously there will be no contribution from the unit on the
left side, and in virtue of the elementary formula

(8.2) 1 j log (T2) 1 + 22= log A,

we find that

(8.3) lim C()= lim exp log Vt - 0(T) 11 + 2r2A
z t. Z Z Mt X J- 1

If a is the (assumed finite) standard deviation of the perturbation distribution
then the logarithm in the integrand will differ from log (2/a 2) by less than e
whenever |rT < 6, if 6 is suitably small, and the logarithm in the integrand is
dominated by an expression of the form A + Ilog (T2)1 when |T| _ 6 > 0. The
contribution from the term A to the integral is clearly 0(1) when ,u- oo for
fixed a > 0, and the same is true of the term in log (X2) because

(8.4) i Xol7j r<.d t;foo +vv / i; + V,2
and oIn putting these results together we obtain
THEOREM 4. When h = 0 and when the perturbation distribution has a finite

variance q2 then

(8.5) lim C(z) = lim 1 I c(t) dt - -
zt.o Z zt. Z JO

This appears to be the true result to which Russell's "law" (a flat adjusted
z-spectrum when k = 0) is an approximation. It does of course lie very close to
a calculation by Spitzer in [7].
When the perturbation distribution does not have a finite variance then a

simple adaptation of the above argument shows that the limit at (8.5) exists
and is zero; that is, C(z) tends to infinity less rapidly than z. In specific cases
we can investigate the rate of growth of C(z) precisely. For example, if

(8.6) g(y) dy = X 1 <dy/)<s,Y
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which is sometimes called the Cauchy distribution, then +(r) = e7slI, and the
above type of argument shows that then

(8.7) lim C(z) 1 c(t) dt2
.2tZ- /Z- ZtX- \Jo 7

that is, C(z) grows asymptotically like v\z. One would therefore expect that in
the Gaussian case c(z) -* -'V2, and that in the Cauchy case c(z) -*0, but
such a conclusion could not be justified without a more delicate Tauberian
argument than we feel inclined to embark upon here. Let us notice, however,
that when the perturbation distribution has one of the forms (6.1), (6.6), then
the limit of c(z) as z -X o does exist; it is correctly given, as of course it must be,
by formula (8.5) of theorem 4.
We turn now to the behavior of C(z) and c(z) when z I 0. A similar Tauberian

argument (Widder [10], loc. cit.) shows that we can calculate the limit of C(z)/z
when z , 0 by dividing each side of (8.1) by M and then letting j4 . 0. In this
case there is no advantage to be gained in letting k = 0, so we assume merely
that 0 < k < 1. The logarithmic term inside the integral on the right side tends
to zero (because 1|(T) does so) when 1T| tends to infinity, and thus the whole
expression inside the exponential tends to zero when u j 0. This shows that we
have to examine the behavior of

(8.8) - f log {r -.(1 k)+(r)} 1

when ,u tends to zero. Let us call this expression J, and write J1(A) and J2(A)
for the contributions from the ranges (0, A) and (A, oo), respectively. Because
g(.) and so also 0(-) is even we can confine attention to the contributions from
(0, 0o). Now we have to make a new assumption, namely that the integral

(8.9) (t) = 2 f log {i -(1 d- k)¢(r)}

is conditionally (perhaps not absolutely!) convergent for each t > 0. This will
be so, for example, if the density g(.) of the perturbation distribution belongs to
the class L2(-oo, 0) and satisfies some smoothness condition at y = 0, for
example differentiability or locally bounded variation, sufficient to ensure the
convergence there of its Fourier series representations, for then 0 will be condi-
tionally and 42 absolutely integrable at infinity, and (for large enough t) the
integrand of the integral defining T(t) will equal (1 - k)o + 09, where 101 _ 1.
Assuming this to be so, we observe that

(8.10) J2(A) 2 |; log {1-(1 k)d(r)I + /2T'

T(A) (12; k(T) 12Td+ M
1 + ;s2A2 2JA+ A2T)
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and the last term on the right side is bounded by

(8.11)SUP J(T)Jr 2xdx(8.11) sup I'(T) A, (1 + X2)2
which can be made less than e by taking A sufficiently large. Let A be so chosen,
and then fixed. The first term on the right side of the last formula will then
converge to 'I(A) when A J 0.
We now examine J1(A). When k > 0 it is trivial that this converges (for a. a 0)

to the expression obtained by setting u = 0, but when k = 0 then a further
argument is needed. We have merely to note (see for example the "Remark"
on page 26 of H. Cram6r [1]) that +(T) is bounded away from unity on any closed
set which excludes r = 0, and that in some neighborhood (-5, 6) of r = 0 the
function q is nonnegative and satisfies the inequality 1 -+(T) > kr2, for some k.
It then follows that the logarithm in the integrand of J is dominated over (0, A)
by some multiple of (Ilog rl + 1), and thus JI(A) converges (for Au .,0) to the
value obtained by putting ui = 0, even in the awkward case when k is zero.
On putting together these various results we obtain
THEOREM 5. The limit formula,

(8.12) lim C(z) = lim
( z c(t) dt =-| log { } dr,

zo Z zo z0 27r JJ 1 -(1-k)o(T)
holds whenever the integral on the right side converges at -i0oo (conditional convergence
is sufficient).
The required convergence (even absolute convergence) can easily be verified

for all the specific perturbation distributions which we have mentioned so far.
Also, for (6.1) and (6.6), the limit c(O+) actually exists, but we are not able to
prove this in general.
9. Theorem 4 says nothing about the behavior of c(-) when z T 00 and k > 0;
we may expect from the examples which we have studied in detail that c(z) will
then converge to zero, and we know that when the perturbation distribution
has one of the forms (6.1), (6.6) then the convergence is actually exponentially
fast. It is desirable to establish a general result of this kind, and to this we now

turn. First let us consider the integral 1o00 c(z) dz, which will of course be diver-
gent if k = 0 and a is finite. To find this we have only to allow A to tend to
to infinity in (8.1), and we obtain
THEOREM 6. The expected (adjusted) total number of bound comets is equal to

(9.1) pT + pTJf c(z)dz
when the initial energy state x is nearly equal to zero, and the integral in (9.1) has
the value

(9.2) f c(z) dz = -1,
Jo ak

so that the expected adjusted total of comets is pT/IVk and is finite if k > 0.
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It is rather curious that here we have a result which is quite indepeindeint of
the form and scale of the perturbation distribution. A generalization to the case
when x > 0 will be given later.
From theorem 6 we see that \k(l - Vk)-lc(z) dz is a probability distribution,

and therefore so is

(9.3) (1- Vk)-1 c (W) dw, 0 < w < .

We introduce the Laplace-Stieltjes transform

(9.4) 7r(X; k) = (1-_Vk)-1'f e-xwc ()dw, X > 0,

of the associated measure and consider its behavior when k I O. From (8.1)
we see that

(9.5) Vk + (1 -\Vk)7r(X; k)
ex f1 logs dt
exp J-l0li + k-I(1 - k)[1 - 0(Xtv\k)]J 1 + t2)

and if we assume that the perturbation distribution has a finite variance O2 then
we can let k J 0 in the integrand because the integrand is dominated by the
absolute value of

(9.6) log {(1 + X2q2t2/2} 1 + t2'

which is summable (and is in fact the limiting value of the integrand). Thus,
recalling the calculation leading to (6.5), we find that

(9.7) lim 7r(X; k) =[1 + 2 = 7 e-exp ( )d (w v)

for every real positive A. The fact that the right side is the Laplace-Stieltjes trans-
form of a probability measure on (0, Xo) is then sufficient, by a not well-known
continuity theorem, to ensure that the distribution (9.3) converges in distribu-
tion to a negative-exponential distribution with expectation parameter a/\2;
that is, we have proved
THEOREM 7. If the perturbation distribution has a finite variance U2, then

(9.8) lim V/kf| c(z) dz = exp (_uLV2), 0 _ u < oo.
k; u/'k a'

This result shows that the exponential fall off of the function c(.) when k $ 0,
first noticed in [3] in the special case of double-exponential perturbations. is
actually characteristic of all perturbation distributions having a finite variance.

10. In theorem 6 we were able to give the expected (adjusted) total number of
bound comets in the system when the initial energy state for a comet was just
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greater than zero. We shall now obtain the generalization of this result for an
arbitrary value x for the initial energy state, by appealing to the formula (4.11)
of theorem 3 which expresses the function c(zlx) of two independent variables
m terms of the function c(z) of one independent variable. Several of our other
results concerning e(z) could be extended to c(zlx) in a similar way, but this
example should suffice to illustrate the procedure.
We want to calculate fo c(zlx) dz, and according to (4.11) this is equal to

(10.1) f0Xc(x - z) dz + f0Xdz f0zc(x - t)c(z - t) dt

+ | c(z - x) dz + f dz JO c(x - t)c(z - t) dt.

On inverting the orders of integration in the multiple integrals we obtain

(10.2) fox c(u) du + f xdt fxc(x - t)c(z - t) dz

+ f0O c(u) du + f xdtf c(x - t)c(z - t) dz,

which is equal to a + , + a3, where a = J0 c(u) du andj, = f0 c(u) du. We
therefore have
THEOREM 8. The expected (adjusted) total number of bound comets (when the

initial energy state x is positive) is given by

(10.3) T
[1 + fc(u) du],

and is finite if k > 0. When the initial energy state x becomes very large this ap-
proaches the finite limit pT/k.
11. Formula (4.11) gives us the (adjusted) expected z-spectrum explicitly as
soon as the function c(.) is known. Now the Laplace transform of c(*) is given
by (4.12), but in practice the inversion may present difficulties; we therefore
turn to an alternative way of calculating the basic function c(.).

Let us write b,(t) = g(t) and

(11.1) bm(t) = goY(y2)dyi J s(Y2) dy2

f g(y,) dy3 * f: g(ym.,)g(t - Sm) dym i,

when m = 2, 3, * . . We notice that

(11.2) bm+l(t) = i: bm(u)g(t - u) du,

and that

(11.3) P{Rm = 0, Sm < x4 = f|o bm(t) dt.
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It now follows from (3.2) that

(11.4) | c(t) dt = m=1 (1 -k)m bm(t) dt,

and so we have
THEOREM 9. The function c(.) is given for almost all x by

(11.5) C(X) = E (1 -k)mbm(x),
m=1

where bmQ-) is defined as at (11.1); thus c(.) is the minimal nonnegative solution
to the integral equation

(11.6) f(x) = (1 - k)g(x) + (1 - k) fo f(u)g(x - u) du, x > 0,

If the equation possesses a bounded nonnegative solution f(-) then we must have
c(x) = f(x) for almost all x.
The last clause of the theorem (the assertion that if a bounded nonnegative

solution f(x) exists, then it must be equal to c(x) save on a set of measure zero)
still requires proof; we establish it as follows. Suppose that such an f(*) has been
found; then from the minimality of c(.) we know that c(.) must in this case also
be bounded, and so F(x) = f(x) -c(x) will be a bounded nonnegative solution
of the homogeneous equation

(11.7) F(x) = (1 -k) flo F(u)g(x - u) du.

When k > 0 it follows trivially that F(x) = 0, for the right side of (11.7) will
then be a proper contraction of the left side. When k = 0, let M be an upper
bound for F(.); then we shall have
(11.8)

0 _ F(x) _ M fo g(x - ui) du, Jo g(u -u2) du2 f* g(u,l - un) dun

= M f0 g(ul- x) du, fo0' g(U2 - ul) du2 *0'* g(u, - u.-1) dun
= M ... f 9(Yl)g(y2)g(y3) ... g(yn) dyl dy2 dyd ... dy.,

E

where the set E over which the n-fold integration is to be carried out is defined by
the inequalities.
(11.9) X+ Yl + 2 +* + Y. >O, s = 1, 2, *,n.

But this is just to say that

(11.10) 0 _ F(x) 5 MP{x + S8> 0 for s = 1, 2, ,n},
and we know that the extreme right member of this inequality tends to zero
when n tends to infinity; thus F(x) = 0, as required.
We do not know the precise circumstances in which c(-) will be (essentially)
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bounded, but it is clear that boundedness is not the general rule. For example,
c(-) must be unbounded if g(-) is unbounded. Thus the final clause of theorem
9 will only occasionally suffice to identify c(.) among the solutions to (11.6),
but it is none the less extremely useful, as we shall see. More general statements
would be possible if we had more information about the range of solutions to
the Wiener-Hopf equation (11.7); the existing studies of this equation (for
example, F. Smithies [5]) depend on hypotheses not always satisfied in our prob-
lem. A very thorough study ([7], [8]) by Spitzer of the Wiener-Hopf equation
when the kernel is a probability density at first appears very suitable for our
purposes, but unfortunately it is only concerned with the monotone solutions to
(11.7), and this is a serious defect from our point of view because of the remark-
able discovery by Wright and Hammersley (see section 12 below) that c(.)
itself need not be monotone.
We can however supplement the integral equation (11.6) by an additional

condition which enables us in all cases to pick out the correct solution c(.); we
shall prove
THEOREM 10. The function c(.) is equal almost everywhere to the minimal non-

negative solution to the integral equation,

(11.11) f(x) = (I - k)g(x) + (1 - k) f0 f(u)g(x - u) du, x > 0,

and this minimal nonnegative solution is uniquely distinguished among the non-
negative solutions to (11.11) by the facts that

(11.12) fc(x) dx g(y) dy = 1 when k = 0,

and

(11.13) j c(x) dx = -1 when k > 0.

PROOF. That (11.13) holds when k = 0 is part of the content of theorem 6;
obviously this property will not hold for any essentially different nonnegative
solution f(x) to (11.11), because we must have f(x) _ c(x) almost everywhere.
Now suppose that k = 0, and observe that with probability one we must have
either (a) x + Si, x + 82, - - *, x + Sn all positive and x + Sn+j negative for
some n = 1, 2, *.., or (b) x + Si, x + S2, * *, x+ Sn all negative and x+
Sn+, positive for some n = 1, 2, * *, and also that (a) and (b) each hold with
probability 1/2 when x = 0. On using (11.1) and (11.5) and the even character
of g(.) to express the fact that P{(a)} = 1/2 when x = 0, we obtain (11.12).
We must show that this characterizes the solution c(.) among the nonnegative
solutions to (11.11). If f(.) is any nonnegative solution to (11.11) and if f(*) like
c(.) satisfies (11.12), then F(x) = f(x) - c(x) will be almost everywhere non-
negative and we shall have

(11.14) F(x) = f0 F(u)g(x - u) du
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for almost all x > 0, and

(11.15) 0f F(x) dx f g(y) dy = 0.

The desired result F(x) = 0 a.e. follows at once if the g-distribution is of infinite
extent. If the g-distribution is of finite extent, let Y be the smallest (positive

finite) number such that f 7 g(y) dy = 0, so that F(x) = 0 almost everywhere

in (0, Y) at least. Let X be the largest (positive, but perhaps infinite) extended
real number such that F(x) = 0 a.e. in (0, X), so that X _ Y. We shall show
that X must be infinite. For otherwise we should have, for 0 < e < Y,

(11.16) 0 = fXf F(x) dx = x ,dxf F(u)g(x- u) du

= f F(u) du Ix__-u g(y) dy

- Ix F(u) du Y + g(y) dy > 0,
because the g-distribution is symmetrical. Thus we have a contradiction unless
X = OC.

We can use theorem 10 to make clear the relation between the function c(.)
studied in this paper and the monotone solution to the Wiener-Hopf equation
studied by Spitzer in [7] and [8]. Let us write

(11.17) 4(x) = 1 + C(x) = 1 + f x c(t) dt, x _ 0;

then in virtue of (11.11) and (11.12) we shall have, when k = 0,

(11.18)

¢(x) = 1 + fl g(t) dt + f dt f c(u)g(t - u) du
= 1 + fo g(t) dt + f c(u) du fx-u (y) dy

= +
1 g(t) dt + +

f C(2l) du f g(y) dy
= fx g() dt + f c(ut) du f g(y) dy

Jo g(x - u) du
+ f

dC(u) f xg(Y) dy
=g(x -u) du + lim [C(U) fl u(Y) dy + f0 C(u)g(u -x) du].

In all the above expressions all terms are nonnegative, and we see that

(11.19) foU C(u)g(u - x) du _ 1 + C(x) < x,
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so that, because

(11.20) C(U) J g(y) dy S fu._. C(x + y)g(y) dy = fu C(u)g(u - x) du,

the first term within the square brackets in (11.18) tends to zero when U -,
and the second term tends to a finite limit. Thus we have

(11.21) D(x) = f g(x - u) du + flo C(u)g(x - u) du,

on again making use of the symmetry of the g-distribution. In this way we obtain
THEOREM 11. Let k = 0. Then the function F( * ) defined by

(11.22) b(z) = 1 + C(z!O+) = 1 + f zc(t) dt, z > 0,

is absolutely continuous, nondecreasing, and has the value 1 at z = 0, and it sat-
isfies the Wiener-Hopf equation

(11.23) 4(Z) = fl d(u)g(z - u) du, z _ 0.

It therefore coincides with the function F(.) studied by Spitzer in [7] and [8].
12. We shall now illustrate the use of theorems 3, 9, and 10 by calculating the
the adjusted z-spectrum when k = 0 and when the perturbations follow the
Gaussian law (7.4). If we temporarily take the standard deviation of of the y-dis-
tribution as the unit in which x, y, and z are measured, then theorem 9 tells
us that

(12.1) c(x) exp 2 ) + j exp [ ( 2 ] c(u) du,
that c(-) is the minimal nonnegative solution to this equation, and that if the
equation can be shown to have a nonnegative bounded solution then this must
be the desired function c(.).
The equation (12.1) for c(.), which in his notation is called q(.), has also

been obtained by Hammersley (see equation (4.9) in [2]), and Wright and he
have solved it numerically; they have kindly provided me with a sample of their
results, shown in table I.
The (very surprising) ripple in the values of c(.) rapidly decays and ultimately

the solution settles down to the limiting value 1.4142. As this is a bounded solu-
tion, there can be no question of its not being the right one. That this is the
correct solution to (12.1) can also be shown by calculating numerically the inte-
gral at (11.12), using the computed values of c(x). We obtain 0.5000. Anv
admixture of another solution would have raised this to a value greater than
1/2. Also it is interesting to notice that the initial and final values agree with
the predictions of our theorems 4 and 5. Theorem 4 tells us that when x - -

then c(-) is (C, 1)-limitable to the limit ½(= 1.41421356). Theorem 5 tells us
that when x -* 0 then c(.) is (C, 1)-limitable to the limit
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TABLE I

TABI,E OF c(X)
(by K. W. and J. M. H.)

X/a C(X)

0.0 1.0422
0.2 1.1433
0.4 1.2275
0.6 1.2937
0.8 1.3424

1.0 1.3759
1.2 1.3969
1.4 1.4087
1.6 1.4144
1.8 1.4164

2.0 1.4166
2.2 1.4159
2.4 1.4152
2.6 1.4147
2.8 1.4143

3.0 1.4142
3.2 1.4141
3.4 1.4141
3.6 1.4142
3.8 1.4142

>4.0 1.4142

(12.2) 2 f log {- expd(- 2/2)}d

=1 E f1| exp (- nT2/2) dT

= 4r(32)= 1.04218698.

Here t(-) denotes Riemann's zeta function. Thus the solution computed by
Wright and Hammersley takes on the correct values at the two extremes of
the range.

If we now substitute the computed values of c(.) into formula (4.11) of theorem
3 we obtain the values in table II for c(zlx) when the distribution of perturbations
is Gaussian with standard deviation a., and k = 0.

Table II gives the density in the continuous part of the (adjusted) expected
z-spectrum when a. (the root-mean-square perturbation) is used as the unit of
measurement for z and x, for four initial values (x/a = 0, 1, 2, and 3) of the
energy state. It should be noted that to get the whole of the (adjusted) expected
z-spectrum we have to combine this density with a point concentration of amount
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TABLE II

Values of c(zlx)
z/a xa=x/ 0 x/a = 1 Xlor = 2 x/a = 3

0.0 1.042 1.376 1.417 1.414
0.2 1.143 1.640 1.726 1.723
0.4 1.227 1.904 2.060 2.059
0.6 1.294 2.159 2.410 2.416
0.8 1.342 2.393 2.769 2.790

1.0 1.376 2.598 3.126 3.176
1.2 1.397 2.770 3.472 3.568
1.4 1.409 2.914 3.797 3.963
1.6 1.414 3.008 4.094 4.357
1.8 1.416 3.079 4.355 4.743

2.0 1.417 3.126 4.576 5.116
2.2 1.416 3.153 4.756 5.471
2.4 1.415 3.168 4.896 5.800
2.6 1.415 3.174 4.999 6.097
2.8 1.414 3.176 5.070 6.358

3.0 1.414 3.176 5.116 6.579
3.2 1.414 3.175 5.143 6.758
3.4 1.414 3.173 5.157 6.898

unity at z x, and then multiply the spectrum throughout by the scale factor
pT.

In figure 1 we show for these four values of the initial energy state (corres-
ponding to x = 0, 75, 150, and 225 in our previous units, when a- = 75) the
complete (adjusted) expected z-spectrum when k = 0 and when the distribution
of perturbations is (i) double-exponential, (ii) the convolution of a double-
exponential with itself, and (iii) Gaussian. The point concentration at z = x has
been spread out over an interval of width a/5 (= 15 units, when a- = 75). It
will be noticed that the form of the perturbation distribution has only a slight
effect.
The function c(.) has not been computed for the case of Gaussian perturba-

tions when k > 0, so that we are not (yet) in a position to draw a set of graphs
analogous to those in figure 1 for positive k. However, we can test sensitivity to
form of distribution when k > 0 by comparing the z-spectra for (i) a double-
exponential distribution and (ii) the convolution of the double-exponential with
itself. This is done in figure 2 for the largest value of k previously considered
(k = 0.04), when x/a- = 0 and 1(x = 0 and 75).
Once again the adjusted z-spectra corresponding to the two perturbation

distributions are very similar. On comparing these graphs with figure 3, which
presents in a more convenient form the empirical z-spectrum for the range
0 < z ' 200 (that is, 0 _ z/a- < 2.67) previously shown in figure 3 of the pre-
ceding part of this paper, it will be seen that

(a) The observations are not compatible with any value of the initial energy
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II

0 I 2 3

z/a.
FIGURE 1 (a)

Theoretical z-spectra (xla = 0 and k = 0)
for various perturbation distributions

[(i) double-exponential, (ii) double-exponential
convolved, (iii) Gaussian].

state x much in excess of (say) 20 units [= 0.00020 (astronomical units)-']. The
studies by Hammersley and Lyttleton in [2] offer no support for the suggestion
that the system has not had time to enter into statistical equilibrium, so that
we seem driven to the conclusion that Lyttleton's mechanism for the origin of
comets must be associated with very small values (of the order of 0.3 km/sec)
of his parameter v.

(b) Even when we take x = 0 (as in Oort's theory, or in Lyttleton's theory
when v is negligibly small), the peak near z = 0 in the empirical z-spectrum is
relatively much more pronounced (in relation to the continuous background)
than in the theoretical z-spectrum. This is the effect noted by Oort and attrib-
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0 1 2 3

Z/o
FIGURE 1 (b)

Theoretical z-spectra (x/a = 1 and k = 0)
for various perturbation distributions

[(i) double-exponential, (ii) double-exponential
convolved, (iii) Gaussian].

uted by him to a greater intrinsic luminosity for "new" (as compared with "old")
comets.

(c) There is a strong suggestion that the disintegration probability k = 0.04
used in the computation of figure 2 is too small, because the spectral density
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0 I 2 3

z
FIGURE 1(c)

Theoretical z-spectra (Z/a = 2 and k = 0)
for various perturbation distributions

--/ -[(i) double-exponential, (ii).d6uble-exponential
convolved, (iii) Gaussian].
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0 1 2 3
Z/0-
FIGURE 1(d)

Theoretical z-spectra (x/o = 3 and k = 0)
for various perturbation distributions

[(i) double-exponential, (ii) double-exponential
convolved, (iii) Gaussian].
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:/-0 X/'Y I

o 2 0 I 2
Z/a- Z/a-

FIGURE 2

Theoretical z-spectra (x/a = 0 and 1 with k = 0.04)
for various perturbation distributions

[(i) double-exponential, (ii) double-exponential convolved].

decays more rapidly in figure 3 than in figure 2 (with x = 0). It will be worth
while looking Into this in more detail when our information about the empirical
z-spectrum has been extended to greater values of z (the data on which figure 3
is based may be subject to ascertainment errors beyond z = 150 = 2o).

I should like in conclusion to thank Dr. J. M. Hammersley for allowing me to
make use of the computed values of the function c(.) (Gaussian perturbations),
and to express my gratitude to Professor H. H. Plaskett for encouraging me to
carry out this work in the University Observatory, Oxford.
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0 2
Z/(r

FIGURE 3

The observed z-spectrum.
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