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ABSTRACT

This paper traces the development of methods for producing esti-
mates of the spatial distribution of a positron-emitting radionuclide
within the body.
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Introduction

Positron-emission tomography is a technique in which images are formed of the
spatial distribution within the body of a positron-emitting radionuclide. Systems for
accomplishing this have existed since the early 1970s, but it is only recently that accu-
rate mathematical models have been postulated for the physical phenomena and instru-
mentation involved. These models are now being used with the estimation theory for
spatial Poisson processes to define new methods for processing data to produce more
accurate images of radionuclide distributions. The new methods are very demanding
computationally, so it is fortuitous that the required computations can be organized for
implementation on the massively parallel, multiprocessor computers that are becoming
available at the same time.

In this paper, we review the mathematical model for data acquired with a positron-
emission tomograph. We then indicate the confidence-weighted method, which is the
one in current use, and the maximum-likelihood method, which is under intense current
study, for producing images of radioactivity distributions. Approaches are described for
addressing the issues of noise, edge enhancement, and high computational load which at
first seem to preclude the practical usefulness of the maximum-likelihood method. Our
discussion is rather narrow because we focus on developments in our group at Washing-
ton University, and we have not attempted a broad review of the many developments
by others in the field.

The instrumentation

The Super PETT-I positron-emission tomograph shown in Figure 1 was designed
and constructed under the direction of Dr. M. M. Ter-Pogossian in the Division of Ra-
diation Sciences of the W. U. Mallinckrodt Institute of Radiology [1]. It was completed
in 1982 and is now located in the Department of Cardiology. The tomograph is used
to acquire data that are processed to form an estimate, which is displayed as a two-
dimensional image, of the spatial distribution of a positron-emitting radioactive tracer
within the body. Such images are used not so much for viewing anatomical structures
but, rather, for regional quantification of biophysical and biochemical processes, such as
blood-flow rate and glucose-utilization rate, and for mapping regions of the brain that
become active when external stimuli, such as a light flash, are applied. The estimation
of rate parameters and brain-mapping studies are very demanding because multiple
images showing how the radioactivity distribution changes with time are needed.

Shown in Figure 2 is the Super PETT-I tomograph during its construction. Cylin-
drically shaped scintillation detectors used to sense photons emanating from the ra-
dioactivity are arranged in a ring geometry surrounding the patient port. There are
four rings, each having 96 closely spaced detectors in the completed instrument. A ring
defines a planar section through the radioactivity being imaged. In addition, cross-plane
data are also acquired permitting a total of seven planar sections through the activity
to be imaged concurrently.

A radioactive decay at some location in the activity creates a positron which travels
a short distance, about 3 mm in water, where it interacts with an electron in an annihi-
lation that produces two 511 keV photons propagating at the velocity of light in nearly
opposite directions along a line. A detection event occurs when two photons are sensed
in opposing scintillation detectors within a small time interval. The data acquired for
such an event consists in part of the line-of-flight of the annihilation photons, as defined
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Figure 1. The Super PETT-I Positron-Emission Tomograph

Figure 2. The Super PETT-I Tomograph During Construction. Partially completed
detector rings can be seen

by a line connecting the two detectors involved. Also, high speed timing circuitry is
used to measure the differential propagation time of the photons. Thus, data (ίΊd,θ)
acquired for a single detection event are three dimensional, consisting of two parameters
(d}θ) that define the line-of-flight by its perpendicular distance d from the system axis
and the angle θ made by the line with the abscissa and a third parameter t that is the
differential time-of-flight.

The measurement of these parameters is imperfect. Errors in measuring the dif-
ferential time-of-flight occur because of the finite resolution of the electronic timing-
circuitry. These errors have been measured experimentally and are reasonably approxi-
mated by a Gaussian density with a full-width-at-half-maximum (FWHM) of about 7.5
cm corresponding to a 500 ps timing resolution [3]. Errors in the direction transverse to
the line-of-flight occur because of the finite size of the detectors. These have also been
measured experimentally and are reasonably well approximated by a Gaussian density
with a FWHM value of about .1 cm. Thus, the measurement errors for a detection event
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are described by a two-dimensional Gaussian density with asymmetric concentration
ellipsoids having their major axis aligned with the line-of-flight of the photons being
detected. Provided the event rate is not too high, measurement errors may be assumed
to be independent for separate events [2, Ch. 3].

A large amount of data is acquired to form images, and this amount is even greater
in newer instruments. For Super PETT-I, the (t,dyθ) parameters for each event are
quantized and stored in a three-dimensional array of dimension (40,128,96). Thus, the
number of data values to be processed for an image is 40 x 128 x 96 = 491,520. In all,
there are then somewhat less than 3.5 million data values for the seven images to be
formed. Super PETT-II is the newest instrument, of which there are two models, one
for head studies and one for body studies. The number of data values for the head unit
is 24 x 128 x 192 = 589,824 per plane, or about 4.1 million values altogether. For the
body unit, there are 32 x 216 x 320 = 2,211,840 data values per plane, or about 15.5
million totally. Thus, there are much data to process, and for some neurological studies
being performed, the seven images should be available in about five minutes.

Mathematical model

The mathematical model which we use is given by Snyder, Thomas, and Ter-
Pogossian [3]; Vardi, Shepp, and Kaufman [4] describe a similar model in discrete form.
There is an emission space X and a measurement space Y where two point processes oc-
cur. One, denoted by {N(A),A G &(X)} and called the emission point process, describes
annihilations, and the other, denoted by {M(A), A G 0"(Y)} and called the measurement
point process, describes the data collected from which estimates are formed. A point
of the emission point process has a coordinate at the location x of a positron-electron
annihilation. It is common to treat the three-dimensional distribution of activity as a
collection of two-dimensional distributions defined by the planes of the detector rings,
in which case the coordinate of a point of the emission point process is two-dimensional.
From the physics of radioactive decay, the emission point process may be taken to be
an inhomogeneous Poisson process with an intensity function {λ(x),x G X} that is
proportional to the concentration of radiotracer.

Points in the emission space are translated to and become points in the measure-
ment space where they represent measured data related to the underlying and unobserv-
able points in the emission space. The measurement space is three dimensional, with
each point in it having coordinates y = (t,d,θ). The translation of a point from the
emission space to the measurement space is random with a conditional density p(y\x),
called the point spread function, that is the two-dimensional asymmetric Gaussian den-
sity describing measurement errors oriented at angle 0, centered at x, and scaled by
l/τr.c Because emission points form a Poisson process and translation errors are in-
dependent, points on the measurement space form a Poisson process with an intensity
μ(y) given by

μ(y) = / p(y\x)λ(x)mx(dx). (1)
Jx

The actual situation is more complicated than this model indicates. Some points
leaving the emission space do not become points in the measurement space. One reason

c The factor of 1/π occurs because flight lines of annihilation photons are equidistributed in angle.
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for this is that the conversion of a photon into a light flash in the scintillation crystal of
the detector is statistical, occurring with a probability less than one. Another source for
loss occurs because one or both of the photons created in an annihilation can undergo
Compton scatter as they propagate through the tissues and bones of the body, in which
case they lose energy and change flight direction. The fraction of annihilations which
are deleted is so large that the effect must be taken into account for acceptable images to
result; 30% to 50% deletions is not uncommon. There are also some points appearing in
the measurement space that are not translated there from the emission space [5]. These
are called randoms. One way for a random to occur is for two photons to be sensed
within a small time interval and be accepted as arising from a common annihilation but
originating instead from two distinct annihilations. There are very many randoms in
collected data, so this effect must also be taken into consideration for acceptable images;
depending on the level of activity, upwards of 30% of the detected events are randoms.
The common practice is to correct measured data for these two effects. A constant is
subtracted to correct for randoms, and the difference is scaled upwards in a nonuniform
manner to correct for attenuation, nonuniformity in detector sensitivity, and wobble-
cycle dwell time. This correction procedure invalidates the assumed Poisson statistics
for the measurement point process. While more fundamental methods for treating
these effects have been known for some time [6], it is only recently that we have had
the opportunity to begin incorporating them into the image formation process directly
in order to learn what benefits there may be in not pre-correcting the data in the
usual manner. For the remainder of this paper, the simple translation model without
insertions and deletions will be used on the assumption that the data are perfectly pre-
corrected. This is thought not to be a major limitation for positron-emission tomography
because the effects can be determined with reasonable accuracy through the use of a
separate measurement to determine attenuation. As an aside, the situation in single
photon emission tomography is quite different in this respect. Here, the effects of
attenuation are severe and the frequent practice of assuming attenuation to be a known
effect that can be corrected is a deficiency in many mathematical descriptions of this
imaging problem.

The loglikelihood functional for the Poisson process on the measurement space, as
a functional of the intensity on the emission space, is given by

/(λ) = - / μ(y)my(dy) + ί ln[μ(y)]M(dy)1 (2)
JY JY

where μ(y) as a functional of X(x) is given in (1).

Imaging problem

The imaging problem is simply stated: we are given the above model and the
locations of points on Y, and we wish to estimate X(x) for all x £ X.

Image formation methods

The confidence-weighted and maximum-likelihood methods are two approaches which
can be used for producing the desired estimate. The confidence weighted method [3,7] is
the one presently used on all positron-emission tomographs that acquire time-of-flight
information. This method produces an estimate which is a linear functional of the
data; since this functional becomes an inverse Radon transform as the point-spread
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function tends to an impulsive fence, the confidence-weighted method may be thought
of as generalizing Radon inversion methods to accommodate nonideal line integrals.
The confidence-weighted method is readily and economically implemented to produce
estimates rapidly, and substantial experience has been acquired by neurologists, cardi-
ologists, and other practitioners in interpreting the estimates displayed as images. For
these reasons, estimates produced by alternative methods must have a superior perfor-
mance for them to be adopted, and the degree of improvement must increase with the
difficulty in producing them. To describe the confidence-weighted method, let (u,Θ)
represent a measurement point (<,cf, 0) in rectangular coordinates, where

fcosθ -

Then, the estimate Xcw(x) produced with the confidence-weighted method is realized in
two steps, the first of which forms the preimage c(x) according to

c(x)= Γ ί p(u\x,θ)M(du,dθ), (4)
Jo Ju

where M(du,dθ) are the measurements organized by flight-line angle and expressed
in rectangular coordinates. Because p(u\x,θ) is a Gaussian density, this step may be
interpreted as placing the mean of the Gaussian error-density at each measurement
point with the major axis oriented along the flight line, with the resulting densities for
all points then summed. Thus, c(x) is a form of Parzen-Rosenblatt kernel-estimate of
the intensity of the point process on the measurement space, averaged over angles. The
estimate is formed from the preimage according to the convolution

Jx
/ h(x - *')c(*'M<fe'). (5)
x

where the kernel h(x) satisfies

J h(x - x') y p(y\x')p(y\x")my(dy)^ mx{dx') = w(x - x"), (6)

in which w{x) is a preselected window function used to stabilize h(x) and control image
noise; for example, the Fourier transform of w(x) may be obtained by truncating the tails
of a Gaussian function to zero at the Nyquist frequency consistent with the discretization
used to compute estimates.

The maximum-likelihood method implemented via the expectation-maximization
algorithm has been under intense study since Shepp and Vardi [8] published their paper
on the subject in 1982. It is straightforward to extend this method for tomographs in
which time-of-flight data are collected [9]. A naive application of this idea results in a
sequence of estimates defined iteratively by

*iy J (7)
Estimates produced by this method appear at first to have better resolution and lower
noise than those produced from the same data with the confidence-weighted method,
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which, in turn, are superior to those obtained from the same data with the filtered back-
projection method when the time-of-flight information in the data are ignored [10,11].
However, as iterations proceed and estimates of ever increasing likelihood are obtained,
the displayed images of the estimates begin to deteriorate, eventually becoming unac-
ceptable to practitioners as they are much worse than those of the confidence-weighted
method.

As experience with the maximum-likelihood method has grown, three difficulties
with it have been recognized and frequently articulated in publications and conferences.
There is a noise artifact and an edge artifact which become increasingly severe as itera-
tions proceed, and the computations required to implement the iterations in (7) are so
demanding that the estimates may take too long to produce for them to be usable in
practice no matter how much better they may be. It is our conclusion that the noise
artifact is due to the use of unconstrained maximum-likelihood estimation and can be
greatly reduced by introducing suitable constraints. The edge artifact is due to the
finite numerical precision in a computer implementation of (7) and can be reduced to
acceptable levels by restricting resolution. The issue of long computation time can be
addressed effectively through the use of specially designed hardware that exploits both
the structure of (7) and contemporary computer architectures.

Noise and edge artifacts

Snyder and Miller [12] and Snyder, Miller, Thomas, and Politte [13] discuss the
noise and edge artifacts encountered with the use of the unconstrained maximum-
likelihood method. The noise artifact appears, with increasing severity as iterations of
the expectation-maximum algorithm proceed, as high peaks and low valleys seemingly
randomly distributed throughout the image. The effect is most easily demonstrated in
one-dimensional computer simulations, as shown in Figure 3. Points of a Poisson process
on a one-dimensional emission space were generated in a Monte Carlo simulation. The
intensity, shown as "INT" in the figure, was uniform on the interval (—2.5, +2.5). Mea-
surement errors were introduced according to a Gaussian point spread function having
a 1 cm FWHM. The unconstrained maximum-likelihood estimate, generated according
to (7) with 5000 iterations and displayed as "INT-EST" in the figure, is very rough
with the high peaks and low valleys of the noise artifact. This artifact arises fundamen-
tally because the loglikelihood functional /(λ) in (2) is unbounded, so a well behaved
maximizer of it does not exist. The noise artifact can be greatly suppressed through the
use of Grenander's method of sieves [14]. For this, the estimate of \(x) is constrained
to lie in a sieve space S defined in terms of a sieve-kernel s(x|ti) according to

5 = {λ(x) : λ(x) = / s(x\u)φ(u)du}y (8)
Ju

where ψ(u) is an intensity function on the sieve space 5. With this approach, we
typically use a Gaussian convolution-kernel sieve, and in [12,13], we show how the
sieve-constrained maximum-likelihood estimate can be produced numerically via the
expectation-maximization algorithm. As an aside, we have also made preliminary in-
vestigations of the use of penalty methods, based on Good's roughness measure, for
controlling the noise artifact [12,15]; we are continuing to investigate this alternative
approach.

The noise artifact is prominent for a low number of measured points. As the number
increases, however, the edge artifact becomes more dominant. Shown in Figure 4 is the
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Figure 3. Demonstration of the Noise Artifact (from [13])

estimate produced by 5000 iterations of (7) for mean-value data, which corresponds to
an infinite number. This was obtained by replacing M(dy) in (7) by μ(y)dy for the
one-dimensional simulation described for Figure 3. The Gibbs' like edge overshoot is
the edge artifact, which in images is seen as a distracting high ridge that follows sharp
transitions in the underlying activity distribution. The degree of overshoot is exquisitely
sensitive to implementation choices. The result labeled "INT_EST.6SIG" and showing
an overshoot of about 18% in the figure was obtained when the Gaussian kernel p(y\x)
in (7) was truncated in the numerical implementation to zero for values of \y — x\ greater
than six standard deviations of the density. The result labeled "INT_EST.3SIG" shows
a dramatic increase to about 35% overshoot when the truncation to zero is at three
standard deviations. The edge artifact is fundamental because the inverse problem
defined by (1) is ill posed. In [13], we have described a way to eliminate the edge
artifact at the expense of reduced resolution by estimating not the intensity λ(x) on the
emission space but, rather, a blurred version of the intensity d(x) defined in terms of a
resolution kernel r(tx;|x) according to

= ί
Jx

r(w)\x)\(x)dx. (9)

In [13], we show that the maximum-likelihood estimate of d(w) can be produced nu-
merically with the expectation-maximization algorithm.

Figure 4. Demonstration of the Edge Artifact (from [13])
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Both the noise and edge artifacts can be greatly reduced simultaneously by com-
bining the use of a sieve and resolution kernel [13]. This is demonstrated in Figure 5
showing the result of a one-dimensional simulation for the same data used in Figure 3.
A Gaussian convolution-kernel with a 1 cm FWHM and a Gaussian resolution kernel
with a 0.8 cm FWHM were used, and 5000 iterations of the expectation-maximization
algorithm were performed.
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Figure 5. Demonstration of the Use of Sieves and Resolution Kernels to Suppress
Noise and Edge Artifacts (from [13])

There are other benefits which accrue with the use of sieve and resolution kernels,
and these are discussed in [13]. For example, without a resolution kernel, it is found
that very many iterations are needed to reach a stable estimate if one is reached at all,
but a stable estimate is achieved with significantly fewer iterations when the width of
the resolution kernel exceeds the width of the sieve kernel. Also, the sensitivity seen in
Figure 4 to implementation parameters is greatly reduced when a resolution kernel is
used.

Performance comparisons of the C W and constrained ML methods

We have performed extensive studies in which the confidence-weighted and con-
strained maximum-likelihood methods are compared. These studies are quite tedious
because more than a day of dedicated computation time is needed to produce an im-
age using the 200 iterations we have found necessary to reach a stable estimate with
the constrained maximum-likelihood method. We will describe comparisons in which
a phantom motivated by neurological applications was used; studies have also been
performed for pie and chest phantoms.

Shown in Figure 6 is the Hoffman brain phantom. This is a plastic phantom made
by the Data Spectrum Company. It consists of voids in a known geometry into which a
radioactive liquid can be placed for performance studies on emission tomographs. The
phantom was filled with food coloring so that a computer model of it could be obtained
with a CCD camera. The image on the left in Figure 6 is the resulting computer model.
The image on the right was obtained by blurring the digitized image with a circularly
symmetric Gaussian kernel with a 7.5 mm FWHM. This is the desired image d(w) when
we use blurring to reduce the edge artifact.
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Figure 6. The Hoffman brain phantom (left),
and blurred Hoffman brain phantom (right)

Figure 7 shows the results of two studies we performed. In the left column are
images obtained from computer simulated data for a positron emitting radiotracer in
the Hoffman brain phantom, and the right column are the corresponding results for real
data acquired with 15O-labeled water and the Super PETT-I tomograph. An average
of about 100,000 measured events was used. The similarity of the two images produced
with the confidence-weighted method gives an indication that the computer simulation
is a reasonable reflection of reality. The images shown for the constrained maximum-
likelihood method were obtained with 200 iterations of the expectation-maximization
algorithm. A circularly symmetric Gaussian density with a 7.5 mm FWHM was used
as a convolution kernel for both the sieve and resolution constraints. We have obtained
similar images for many other FWHM choices, including a large number in which the
two kernels differ; neurologists who have participated in our comparison studies have
tended to prefer those in which the two kernels are nearly the same. Inspection of the
images produced with the constrained maximum-likelihood method compare favorably
with those produced with the confidence-weighted method and to the perfect image on
the right in Figure 6.

Figure 8 shows the results of another computer-simulation study we made with
the Hoffman brain phantom. For this, twenty-five independent realizations of data
from the Super PETT-I tomograph were obtained, taking three full weeks on two DEC
VAX/8530 computers. For each realization, an image was produced using 200 iter-
ations of the expectation-maximization algorithm and the same choices for sieve and
resolution kernels as in Figure 7. The pooled results for the confidence-weighted and
constrained maximum-likelihood methods are shown in the first and second rows of the
figure, respectively. The mean images were obtained as the pixel-by-pixel arithmetic
average over the twenty-five realizations. The mean-value image for the maximum-
likelihood method compares favorably to the ideal result on right in Figure 6, and the
mean for the confidence-weighted method contains greater noise. The images on the
right are of the pixel-by-pixel numerical variance for the twenty-five realizations. By
spatially averaging the gray and white matter areas of the phantom, the variance for
the maximum-likelihood method is found to be about five times lower than that for the
confidence-weighted method. This is significant because it opens the possibility of be-
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Figure 7. Images Produced with the CW and Constrained ML Methods for Com-
puter Simulated Data (left ) and Real Data (right)

ing able to perform brain mapping studies in individual patients, which is not presently
feasible because images for several (typically five to seven) patients must be averaged
to discern regional activity variations when the confidence-weighted method is used.

ι

Figure 8. Average Images Produced with the CW and Constrained ML Methods
for Twenty-Five Independent Computer Simulations
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It is our conclusion based upon studies of this type that the noise and edge artifacts
present with unconstrained maximum-likelihood estimation can be controlled and that
the images which then result compare favorably to those of the confidence-weighted
method. We now address the issue of long computation time for the maximum-likelihood
method implemented via the expectation-maximization algorithm.

Implementation of the ML method

In our view, the long computation time required to produce images with the
maximum-likelihood method is not a fundamental limitation. Table 1 contains a com-
parison made in our laboratory of the computation time required to perform 200 itera-
tions of the expectation-maximization algorithm under a practical selection of parame-
ters when the Super PETT-I tomograph is used for neurological studies [16,18].

Table 1. EM algorithm performance on Selected Architectures
(Super PETT-I parameters, 200 x 200 image array, 200 iterations)

Processor

Mercury ZIP

Masscomp 55020

Cray XMP24

NCUBE

InMOS Transputer

multiple
TMS320C30 DSPs

Image Manipulation
Modules

NCR GAPP

Classification

pipeline array
processor

image processing
workstation

supercomputer

hypercube MIMD
parallel processor

Mesh MIMD
parallel processor

custom MIMD
parallel processor

custom image
processor

systolic array
processor

Total Time/Iteration

11 min

5 min

3 min

17 sec

9 sec

16 sec

3 sec

0.5 sec

The processors ranged from the Cray XMP supercomputer to NCUBE parallel
processor to Image Manipulation Modules, which are being specially designed in the In-
stitute for Biomedical Computing at Washington University [17] and the NCR GAPP,
which is a mesh connected systolic array of simple one-bit processors. We have imple-
mented a 2048 element GAPP processor in our Electronic Systems and Signals Research
Laboratory [18]. The timing estimates for the Cray XMP, Masscomp, and NCR GAPP
were obtained experimentally; the other estimates were obtained by performing oper-
ation counts. The Masscomp 55020 is a conventional 4 m.i.p. processor we use for
performing the EM algorithm. The time per iteration, which includes both computa-
tion and communication time, is indicated in the last column of the table. It ranges
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from 2.8 minutes to 0.5 seconds per iteration.

Neurologists in our School of Medicine are presently performing about 60 patient
studies a week in their brain-mapping research, with each study producing seven images,
for a total of about 420 images per week. Dividing into the number of seconds in a week
indicates that a dedicated processor running full time would need to perform an iteration
in seven seconds. This can be achieved with the specially designed Image Manipulation
Modules and the NCR GAPP. We have also predicted that a specially designed processor
based on the use of residue arithmetic can perform an iteration in about 10 ms, which
would more than achieve the present requirements by our neurologists [19].

Thus, we conclude that the long computation time of the maximum-likelihood
method is not a fundamental limitation precluding the use of the method in a clinical
setting.
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