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Summary

We derive the tail behaviour of the double stable integral

11
I1(h) = [[h(xy)X(dx)X (),
00

where X is a completely asymmetric stable process.

1. Introduction. First we shall show the relation between the double stable
integral and a simple U-statistic. Let {X(f): 0 <t< «} be a completely asym-
metric stable process with characteristic exponent a e (0,1) and B = 1. For the
theory of stable distributions we refer to Gnedenko-Kolmogorov [GK 54], Brei-
man [Bre 68] or Feller[Fel 71]. A summary can be found in Mijnheer [Mij 75].
We use the notation as used in [Mij 75]. See [Mij 75] section 3.2 for a review of
properties of stable processes. The random variables X;, i =1, 2, ... are i.i.d. and

have the same distribution as X(1). X d Y means that X and Y have the same

distribution. X e D (a, B) (resp. Dpy(c,P)) means that X belongs to the domain of

(resp. normal) attraction of the stable distribution with parameters o and P.
Then we have

A0S T xx, & YUY S X() -X (- D} XG) -X G- 1)}
i=lj=1 izj
iv

£ $F (X@n™) -X(G-Da)} XGAY -X(G-1)aD}.
%)
This quadratic form is in a natural way related to the double stable integral

11
1(h) = [[h(x )X (d)X (dy) (1.1)

00

where the function 4 is given by

1 0<xy<1 and x#y 12)

0 otherwise .

h(x,y) = {

256
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The existence of double stable integrals is proved in Szulga and Woyczynski
[SW 83]. Easy to investigate are integrals where the function 4 is of the type

h(xy) =6(x)0(y). (1.3)

For Wiener--Ito integrals we can restrict ourselves to functions 4 of this particu-
lar structure. See Denker [Den 85], lemma 2.2.3. In Section 3 we derive the tail
behaviour of the integral (1.1) in the case 4 is defined by (1.2). In Section 4 we
give the behaviour when 4 satisfies (1.3).

X.X; is a (simple) example of a U-statistic. These U-statistics have

n'M =

.1

2
=

been introduced by Hoeffding [Hoe 48]. For the general theory of U-statistics
see Serfling [Ser 80], Shorack and Wellner [SW 86] and a review of Dehling
[Deh 85].

Next we summarize the limit behaviour of the mentioned U-statistic. We
distinguish several cases.

~

Case I. X;has a finite second moment. EX, = p and o2 (X,) = o2.
Case Ia. The non-degenerate case: p#0. We write X; = p+oU,, i = 1,2, ...

where U;,i=1,2, ... arei.i.d. with EU; =0 and 0'2(U,-) = 1. Then we have

Y,=n(n-1)1Y T XX,

]
= 2+ 20 uoY U+ 02! (n- 1)-1{(20,.)2-20‘?}. (1.4)

This implies
n2(Y,-p?) = 2u0n7 2 U) +az(n—1)'ln‘1’2{ (ZU,.)z—ZU,?}. (1.5)

It follows from the central limit theorem that the first term on the right hand side
of (1.5) has a normal limit distribution with expectation 0 and variance (2u6)2.
The second term on the right converges in probability to 0 for » — -, by the
central limit theorem and the law of large numbers.

Case Ib. In the degenerate case, i.e. p =0, we have
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Y, =62 (n- 1)-1{(20‘.)2-20,?}. (1.6)
Thus
nY 672 = (n-l)’ln{(n'VZZUl.)Z—n'IEU‘-Z} (1.7)

which converges by the central limit theorem and the law of large numbers to a
random variable xf— 1, where xf has a chi--square distribution with one degree
of freedom.

CaseIl. Let X, € D (a,B) with1 <o <2. Then p = EX, exists and we can write
X; = p+oU;, where EU; = 0 and © is some scale parameter. (Remark that the
variance of X is infinite.)

Case ITa. In the non--degenerate case we have (1.4). Now there exists a slowly

n
varying function A such that n™'/%s™! (n) Y, U; converges in distribution to a sta-
i=1
ble random variable with distribution function F(-; a,B). We write
1-1/ 1/ -
NY,-nY) = 2u0h (im0 Y

i=1

&t (n)n

+ n—l/(! (ﬂ— 1)—lh-l (n) 02{ (Zul) 2_ ZU‘Z} (1.8)

Thus the first term on the right hand side has a stable limit distribution. Since 1
<a<2itfollows that »™"* (x-1)"1k™ () (F,U)? converges to 0 in probability.

The random variable U?e D (a/2, 1); thus there exists a slowly varying func-

tion hy such that »™>'*k;! (n) ¥, U? converges in distribution to a stable random

variable with distribution function F(; /2,1). Hence it follows that
n%(n-1)"k" (n) T U? converges in probability to 0.
General U-statistics in this case are considered in Malevich and Abdalimov

[MA 77]. For many random variables X; e D (o, B) we can choose &, = n2. But
this is not in general true. From now on we restrict ourselves to those random
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variables in the domain of attraction where we have h, = 42,

Case ITb. In the degenerate case we have

Y YXX = 02{(2U,.)2-ZU§}.

ixj

As in Case IIa and with the assumption made above, we have that the distribu-
tion of n™'/®k™ (n) Y U; converges weakly to F(; oB) and the distribution of

n°h2(m) Y U? to F(; a/2,1). Thus the statistics o672n> %% (n) Tyxx,

iwj
converge in distribution to the random variable $%-S,,,, where Sy and S, are
dependent stable random variables with distribution functions F(*; o) and
F(; 0/2,1).

This is a special case of a theorem on products of stable random variables.
See Avram and Taqqu [AT 86].

We delete the case o= 1 for well-known normalizing difficulties.

CaseIIl. X, e D(o,B) with 0 << 1. The random variable X; has no finite ex-
pectation. This case is the same as Case IIb.

2. The Characteristic Function. In this section we consider i.i.d. positive
random variables X, X», ... with common distribution function G given by

1-G)=x* x>1 0O<oac<l. 2.1)

Thus we have X, € Dy(o,1). Let Uy, Uy, ... be i.i.d. uniformly distributed on

(0,1). Thus ™' (U)) d X;. Then we have

(oW

T, = ¥ XX {ZG“(U,.)}Z— Y (G}’

inj i=1 i=1

[1oW

n n
— 2
{iglui l/ﬂ} _ 2 U;Z/a

i=1

n n
1/a, 2 ~2/a
(YUY -2UG"
i=1

i=1

whereU(l) <, - - «, < U(,,)a.s.
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1/ 1/ 1/ 2/
=20 o ZZU_ > 1+ {_Z Uy '} "Z gy -

Given U(1) = u we have

n
T Uq, = d W7oy 2 -1/ay

'M=

2 n
vi —1/(1} _ Z U;’ -2/a (2‘2)
i=2

2

where U,, ..., U, are i.i.d. and uniformly distributed on (u,1). U, has a finite ex-
pectation and finite variance. We have for uv0

-1/a _

B:= EU, = (1-w)la(1-0) @ 10%_y) (2.3)

~(1-w)la(l-o)ty/e+l
and
o02:= EU, Y%= (1-w)la@-0) (@ 9%y (2.4)
~(1-uw) o (2-o) o Yo+]
This implies that
o2(U, V% ~o2 for w0

Given U (1) = u, the random variable

n 2 »a
L= (T -En @5)
i=2 i=2

is again a U-statistic. Define, fori=1,..,nY, = U; Ve p. Then we have

s

Vaoi = EV,_+n(n-2) Y ¥;+ ii Yy, (2.6)
T sy

One easily computes for small u

Ean Y -1/a(z )=2a(1—a)“(nu)"2m+l,

EnYV, | ~a?(1-a) 2(nu) 22,
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o2(2 ( Ve, ( 2"-' )) ~da(2-0)-1 (nu)_4’°“'l,

n
o? (n_zmu (n-2)Y Ys) ~ c(nu)~¥%*3_ for some constant ¢
i=2

and

a z Z Y‘YJ ~ (nu)-4/(l+2 .
i=pis2
We shall derive the characteristic function (cf.) f* of the limit distribution of

-2/Q. —2/u ~1/0 -2/(1
n 0Tk U 2 EV

n n-1°

2.7

In section 3 we shall give an estimate for the difference of this cf. f* and the cf. f
of the double stable integral for small values of the argument. For technical rea-

. 1 .
sons we restrict ourselves to the case 3 <a<1. See section 3.

One easily obtains that n Uy converges for »n — e, in distribution to the ex-
ponential distribution. For k, — < and k, = o(n) for n— « we have

P((nk)™'<U <nlk) o1 2.9

for n— .

Take t>0

-ZIGT *

U(l)}

l ®
- nj(l—u)""{ g™

0

-2/a,
Eem! 1' - EU {Eel
(D]

U(l) =u }du.

From (2.7) we have

—2/¢ l/uz -—l/a
-2/a

-2/1: L
E(e' T U(l) =u ) =Ee i=2 i G Hu?
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n-1
o, —2/0 - 2 . —2/a53-1/a
= extu n(n-1) {Eemm U, } ,

where

-2/a -1/aiz =1/0
u

1
EeZi"l U, = ( 1- u) jezl'"l_u‘u_ucy'v"dy .
u

Consider the integral

~2/a -1/a_-1/a

1
I= (l_u)—lj'(eZitu w %y -1)dy

u

-2/ -2/
28y

= (1-w) 2% 2! J' (¢ =1)v " %av,

2u-2,‘u-u ¢

This integral is well-known in the derivation of the characteristic function of a
stable random variable. We define

o) = [("-1v "%y 2.9)
0
We have
0() = - IM(1-a) ™ P, (2.10)
See Laha and Rohatgi [LR79] p. 333. Thus
o, =2/0m %
F ) = imEee™ ™
n—yoo
k.u"
= Gmn [ (1-wrtl(1enro e tem Yy,
R —) oo (uk-)-l
kl
= lim J‘e-meu]eim’(l—a)"(un)—2/0+2dnu (2.11)
n—yoo
=

20201 _ )2y 2/0+2 pa @ ] 2/
- J-e_,emx (1-a)2y eal £y o (2ty f')dy_
0

3. Tail Behaviour of the Stable Integral. In order to obtain the behaviour
of the tail of the double stable integral we need the expansion of its cf. f near the
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origin. We rewrite the cf. f* given in (2.11). Let

0, (%) =j(cos v=1)v "%y (3.1
0

0, (x) = jsinv v 1 %y (3.2)
0

and let the function g, be defined by

- azctay-lol (20-2/‘:

)
80 = {e e for 0<y<eo (3.3)
0 el.fe

Then ¢, («) and ¢, () follow from (2.10). We have

ity (1 — o) 242/ (8+2) Zﬂtﬂ -1 2 -2/
ft (t) - J'elt(! (1-a)~%y e‘a y ¢3( ty )g‘(y) dy. (3.4)
0

Since for y > (202 both 2%°y™! and 2ty~%'* are small, we easily obtain

| aay= [ 4y +o0% (3.5)

(2’) a’2 (20 a/2

for ¢,0. Obviously we have

2%
[ 8.0yay =00 (3.6)
0
fort 0. Then
(2!) «/2 (2’) «/2
[ aay= | {1- y+a2%%y o, (20" “)}dy + eITor. 3.7
o2%* o2’

Using the definition of ¢; and by partial integration we obtain

(21 a/2 a-2/¢2-| t'l
o [ ylo,@ay=2 [ o d
a2 1

= 20, (072 N log (07/%27¢!)  +0 (%) for 140.

With similar calculations as above we show that the error in the right hand side



264 MIJNHEER

of (3.7) is O(f*) for t,0. Combining the results in (3.5), (3.6) and the result
above, we obtain

8.0 dy = 142!* %%, (0727 ) 10g (+7) + O
0

for 0.

For the expansion of f* we have to distinguish two cases: =z<a<1 and

[N

O<ac< % As mentioned before, we only consider the case % <o<1. See after

(3.11). Now we have */ 211=9) o & %2

ita2 (1 — o) 2 -2a+2 ;q2%® -l¢ (2 -z/g)
£ = [0y AR B () dy
0

a2®® (2n*?

= I + J' + f =1 +1,+1,.
0 a2’ 21?2

Obviously we have
1, =0(% fort0,

For y > (2)%2 we have that fy2**2, 2%%y1 and 2ty ?* are small. Expansion
of the integrand gives

I, = J‘ erdy +0™ fort}0.
(21)%?

I, is the most interesting part. We have

(292
L= | 1+.'m2(1-a)-2y‘2/“+2+ia2“:°‘y'1¢2(2ry‘2’“)}g,(y)dy (3.9)

a2’
+ €ITor.

For a2 % we have
(2‘) a/2

¢ J‘ y-2/0+2dy=0(ta).

a2’
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And, as in computation of the integral of g,, we have

(202
© [y, @y % dy = 2%, (@702 Y log (67927 + O(PY).

a2’®
One easily shows that the error on the right hand side of (3.9) is also O(t%) for

t+0. Combining the foregoing results, one obtains in the case % <ac<l

Fo-1=cogtl) +01% (3.10)

in2/oT*
U(l)}—E{e U(l)}:l

-z/c 1/a “-lla
Uzl) Z -lla . _-2/a
EV,_,
e

for t,0. We have

. im 2T
fo-f @ = Jim By, {E{e »

= lim E Ee Yo

R Ugy,

Applying the inequality

le*- e < |x-yl

and similar calculations as above, we obtain, for % <a<l,

IF -1 0| = 0 for 0.
This implies the following expansion for f
f(0) —1~ct®log (1/1) (3.11)

for t40.

In the case 0 < & < 1/2 it is more delicate to obtain an estimate forf - f*. For
that reason we delete this case.

From the theory of characteristic functions we obtain from the expansion of

f
P(I(h) >x) —-ax_alogx as x— oo,
See, for example, Feller [Fel. 71] section xvii.12, problem 14.

4. Extension. In the previous section we considered the integral
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I1(h) = [[h(x )X (dx)X (dy)

where X is a completely asymmetric stable process and 4 is given by (1.2). We
can extend the integral to functions given by (1.3).

THEOREM 4.1. Let I(h) be given as above and

OX)0(y) for x#y
h(x,y) = {0 for x=y"

1
Suppose ¢ positive and j'¢ (x)%dx <. Then
0

1 2/a
1w ¢ { Jo¥ @ dx} {Sﬁ-sm}
0

where S, and Sy, are dependent stable random variables.

PROOF.

n 2 a
Teky = lim[{ )y oGi/mn X} - Y 6% (i/n) n'Z/GXZ]

i
i=1 i=1

fireasd ™

11 1/a
{ |ILES) dxdy} {sg -Sq ,2} :

00

2

2/a
- { o @ dx} Sas2
0

IR

See also section 1, case IIb. The first limit follows from properties of stable ran-

dom variables. One shows the second limit by using characteristic functions.
u]

Remark. We can obtain the tail behaviour as in the case 4 satisfies (1.2). Note
that the dependency of S, and S/, depends on ¢.

In Samorodnitsky and Szulga [SS 88] the asymptotic behaviour of the tail of

I(h) is given in the case of a symmetric stable process. They obtain if 4 satisfies
the conditions of Theorem 4.1

P(|I(h)| >x) ~Cq(h)x *logx as x—> .
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5. The Behaviour of the Extremal Term. In this section we consider the

term U7;{°U 3 ® where Uy and U,y are the order statistics of a uniform distri-

bution. Let T, i = 1,2, ... be the arrivals of a Poisson process. We have

PUL U5 %>n %) = P(U 4y Uy sn7%7%)

1/a~1/0
= P(rl——r; > n2/ax)
2/a
I

1/ 1/ —Q
~P(I;°1;"%>x) = P(I,T,<x™®

-a/2

=x¢ I yleVdy +XI yedy

/2
" 0

- -1 — _—G/z / _—¢/2
=x¢ I yleVdy +1-¢* —x %%

x—c/z
~%ax_alogx for large x.

We have seen a similar tail behaviour for the double ¢-stable integral.
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