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Abstract. The present study is concerned with thin isotropic shallow shells 
interacting with inviscid fluid flow of constant velocity. It is assumed that the 
dynamic behaviour of the shells is governed by the Marguerre-von Karman 
equations. The influence of the fluid flow is taken into account by introduc­
ing additional differential and external load terms in the shell equations. It 
is shown that the system of equations governing such a fluid-structure inter­
action is equivalent to the von Karman equations. Thus, the symmetries and 
conservation laws of the considered fluid-structure system are established.

1. Introduction

A wide variety of mathematical models describing fluid-structure interactions have 
been suggested in the past 50 years. To the best of our knowledge, the first one is 
due to Niordson [ 12], where a single fourth-order linear partial differential equation 
governing the flow-induced vibration of pipes within Bemoulli-Euler beam theory 
is derived. Later on this equation has been obtained in another way by Benjamin [4] 
and used by many authors to ascertain substantial features of various beam-like 
structures contacting fluid flows. Fifteen years after the Niordson’s paper, a study 
by Komecki [9] on flow-induced vibrations of plates appeared, followed by the 
papers of Brazier-Smith and Scott [6] and Crighton and Oswell [7] on the same 
topic. In these papers the plate displacement is supposed to satisfy the fourth-order 
linear partial differential equation governing the dynamics of transversely loaded 
thin elastic plate. In this connection, we would like to mention that in earlier pa­
pers Benjamin [3] and Landahl [11] consider the motion of fluid bounded by an 
initially flat infinite flexible surface. However, in the latter papers, the surface 
motion is supposed to be prescribed and a fluid motion, coupled to this given sur­
face motion, is sought. In contrast, Brazier-Smith and Scott [6] and Crighton and 
Oswell [7] consider sutface motion that is a solution of the differential equation
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governing the dynamics of a plate contacting the moving fluid. In recent papers, 
Amabili et al [1, 2] have considered flow-induced vibration of cylindrical shells 
due to external or internal flows within the framework of the nonlinear Donnell- 
Mushtari-Vlasov (DMV) shell theory (for details see, e.g., Niordson [131). The 
same phenomena, but within the Sanders nonlinear shell theory, consider Zhang et 
al [23, 24], It should be underlined that the mathematical problems considered in 
all recent studies on flow-induced vibrations of shells turn out to be very compli­
cated and therefore they are treated only numerically. The aim of the present study 
is to derive analytical results in this field of research -  symmetries and conserva­
tion laws for the smooth solutions of the differential equations governing the large 
transverse vibrations of shallow shells contacting flowing fluids.
The symmetries of equations governing bending, stability or dynamics of struc­
tures have been studied for more than 20 years. All Lie symmetries of the von 
Karman equations are obtained by Shwarz [18] and the respective Noether’s con­
servation laws for the solutions of these equations are reported by Saccomandi and 
Salvatori [17] and Djondjorov and Vassilev [8], The point Lie symmetries and the 
associated conservation laws for the equations governing the statics or dynamics of 
thin shells within the framework of DMV theory are presented in [19, 20], Thus, 
the most important invariance properties (the point Lie symmetries, the conserva­
tion laws related to them through Noether’s theorem and some invariant solutions) 
of the time-dependent and time-independent equations of thin shells within DMV 
theory in the absence of fluid are already clarified. To the best of our knowledge, 
invariance properties of equations describing fluid-structure interaction are studied 
only by Vassilev et al [21] and Vassilev and Djondjorov [22], In these papers, the 
invariance properties of a class of fourth-order linear partial differential equations 
governing the flow-induced vibration of Bemoulli-Euler pipes on elastic founda­
tions of Winkler type are ascertained. It seems natural to extend the foregoing 
studies exploring the invariance properties of differential equations governing the 
interaction of shallow shells with fluid flow, which is the subject of the present 
contribution.

2. Fluid-Structure Interaction Problem

Consider a thin isotropic elastic shell of uniform thickness h. Let (;r1. x 2. z) be 
a fixed right-handed rectangular Cartesian coordinate system in the 3-dimensional 
Euclidean space and t  =  x 3 be the time. Let the shell middle-surface S  be given 
by the equation

S : z  = f ( x \  x 2). ( x \  x 2) e  Q C X2 (1)

where /  : X2 X is a bounded single-valued smooth function possessing as 
many derivatives as may be required on the domain Q. Let us take (x1^ 2) to
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serve as Gaussian coordinates on the surface S. Then, relative to this coordinate 
system, the components of the first aafs and second bafs fundamental tensors and 
the alternating tensor s ai3 of S  are given by the expressions

aad = +  daf dp f ,  baj3 =  aT1! 2 dad p f . £afS = a~ 1/2ea/3 (2)

where a =  det(aa^) =  1 +  (d±f)2 +  (62/ ) 2; 5aj3 =  5aj3 is the Kronecker delta 
symbol; eaj3 is the alternating symbol; da denote the partial derivatives with re­
spect to the coordinates on S. Here and in what follows: Greek (Latin) indices 
range over 1, 2 (1, 2, 3), unless explicitly stated otherwise; the usual summation 
convention over a repeated index (one subscript and one superscript) is used.
Suppose that the mechanical behaviour of the shell is governed by the DMV shell 
theory. Within the framework of this theory, the large deflection of a thin isotropic 
elastic shell is described by the following system of two coupled nonlinear fourth- 
order partial differential equations

D A 2w -  £“f‘ £* '(V „V clu> + bag)V„V„F = v
(3)

2 - A 2F  +  +  2 baiiW llV vw =  0

in two independent variables -  the coordinates on the shell middle-surface S\ and 
two dependent variables -  the transversal displacement function ic, and Airy’s 
stress function F.  Here p is the external transversal load; D and E  are the bend­
ing rigidity and Young’s modulus of the shell, respectively, which are supposed to 
be given constants, V a denotes covariant differentiation with respect to the metric 
tensor aaij  of the surface S  and A is the Laplace-Beltrami operator on S.
In this paper, we shall restrict ourselves to shells with approximately Euclidean 
geometiy. The latter means that the inequalities

\da f  \ \djsf\ <  £2 «  L £ =  const (4)

are supposed to hold for every point (rr1. rr2) e  Q. In this case the quadratic terms 
in the right-hand sides of expressions (2) are small compared to unity, they may be 
neglected, and thus allowing for a relative error of order 0 (s2) one may regard the 
intrinsic geometry of the shell middle-surface S  as Euclidean and (lE1, IE2) may be 
thought of as an Euclidean coordinate system on S', in which

aap = Saj3, baj3 = dad j f .  5ai3 = eai3 (5)

and the mean curvature H  of the surface S  and its Gaussian curvature K  read

H  = \ a ai3bai3 =  ^Sai3dads f
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(note that the latter is not necessarily equal to zero within the allowed relative 
error). In this case the system (3) simplifies to

R\[w. F] = D A 2w  -  e ^ ^ ' i d a d j w  + d a d j f t d ^ F  = p
1 1 (6)

K 2[w , F] =  — A 2F  +  - e^ e ^ ( d ad6w + 2da dgf)d„dvw = 0
±1/ ft L

where A =  5ai3dadj3.
Introducing, according to d’Alembert principle, the inertia force —md^d^w in the 
right-hand side of the first equation (6), d^d^w being the second derivative of the 
displacement field with respect to the time and m  -  the mass per unit area of the 
shell middle-surface, one can extend system (6) to

Ki[w, F] +  md^d^w =  p, A] =  0 (7)

so as to describe the dynamic behaviour of the shells.
Let the shell interacts with inviscid incompressible fluid of uniform density p, be­
ing a boundary of the fluid domain. Suppose that the motion of the fluid is poten­
tial, that is there exists a velocity potential function ^(a:1, a:2, z. t) ,  satisfying the 
Laplace equation

A $  =  0 (8)

in the fluid domain and such that the velocity field V ( x 1 . x 2. z . t ) is given by the 
expression

V  =  (9)

and the pressure P ( x 1 . x 2. z, t) -  by the Bernoulli equation

5 $  1 / - \2 P
_  +  _  ( v $ )  +  -  =  m -  (10)

Here q(t) is an arbitrary function, V =  (d / d x A d / d x 2. d/dz)  and A denotes the 
Laplace operator with respect to the variables x 1, x 2 and z. Finally, the so-called 
kinematic condition is supposed to hold at the undeformed shell middle-surface S', 
that is

<9.3 ( /  +  w) Sa^da(f +  w) d0*\s (1 1 )

(see, e.g., Benjamin and Olver [51 and Lamb [101).
Suppose that far enough from the shell (i.e., z — oo) the motion of the fluid 
represents a uniform flow with velocity U  =  ([7.0.0), where U is a constant. 
Assume that in the whole fluid domain the difference between the fluid velocity V  
and the velocity U  of the uniform flow is small compared to the latter. Then, the 
potential can be taken in the form

^ ( x 1. ^ 2, z . t )  =  U x l +  i p ^ . x 2, z. t) (12)
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where
Ac.o =  0, lim Vco =  0,11 Z—+QO Vip <C |U |. (13)

For such fluid motion, substituting the potential (12) in the Bernoulli equation (10) 
and taking into account the third equation in (13), one obtains the following ex­
pression for the pressure

P  = -pL[p]  -  p h j 2 +  pq(t) (14)

where the differential operator L is defined by

r 9  rr 9

L ~ m  + U a ? (15)

Additionally, substituting the potential (12) in the kinematic condition (11) and 
linearizing it (neglecting the products of 9a cp, daf  and daw in comparison with 
the linear terms), one finds

dip
~dl s

L[f  +  iy]. (16)

The pressure (14) is a part of the transverse loading on the shell and if there are no 
other prescribed transverse loadings we have

P = P \ s • (17)

In this case, equations (7) read

Ki[w. F] +  m9.39.3iy =  P\s , K 2[w, F ] =  0. (18)

Thus, the displacement field iy, Airy stress function F  and the potential <p describe 
a coupled fluid-shell motion if they satisfy system (18) and condition (16) at the 
fluid-shell boundary S  and equations (13) in the fluid domain. Of course, the func­
tions iy , F  and p  should meet some appropriate boundary conditions depending on 
the particular problem. However, the specific form of these boundary conditions 
do not affect the results in this study and so they are omitted here.
Applying the Laplace operator A and the operator d / d z  to the equation (14), and 
taking into account the kinematic condition (16), one obtains

= ~ p L 2[f + w\. (19)
s

Hence, the pressure P  can be written in the form

P  =  —M e P F  pL2[f +  w\ +  P  (20)

where

A P  =  0.
dP
dz

s
(21)
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and M  is a constant introduced to ensure the equality of the physical dimensions 
of both sides of equation (20). On account of (20), equations (18) governing the 
shell dynamics take the form

K\[w, F] +  M L 2[f +  w\ +  mdsd^w  =  P\s,  F] =  0 (22)

where M  =  pM.  Note that the physical dimension of the constant M  is mass per 
unit surface.
The case P\s  =  0 in equations (22) implies that the transverse load on the structure 
is of form p =  —M L 2[f +  w\ and this is the most widely used approach in the 
dynamics of pipes and rods subjected to parallel fluid flow (see [4, 161, etc). In 
these studies, the influence of the flow on the structure is only due to the mean 
flow. The disturbances, which the structure induces in the fluid are considered 
negligible for the structure response. Therefore, extending this understanding over 
the problem of fluid-shell interaction, one can interpret the terms in equations (22) 
as follows: M L 2[f +  w\ is the influence of the mean flow and P\g is the influence 
of the mean flow disturbances on the shell response.

3. Symmetries and Conservation Laws

It is a simple matter to verify (though it was not so easy to arrive at this conclu­
sion) that equations (22) are equivalent to the von Karman equations. Indeed, the 
following transformation of the independent and dependent variables

M
x x

m  +  M  

w —> w +  / .

Ux  . x 2 —> x  . x  

1 m M U

x~
(23)

F  —> F 2\2
2 m  +  M

(x2)

maps this system to the nonhomogeneous von Karman equations 

D A 2w -  e ^ e ^ ' i d a d g w ^ d ^ F )  + {m + M)S3S3u) = P\s +

2 - A 2F  + F ^ e ^ i d a d j w ^ c X w )  = K.  (24)
h/h 2

Thus, the problem of invariance of system (22) converts into the problem of invari­
ance of system (24) as a change of the variables does not affect the group properties 
of a system of differential equations (see [151). As mentioned before, the invari­
ance properties of system (24) are already established. Its symmetry groups are 
determined by Shwarz [181 for the homogeneous case and by Vassilev [201 for 
the nonhomogeneous one. The corresponding conservation laws for the solutions 
of the homogeneous equations (24) are reported in [171 and [81. The densities 
and fluxes of the basic conservation laws are listed in [8, Table 11. In the non­
homogeneous case, each of the aforementioned conservation laws transforms to a 
conservation law with an appropriate source term (see [201).
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Hence, in order to write down explicitly the generators of the Lie symmetries and 
the currents of the conservation laws that hold on the smooth solutions of equa­
tions (22) one has to apply the transformation (23) and its inverse to the corre­
sponding results, reported in [81 and [201. For the sake of brevity, the explicit 
expressions are not presented here. As an example, the density 'I' and the flux P a 
of the energy conservation law are only given. Up to a trivial conservation law 
(see [141), they read

= ~{m  +  M )(d sw )2 +  -MU[ds(wdiw)  +  Uwdidiw]  

D r
+  T

( A w )2 -  (1 -  v)eaiiei3v(dadj3w)(dadvw)

+
1

2 Eh (A F f  -  (1 +  V)e°^e&v{da d0F){dadvF)

1

P a

+ - e afle ^ ( d ad^F)(dfJ,w)(d]Jw)

- Q ad3w -  (dsF)dvGa,y + M ai3dzddw + Gai3dzddF 

+ -M f7 {—U(diw)d%w — (5.3w)2 + Uwd\d%w + wd^d^w^j

(1 +  v)5a^5dv -  v5ai35 ^ }  d ^ F

where

Gad 

M ai3

Qa = d„Ma^ +  eacTe^( d„w )dadvF.

1
~Eh
—D

}_eavedv^d^w)dvw

(1 -  u)SaflS ^  +  v5a^ 5 ^ dpdvw
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