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Abstract

We investigate the problem of estimating a function of p, the prob-
ability of success in a sequence of independent identically distributed
Bernoulli trials. The estimation problems of interest here are those
which become more difficult when p is small, such as when estimating
the rate, 1/p, with squared error loss, or when estimating p with rela-
tive squared error loss. A sequential estimation procedure is required
when the specification of the problem requires that the solution be valid
for all values of p. The formulation used is typical of those taken in
the literature, but a new approach to the asymptotic analysis of the
problem is taken, in which the asymptotics are driven by letting the
parameter, p, approach zero. Previous approaches to the study of the
asymptotics have always fixed the distributional parameters, such as p
in the Bernoulli case, and allowed some other parameter of the problem
(e.g., accuracy or cost) to vary. The emphasis in this paper is on the
estimation of powers of p with a loss function equal to squared error
loss multiplied by another power of p. Consistency and efficiency are
defined in this framework and conditions under which the procedure is
consistent and efficient are given.

1. Introduction. There are two major reasons for using sequential proce-
dures in inference. The first, and possibly the main reason with regard to
hypothesis testing, is to decrease expected sample size. The second reason is
to improve tractability; an inference problem may be impossible to solve oth-
erwise. An early estimation example of the latter is Stein's 1945 two-stage
procedure for estimating the mean of a normal distribution with unknown
variance, a problem for which no fixed sample size procedure suffices for all
possible values of the variance.
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Further improvements should be possible by increasing the number of stages,
and ultimately, of course, sequential procedures should treat each observa-
tion as a "stage" for the problem of estimating the mean of a normal dis-
tribution when the variance is unknown, the approximate solution given by
Anscombe (1953) has this structure. This is reviewed in the next section as
motivation for the specific problems and procedures of this paper which are
summarized as follows.

Let {X{ : i > 1} be a sequence of independent Bernoulli-p random vari-
ables (rv's). The general problem of interest here is that of estimating the
value g(p) of a smooth function of p. We restrict our attention to a loss func-
tion which is a product of squared error loss and a function of p, namely,

Ln{tn,p) = h{p)(tn-g{p))2, (1.1)

in which tn is an estimator for g(p). We further restrict ourselves to estima-
tors of the form tn = g(Xn) where Xn is the sample mean. Our goal is to
find a stopping time N for which the risfc, E(LN), is acceptably close to a
pre-specified constant c.

The motivation for our choice of stopping time is that if Xn is close to p
and g is sufficiently smooth, then

-p), (1.2)

so that

Var(5(Xn)) « Uψl (1.3)

for small p. Assuming this approximation is a good one, the best fixed sample

size for a given p, say ξp, is obtained by solving for n in the approximate

equation, risk « h(p)(g'(p))2p/n = c which yields (neglecting for the moment

that an integer is required):

ξp « Kp)g\pfplc (1.4)

for p small. The stopping time, N is then chosen to be the smallest n for
which n> £ γ .

In this paper, we restrict ourselves further to the case in which both g(p)
and h(p) are powers of p, namely,

g(p)=pa^dh(p)=p\ (1.5)

for some real a and b. Examples covered by this include estimation of the

rate 1/p with squared error loss (that is, a = — 1, b = 0 so that 2a + b = —2)

or estimation of p with relative squared error loss (that is a = 1, b = —2
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so that 2α + b = 0). Under (1.5), Ln(tn,p) = pb(tn - pα)2 and we take
ξp = (α2 / c)p2α+b~ι. Notice first that the sign of the quantity 2α + b will play
an important role. In particular,, if one takes tn to be identically zero for
every n then Ln = p2α+b. Thus if 2α + b > 0, any stopping rule including
N = 0, satisfies

E(LN) = p2α+b -> 0 (1.6)

as p —• 0. This shows that if 2α + 6 is positive, one can estimate pα with
arbitrarily small risk as p —• 0 without taking any observations! To avoid
these trivial cases, we assume that 2a + b < 0. Situations with 2a + b = 0
are boundary cases that may well be of interest as discussed briefly in the
following.

If 2a + b — 0, then ξp = a2/cp. Hence the stopping time becomes

N = { ξ X } { n / }

= inf {n >0:Sn> a2/c}

where Sn = X\-\ \-Xn- Thus N is just the waiting time until the \a2/c\ 'th

success, where \x\ stands for the smallest integer > x.

The particular case a = 1, b = — 2 for which 2a + b = 0 is precisely the

case examined by Robbins and Siegmund (1974). They ask for the risk to

be equal to a constant c, the same as here, but their asymptotic study of the

problem takes place as this constant is allowed to approach zero for fixed

p (whereas we fix the constant c and allow p to approach zero). For this

situation they obtain the following efficiency and consistency results;

N p
— -^lasc->0 (1.8)

and

risk
l a s c - > 0 . (1.9)

Cabilio and Robbins (1975) also examine this case but they add a constant

cost per observation to the loss function. They then show that (1.8) and

(1.9) continue to hold for any fixed p and fixed c, but now it is the cost per

observation rather than c that goes to zero. The convergence, however, is

not uniform in p in this case, and they note that the procedure does not

perform well as p —» 0. They introduce a uniform prior distribution on p to

address this latter shortcoming.

Consider what happens in the above cases of 2a + b = 0 if we fix the level

of risk c and allow p to converge to zero. Since as shown in (1.7), N is the

waiting time until \a2/c] Bernoulli successes, in order that τ~ —> 1 as p —• 0
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it must be true that for every ε > 0, P(N < (1 — ε)ξp) converges to zero as
p - 0. But P(N < (1 - ε)ξp) = P(Sϊ{1^ε)ξp] > \a2/c]) where Sϊ{1_ε)ξp] is
just the sum of [(1 — ε)ξp] independent Bernoulli trials, so it has a binomial
distribution. When 2α + b = 0, (1 — ε)ξpp = (1 — ε)a2/c, a constant, so that
the distribution of S^i-ε)^] converges to a Poisson distribution as p —> 0.
Consequently, the probability that N is less than (1 — ε)ξp is nearly constant

as p —• 0. It cannot, therefore, be true that ^ —> 1 as p —> 0 when 2α + 6 = 0.
In any event, it is not clear that the above estimation procedure that uses
the stopping time N defined in (1.7) and then estimates pa with Xa is a
good procedure for small p when 2a + b = 0.

We assume throughout the rest of this paper that

2α + 6 < 0 . (1.10)

Section 2 is a review of related literature. Section 3 gives a proof of the
efficiency of the stopping time in the sense that

N P

— £las.p->0. (1.11)
sp

Section 4 is a discussion of the asymptotic distribution of N and of the es-
timator g(X]y). Section 5 gives the proof of uniform integrability for the
stopping times and loss functions. It is this uniform integrability together
with the earlier convergence properties that enables one to interchange in-
tegrations and limits to obtain the key consistency result:

risk = E(Ln) -> c as p -> 0. (1.12)

We conclude in Section 6 with some remarks and open questions.

2. A Review of Sequential Estimation. Sequential estimation for Bernoulli
trials is closely related to sequential estimation in general. The method of de-
ciding when to stop sampling is almost always the same and is fairly obvious,
as are the estimators that are usually proposed. However, the mathematical
analyses of the various problems differ in the goal pursued and in their dif-
ficulty. The following is a brief historical review. The references cited below
are but a few of the many papers on sequential estimation, though they are
the ones pertaining most directly to the topic of this paper.

The first problem considered was the estimation of the mean of a normal
distribution when the variance is unknown. Since there is no fixed sample
size procedure which can work well for all values of the variance, σ2, a
sequential procedure must be used. The usual estimation procedure is to
estimate the mean, μ, with the sample mean, XN, once you stop. Typically,
the approach is to notice that, if σ were known, there would be a number
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n(σ) that gives the desired accuracy. That is, for any n > n(σ), ~Xn would be
precise enough for the problem at hand. Since σ is unknown it is estimated
after n observations, by σn, say. Then, the stopping rule will be to stop
the first time, JV say, that n > n(σn) and at that time estimate μ with the
sample mean, X^ ,

Two basic goals have been pursued in the literature:

1. Find an interval (XN — d^Xjsf + d) which contains μ with confidence
> 7. Subject to this minimize E(N), the expected stopping time.

2. Define a loss function like Ln = A(Xn — μ)2 + en where c is the cost
per observation. Find a stopping rule, ΛΓ, which minimizes the risk =
E(LN).

Stein (1945) proposed a two-stage procedure which gave a confidence in-
terval for μ but his procedure entails a high value for E(N) when the choice of
the initial sample size is bad. His procedure does, however, give a guaranteed
confidence > 7 whereas many of the later procedures only give confidence
—• 7. One can certainly expect to be able to utilize the information about
σ more efficiently than is allowed by a two-stage procedure.

Wald (1951) tried a slightly different approach to a similar problem: He
restricted his attention to one parameter families with densities and found
procedures which are asymptotically minimax. He looked at the maximum
risk over all possible values of the parameter and found the rule that mini-
mizes it, at least when the cost per observation approaches zero. His rule is
basically to stop the first time that the estimated decrease in variance of the
estimator is less than the cost per observation. This rule is the same as a
rule proposed by Starr and Woodroofe (1972), to be discussed later, which is
shown to have some nice properties in the exponential case. Wald's proof of
asymptotic minimaxity does not apply to the exponential distribution since
he requires the assumption that the information is bounded away from zero,
which is not true in that case.

Anscombe (1953) found an approximate solution for the basic normal
problem, namely; find a confidence interval for the mean of a normal distri-
bution having width 2d and confidence coefficient 7. The procedure should
work for all values of the variance σ2. It is also desirable to have the ran-
dom sample size, iV, as small as possible. This is just a restatement of goal
(1) above for the normal case. Anscombe's solution is a very natural one.
Let α = Φ - 1 ( l — 7/2) be the appropriate percentile of the standard nor-
mal distribution. Then, if σ were known, the required sample size would be
n(σ) = α2σ2/d2. Let N be the smallest value of n larger than n(σn), where
σ2 is the usual unbiased estimate of σ2 after n observations have been made.
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Then, there are two conclusions:

P(coverage) —> 7 as d —> 0 (2.1)

and

E(N)

n{σ)
1 as d -> 0, (2.2)

where P and E refer to the true underlying N(μ, σ2) distribution. Chow and
Robbins (1965) extended this result to all distributions of finite variance.

Expression (2.1) provides a type of consistency, whereas, expression (2.2)
represents a type of efficiency, since it compares the expected sample size of
the procedure with the optimal fixed sample sizes. Instead of the asymptotic
consistency property in (2.1), it would be even better to have guaranteed
confidence for all values of d and σ, but there are only limited results in this
direction. In the normal case, the desired result would be

P (coverage) > 7 for all d and σ,

rather than (2.1). Toward this end, Starr (1966a, 1966b) computed a lower
bound on the confidence coefficient for all values of σ/d for the case of the
normal distribution. He showed, for example, that the actual confidence is
greater than or equal to .928 for all d and σ when the nominal value of 7
is .95. Starr also approached the problem using the second goal mentioned
above concerning the loss plus cost per observation criterion. He showed that
it is important to have a minimum allowable sample size. In the following, let
Ln be the loss function and suppose m is the minimum allowable sample size
so that the restriction N > m is imposed on the stopping times considered.
(A similar minimum sample size restriction will also be important for the
uniform integrability results of this paper.) For some s > 0, consider

Ln = A\Xn - μ\s + n, and N = inf {n >m:n> Kσ^2}.

This procedure is efficient if the minimum sample size m is greater than
s2/(s + 2) + 1. So, for squared error loss, you need m > 3 to have an effi-
cient procedure. Starr adapted this approach to the fixed-width confidence
interval problem and obtained all moments of N.

One can hope for a stronger result than (2.2). One such result might
be that the difference between E(N) and n(σ), called the regret, is bounded
for all values of d and σ. In unpublished work referred to in Simons (1968),
Simons and Chernoff strengthened the Chow and Robbins (1965) efficiency
result to

limsupIϊ(iV - n(σ)) < 1 + m
d->0
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(instead of N/n(σ) —» 1). Simons' main result, though, is that you can
achieve guaranteed confidence by taking a fixed number of observations more
than the Anscombe rule says to take. This number, k say, depends only on
7. He also obtained the result that his procedure has bounded regret if a
minimum example size of three is used, that is,

E((N + k) - n(σ)) <m + k.

Starr and Woodroofe (1968, 1969, 1972) used the loss plus cost per obser-
vation approach to get a procedure with regret < 1 as d —> 0 and confidence
> 7 — 1.72(1 — 7) uniformly for all d, provided the sample size is sufficiently
large. They showed for Ln = A\Xn — μ | s +n, that the procedure has bounded
excess risk (excess over the best fixed sample size procedure for known σ) if
and only if the minimum sample size m > s + 1.

Woodroofe (1977) sharpened some of the results for the Gaussian prob-
lem by using more precise approximations. His results apply for a sufficiently
large sample size (either d sufficiently close to zero or σ sufficiently large).
He obtains a guaranteed confidence procedure by taking k extra observations
for k > 2 — z/, where v is a computable constant. So, if the sample size is
large, only two extra observations are needed to obtain P(coverage) > 7.
This result is independent of the value of 7 but does require a minimum
sample size m > 7. It also requires a sufficiently small d, whereas, Simons'
(1968) result is true for all d. Of course, Simons does not say how many
more observations are needed, only that there is some finite k which will
work.

The above fixed-width confidence interval problem can be formulated in
another essentially equivalent way. That is, specify a loss function such as
squared error loss, and ask that the expected loss be equal to some prescribed
constant. Asymptotic analysis can then be done by letting the prescribed
constant approach zero. This analysis is very similar to the analysis done
when letting d approach zero in (2.1) and (2.2). A further formulation of
asymptotics is the following: Let the underlying distribution converge to a
degenerate one. For example, in the Gaussian case this could mean letting
the variance of the distribution go to infinity, making it more and more
difficult to get a fixed-width confidence interval.

A Bayesian approach to sequential estimation was used in Alvo (1977).
Instead of looking at the worst possible parameter value θ or all 0's, the
procedure is to integrate the risk with respect to a prior distribution on θ.
Alvo defined regret as

(Bayes risk of the procedure) — (Bayes risk of the optimal Bayes procedure).

He used an information inequality approach to get a lower bound on the
Bayes risk of the optimal procedure and then found rules with regret bounded
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by terms of order c (cost per observation) for several one parameter expo-
nential families.

Vardi (1979a) used Alvo's theorem to give some justification for the
bounded regret approach of Robbins (1959), Starr (1966a, 1966b), Starr and
Woodroofe (1968, 1969, 1972), Woodroofe (1977), and Simons (1968). If a
procedure has bounded regret then it is asymptotically Bayes with respect
to any sequence of priors which smooth out towards infinity in a suitable
fashion. He also showed that no procedure can have uniformly negative re-
gret Both of these results justify the search for bounded regret procedures.
Vardi (1979b) obtained such a procedure for the Poisson case.

The Gaussian problem discussed here turns out to be one of the simplest
applications of sequential estimation techniques, but it illustrates the princi-
ples well. There are also some results specifically for the exponential (Starr
and Woodroofe (1972), and Woodroofe (1982)) and Poisson (Vardi (1979b))
cases, and several for the Bernoulli case (Alvo (1977), Cabilio (1977), Ca-
bilio and Robbins (1975), Haldane (1945, 1956), Robbins and Siegmund
(1974), and Siegmund (1982)). In these cases the stopping variable N and
the estimator are dependent, whereas in the Gaussian case they are actually
independent. This dependence makes the analyses much more difficult.

The focus of this paper is upon the Bernoulli case. There are times when
one wishes to estimate p or a function of p more accurately when p is small.
For example, one might be using relative error or squared relative error in
the loss function, or one may wish to estimate a rate \/p. If it were known
that p lay between 0.1 and 0.9, say, then a fixed sample size procedure could
be used. But if no lower and upper bounds on p can be predetermined, no
fixed sample size procedure will suffice.

There has been considerable work on sequential solutions to this problem
using an approach similar to that used by Anscombe in the normal problem
and leading to analogues of his results. The problem is to find a fixed-width
confidence interval for some function of p having a fixed width 2d or an
expected loss equal to some prescribed constant. The asymptotic analysis of
this problem has usually been studied when the fixed width or the prescribed
constant is allowed to approach zero. The problem has also been analyzed
when the loss function includes some cost per observation and then that cost
is allowed to approach zero.

The usual fixed sample size estimate of p has standard error proportional
to yjp, Haldane (1945) notes that " . . . it may be desired that the standard
error at each value of p should be roughly proportional to p rather than to its
square root." This, of course, implies that a more accurate estimate should
be used when p is small so that the coefficient of variation is approximately
constant. Inverse binomial sampling achieves this. Let N be the number
of observations until c successes have been observed. Haldane showed that
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p = jψzj is unbiased for p and has standard error approximately proportional
to p for small values of p.

Negative binomial sampling illustrates well the motivation behind the
stopping procedures of all sequential Bernoulli estimators. It works since
a smaller p will, on average, force a larger sample size. Robbins and Sieg-
mund (1974) give a similar example. They wish to estimate p with ex-
pected squared relative error equal to some preassigned constant, namely
E(p — p)2/p2q2 « c. For any fixed sample size n the expected loss is 1/npq.
In order for the expected loss to be close to c then they need npq « 1/c.
Since p is unknown, the estimate Xn = Sn/n is substituted for p. Since they
want to have nXn(l — Xn) « 1/c, they define N by

TV = inf{n > 0 : Sn(n - Sn) > - } .

After stopping, X^ is used to estimate p. They show that

9-s— > 1 as c -> 0
cpλqι

for any fixed 0 < p < 1 so that as more and more accuracy is required of the
estimator their goal of having the expected loss approximately equal to c is
achieved.

Cabilio and Robbins (1975) consider the second goal, using the same loss
function as above but with a cost per observation added on. They first find
a procedure which works well for any fixed p as the unit cost goes to zero,
which is similar to Robbins and Siegmund (1974) above. They notice that
this procedure performs poorly for fixed cost as p —• 0, a problem they avoid
by introducing a uniform prior distribution on p. The Bayes procedure for
the uniform prior distribution also works well as the cost approaches zero.

Siegmund (1982) strengthens the result of Robbins and Siegmund (1974)
by showing that the results obtained there actually hold uniformly in p.
They had originally just stated that the expected loss converged as c —• 0
for any fixed 0 < p < 1.

Instead of letting the cost per observation or the width of the confidence
interval go to zero, it is very reasonable to let the parameter p approach
zero. After all, one is not really interested in what happens when one has
a minuscule confidence interval or when the cost of observations is tiny, but
one is interested in what happens when p is small for fixed confidence or
fixed cost. This new approach is closely analogous to the usual asymptotic
theory for fixed sample size procedures. For these, one is interested in an
approximation for large values of n, so one considers a sequence of sample
sizes going to infinity and embeds the large n of interest in that sequence.
Here, one is interested in an approximation for small p, so one embeds the
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small p in a sequence of p's going to zero. This is the approach taken in this
paper.

3. The Efficiency of the Stopping Time. Here is a formal description
of the problem and the estimation procedure to be studied. Let Sn be
the partial sum of n independent Bernoulli random variables with success
probability p.

Given constants α, 6, and c with a φ 0, 2a + b < 0, and c > 0, we wish
to estimate the power of p, g(p) = pa. We would like the risk to be close to
the specified constant c when the loss function is weighted squared error,

Ln(tn,p) = h(p){tn-g(p))2, (3.1)

and the estimator tn = g{Xn) where Xn = 5n/n, and h(p) = pb. As we saw
in (1.4) the approximate ideal fixed-sample size for a specific (but unknown)
p is given by

ξp = (αVφ 2 ^ 6 " 1 = (A/p)W-ti (3.2)

where

A = (a2/cY-p and 0 < p = n

 2 ° | & , < 1. (3.3)
2α + o — 1

The parameter p plays a central role in this paper. Let the stopping time N
be defined by

(3.4)

Theorem 3.1. (Efficiency) // 2a + b < 0 then ̂ -£l asp-^0.

Proof. First, simplify the definition of N by rewriting the inequality in
(3.4) in terms of Sn and n, namely,

N = inf{n>0 :n>ξχn}

= inf{n > 0 : n > (a2/c){Sn/n)-1^1-^} (3.5)

= inf{n > 0 : Sn > C(n)}

where

C(n) = Anp. (3.6)

The stopping rule then is to stop as soon as the random walk, 5 n, exceeds
the curve, C(n). Since p > 0 the curve is increasing and concave. Note
that ξp is the solution in x of C(x) = xp, the place where the expectation
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line crosses the curve C. To prove the theorem, we must show that for any
given ε > 0, Sn crosses the curve for the first time between (1 — ε)ξp and
(1 + ε)ξp with probability tending to one as p —> 0. We break the proof into
two lemmas. Lemma 3.2 states that the stopping time is not likely to be
very small, while Lemma 3.3 proves that the stopping time is between the
two endpoints above with high probability, given that the random walk has
not stopped early.

Let Mp be the value of x where the difference C(x)—xp is at its maximum.
In other words, Mp is the point where the tangent to the curve C equals p.
Since C'{x) = Aρx"^'p\ then

\ (3.7)

Lemma 3.2. P(N < Mp) -> 0 as p -> 0.

Proof. By definition,

P(N<Mp) = P[ sup Si"!* >Λ ( 3 8 )

The denominator, C(j) — jp, is an increasing sequence of positive constants
on the range j = 1,2, , Mp. This is clear from the definition of Mp and
also from the following since the derivative of C(x) — xp is non-negative if
and only if Ap | > xλ~p which is equivalent to x < Mp. Therefore, the
Hajek-Renyi (1955) inequality is applicable and it yields

Let

P
hp(x) =

and notice that hp(x) is decreasing in x for 0 < x < Mp. Combining (3.8)
and (3.9) we have

— / MD

P(N
^ P fMp

p)<J2 hpU) < / hp{x)dx = H(p) .

Introduce gp(x) = hp(x) 1(O,M ](X) S O that

roo
H{p) = / 9P{x)dx .

Jo
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Now for fixed x > 0 the function hp(x) is eventually decreasing as p —• 0. In
particular, it is decreasing for all p < po where MPQ > x. For every x > 0
there is a largest value of p, px say, such that gPx(x) > 0. Clearly, p^ solves
MPx = x, so that px = Apx~(χ~p\

Since /ιp(x) decreases as p —> 0 we have

0(z) = sup 0p(z) = #Px(z) = hPx(x)l{OMpχ](x)
0<p<l

Ύ)

p a+0)

( 1 - p ) 2

By its definition, g dominates gp, and, since p > 0, it is integrable. By
dominated convergence and (3.9) we have

/>oo

lim P(N < Mp) < lim H(p) = lim / pp(x)dx = 0. •
p-^0 p-*0 p->0 7o

We now consider the channel determined by two lines of slope p, one on
each side of the line y = xp and equidistant from that line. The width of
the channel is set so that the upper edge intersects the curve C at the point
(1 — ε)ξp. Since C is concave, the lower edge of the channel will intersect the
curve at a point less than (1 + ε)ξp. If we can show that the random walk,
5 n , stays within this channel until it is past the point (1 + ε)ξp: then we will
have shown that N is between (1 — ε)ξp and (1 + ε)ζp. Note first that this
channel has vertical width of

2{C((l-ε)ξp)-(l-ε)ξpP} = 2{A(1 - ε)'# - (1 - ε)ξpP}

where cε = (1 - ε)p - (1 - ε).

L e m m a 3.3. For any ε > 0, as p —* 0

P(\Sk - kp\ < {AW-rifcp-PM-ri k = 1,2, ••• (1 + ε)ξp)

Proof. Use the Kolmogorov inequality in the following form:

P(\Sk - kμ\ < (σ/δ)VZi I <k < L) >l - δ2 .

in which μ = p, σ — y/pq, L = (1 + ε)£p, and

P)
1/2

 0/g-0)

c V

For any fixed ε > 0 we have p —* 0 => δ2 —> 0 which proves the lemma. •
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We now combine Lemmas 3.2 and 3.3 to complete the proof of Theorem
3.1. Simply observe that

P(\N/ξp-l\<ε)

= P((l-ε)ξp<N<(l + ε)ξp)

= P(Sn stays in the channel and N > Mp)

= P(\Sk - kp\ < {α2/c)cεp-pKι-ri-1 < k < (1 + ε)ξp and N > Mp)

= 1 - P(\Sk - kp\ > cεpξp for some 1 < k < (1 + ε)ξp or N < Mp)

< 1 - P(\Sk - kp\ > cεpξp for some 1 < Λ < (1 + ε)ξp) - P(N < Mp)

and apply the lemmas. •

4. The Asymptotic Normality of the Estimator. The purpose of this
section is to establish the asymptotic distribution of the estimator g(Xn) =
XN. This is stated below as Corollary 4.1, after we establish the asymptotic
normality of N in

N — £
Theorem 4.1. ~ -^ JV(0,1) as p -• 0 ; tί /iere

(4.1)

Proof. Observe first of all that if for each p G (0,1), np is a positive integer
satisfying pnp —> oo as p —* 0, then

γp = s»'*m' Λ N{Qt 1)asp^0_ ( 4 2 )

This is an easy consequence of Lindeberg's CLT, for example, since Vai(Snp) =
prip(l—p) —• +oo asp —> 0. It remains to show that the result to be proved is
closely tied to this version of the CLT for Binomials in which the asymptotics
are driven by the parameter p approaching zero.

Let {εp;p > 0} be a sequence of positive numbers satisfying: εp —> 0 as
P -> 0,
εp > Ksp/ξp for a given positive number K, and (1 — εp)ξp is an integer.
Such a choice of εp's is possible because

Sp/ξp = const, x pPl^-PΪ -• 0 as p -> 0 .

Since

np = (1 - εp)ξp = (1 -
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is of the form covered by (4.2), we have

as p —* 0. Define

3p(z) Ξ ξ p + xsp, (4.3)

as a quantity that is approximately x standard deviations (of N) away from
ξp, the approximate mean of N.

Consider the random channel of vertical width 2ε(pnp)
1/2 which runs

from time np = (1 — εp)ξp to time Zp(x), has slope p, and is centered around
the point Snp. Assume x > 0; the case of x < 0 will be similar. Let AXtβ be
the event that the random walk Sn stays in this random channel from time
np = (1 — εp)ξp to time zp(x). It is clear that AXi£ is independent of the past
up to time (1 — εp)ξp so

P(Ax,ε) = P(\Sk - kp\ < ε(pnp)1/2; k = 1,2, , ̂ (a?) - npξp) .

Lemma 4.2. Given any x and ε > 0, P(AXj£) —> 1 as p —> 0.

Proof. We have

- fep| > ε(prip)1/2; some fc = 1,2, , zp(x) - np

(44)

by Kolmogorov's Inequality. The right hand side of (4.4) is less than

zp(x) - (1 - εp)ξp _ 1

by (4.2). •

The next result gives a lower bound on the probability of interest.

Lemma 4.3. For all x

liminf P(N < zp(x)) > Φ(x).

Proof. For any arbitrary ε > 0,

P(N < zp(x)) > P((N < zp{x)) Π 4 , ε ) .

Let L denote the line (depending upon x) with slope p which intersects the
curve C at the point zp(x), and let 7εp(#) be the height of L at the point
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np = (1 — εp)ξp. If the event AXj6 occurs and SUp is large enough, then N
will be less than zp(x). In other words,

' \ A X ) ε ) ( 4 . 5 )P(N<zp(x))DAXj£) > p

= P(Snp > Ίεp(x) p ^

by independence. The function ηεp is complicated, so we define a simpler
function, δ\^p{.), as follows that will satisfy δ\^p > j £ p : Let L\ be the line
tangent to the curve C at the point ξp. Let L<χ be the line with slope p which
intersects L\ at the point zp{x). Then define 5ij£p(x) to be the height of L<ι
at the point (1 - εp)ξp. See Figure 4.1 for a sketch of these lines when x > 0;
when x < 0 one would have zp{x) < ξp and a corresponding relocation of
the lines relative to the dotted expectation line.

*!.%<*<*»

%(*,(*))

Figure 4.1

We require the following technical result about <Sij6p.

Proposition 4.4. Given η > 0 there exists a po > 0 such

< -x + η

for all p < po and for all x.

Proof. For horizontal and vertical variables w and y(w), the equation for
the line L\ is

y(w) = C(ξp) + C'(ξp)(w - ξp). (4.6)

Now, C'(x) = Apx~^~^ so that direct substitution shows that C'(ξp) = pp.
It then follows that the equation for L\ is
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and for L<ι it is

y(w) = pw- pnp + διi£p(x).

Since L\ and L<ι intersect at zp(x), setting the two equations equal there

yields

= C{ξp) + ρp{zp(x) - ξp) - pzp{x). (4.7)

Since zp(x) — ξp = xsp and C(ξp) = pξp one obtains from (4.7) that

δli£p{x) - pripp = pξP - pzp{x) + pp{zp(x) - ξp)

But this means that δ\^p{x) — pnp = —x(l — εp)"1/2\/pn^. The proof of the

proposition is therefore complete since εp > 0 and εp —• 0 as p —> 0. Π

Return now to (4.5) and the proof of Lemma 4.4. Since 5i5£p > 7 ε p , (4.5)
gives

< zp(x)) > P(Snp > δltεp

= p { Y p ) >

which by Proposition 4.5 is bounded below, for sufficiently small p, by

where η is an arbitrary positive number, hence by Lemmas 4.2 and 4.3,

liminf P(N < zp(x)) >Φ{x-η + ε)

for all η, ε > 0, thereby completing the proof. •

Next we state and prove the upper bound counterpart to Lemma 4.3,
namely,

L e m m a 4.5. For all x

limsupP{N < zp(x)) < Φ(x).

Proof. Clearly

P(N < zp(x)) < P((N < zp{x)) Π Ax<ε) + P{A%ίS). (4.8)
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Concerning the first term on the right hand side of (4.8), observe that

P((N < zp(x)) Π A^ε) < P((Snp > Ίe{x) - ε{pnp)ιl2) Π AXj£)

where η£p is as defined earlier. This time, the simpler function than η£p that
we need must be smaller than η£p. To this end, define L3 ,£4, and ^2,εp( )
as follows: Let L3 be the line with slope C'(zp(x)) which passes through the
point (ξp, C(ξp)). Let L4 be the line with slope p which intersects L3 at the
point zp(x), and let 52,εp( ) be the function which maps x into the height of
L4 at (1 - εp)ξp. Then δ2,εp(zp(x)) < Ίεv{zp(x)) and

P((N < zp{x)) Π AeJ < P((Snp > δ2,£p(x) - eipup)1'2) Π

. p(γ

The needed analogue to Proposition 4.4 is then

Proposition 4.6. Given η > 0 there exists a po such that

prip
— > -x-η

for all p > po, and for all x.

Proof. The line L3 satisfies the equation y(w) — C(ξp) = C'(zp(x))(w — ξp)
and the equation of the line L4 is y(w) = pw — (pnp — δ2^£p(x)). At the point
zp(x) the two lines intersect so

(C{ξp) + C\zp{x)){zp{x) - ξp) = pzp(x) -pnp + δ2i£p{x))

or

δ2,εp(x) ~ prip = pip - pzp(x) + C/(zp(x))(zp(x) - ξp) (4.10)

= -pxsp(l-C\zp(x))/p).

However,

C'(zp(x))/p =

= p{\

where K is a positive constant by (4.2). Thus (4.10) becomes

- p + O(p5Π^T)}.

Since psp/y/pΰp~ = 1/(1 - p)-^! — εp, the proof is complete. •
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The proof of Lemma 4.5 now follows straightforwardly from (4.8) and
(4.9) upon application there of Proposition 4.6, Lemma 4.2, and the limit
result of (4.2). D

Since Lemmas 4.3 and 4.5 together comprise Theorem 4.1, its proof is
also complete.

Once we have the limiting distribution of ΛΓ, a corollary gives us the
limiting distribution of the estimator, Xn.

Corollary 4.7. pb/2[Xa

N - pa) Λ JV(O, c) asp-> 0.

Proof. Since by construction, C{N) < SN < C{N) + 1, and by (3.6),
C(N) = ANP, we obtain

ANp~ι < ~XN < ANp~ι + ΛT1. (4.11)

Write Zp = (N—ξp)/sp as the random variable in Theorem 4.1 that converges
to a standard normal. Direct substitution gives

- a(l - p)(sp/ξp)Zp + O(((sp/ξp)Zp)
2) -

where (4.2) has been used. Hence

pb/2{(C(N)/N)a - pa} Λ ΛΓ(O, c) as p -> 0.

Since 1/JV is of smaller order than C(N)/N = ANp~ι, it is straightforward
to show that pb/2{(C(N)/N - 1/N)a - pa} converges in law as well to the
same iV(0, C) r.v., and thus completes the proof. •

5. Uniform Integrability and Convergence of the Risk.

In this section we obtain the key result about the uniform integrability of
the loss function and the consequent convergence of the risk. In the process,
we obtain a sharp bound on the tail probabilities for the loss function. To be
able to establish these results, it is necessary to impose a minimum stopping
time in order to offset the effect of an initial string of 'successes'. To this
end introduce the lower limit

mr = inf{k > 0 : C{k) > -T- min{ί>,2a + b}} (5.1)
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and in analogy to (3.4) and (3.5), define

Nr = inf{n > mr : n > ξ-χ } = inf{n > mr : Sn > C(ή)}. (5-2)

Let ZPir denote the square root of the loss function, namely,

Z = pb/2\~χ<j> — p α \ . (5 3)

The key bound needed for this section is given as Theorem 5.1. For this, set

r
 ΪU o , M ί 1 if α > 0

τ r = - - mm{6,2α + 6}, 7 = | ^ ^ _ 1 / M l _ p)) . f β < Q

(5.4)

Theorem 5.1. For {Zp,r V € (0,1)} as defined in (5.3), there exist positive
constants K, K\, K<ι, K3, τ > τr and 0 < e < 1 such that for all u > 0;

i. P(ZPir > u,Nr < ξp) < K\pτ + K2e~K3U for p sufficiently small, and

it. P(Zp,r >u,Nr> ξp) < e'Ku2Ί for all p G (0,1),

where τr and 7 are defined in (5.4)>

We delay discussion of the proof of these bounds until later. We state
next the uniform integrability result and give its proof using Theorem 5.1.

Theorem 5.2. For anypo G (0,1) and r > 0, the family {Zτ

vr : 0 < p < po}
is uniformly integrable.

Proof. It suffices to show that E(Zpr) < 00 for some s > r. To this end,
write

P(Zp,r>u)dus (5.5)

POO POO

= / P(Zp,r >u,Nr< ξp)dus + / P(Zp,r >u,Nr> ξp)dus.
Jo Jo

Prom Theorem 5.1, it follows that only the first integral needs attention,
and that is because of the constant term, K\pτ, that is part of its relevant
bound. However, the range of integration is bounded. To see this, note
first that by (3.2), Nr < ξp is equivalent to AN$~l > p. However, by (3.6),
C(Nr)/Nr = ANγ~l. Also, by definition of the stopping time Nr as a first
passage time,

C(Nr) - C{Nr) 1 .
UXN<-NΓ + N'' ( 5 6 )
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cf. (4.11). Thus on the event (Nr < ξp), it follows that X^r > p, and so
for a > 0 the event in the first integral of (5.5) is contained in the event
[pbl2(Xa

N - pa) > u), an event that is empty unless u < p6/2. Hence by
Theorem 5.1, for sufficiently small p the first integral is bounded above by

r

/
Jo

{KlP

τ + K2e~κ*u}dus

o

which is uniformly bounded provided only that r + sb/2 > 0. However, since
T > rr = —rbj2 when a > 0, any s G (r, —2τ/6] would suffice.

Similarly, for a < 0, Nr < ξp implies that Xa

N < pα, so that the event in
the first integral of (5.5) is now contained in the event (pb/2(pa — Xa

N) > -u),
which is empty unless u < pa+b/2. Thus, in this case the integral will be
bounded if r + s(a + b/2) > 0. But now r > rr = —r(a + 6/2), allowing for
any s G (r, —r/(a^/2)]. Thus for either case, use any s G (r, rτ/τr]. •

The main consistency result of this paper, described in (1.12), is now an
immediate consequence of the uniform integrability established in Theorem
5.2.

Corollary 5.3. (Consistency) For any r > 2, the sequential estimation
procedures based on the stopping time Nr satisfy

lim Risk = lim E(Z2 ) = c.
p_0 p->0 V p ' r /

Remarks on the Proof of Theorem 5.1. The derivation of the bounds in
Theorem 5.1 requires lengthy computations that rely heavily upon the power
form of the functions g and h in our loss function; see (3.1). Moreover, the
steps in the proof follow closely those detailed in Hubert and Pyke (1997)
for the continuous Brownian model. In fact, it was the methodology used
to solve the Brownian motion problem that pointed the way to the proofs
in the more difficult discrete problem of this paper. The self-similarity of
Brownian motion enables one to transform the original problem that involves
a single stopping curve applied to a family of processes (indexed by p) into
a problem involving a family of stopping curves applied to a single process.
In the transformed problem, the appropriate linear approximations to the
curves were more readily determined. As for the continuous case, the proof
here would require a partitioning of the range of Nr into three intervals,
and then approximation of the curve C by a straight line over each of these
intervals.

For the discrete problem of this paper, an added difficulty is the jump
over the boundary at 7Vr, as seen in (5.6). To handle this, the approach is
to establish first the probability bounds of Theorem 5.1 for the approximate
square-root loss given by

-p% (5.7)



Sequential Estimation for Bernoulli Trials 283

and then deduce therefrom the bounds for ZP)T. The particular details,
though not the ideas, are different for the two cases of α > 0 and α < 0.

Suppose α > 0. Then, to split the range of the variable Nr into three
pieces and approximate the curve C with a straight line on each piece, we
begin as follows. Observe

[Z;tr>u,Nr<ξp] = \p»/2\(C(N)/Nry-pα\>u,Nr<ξp}

= \p»/2{(C(Nr)/Nrr-pα}>u}

= (AN?-1)α>Pα(l + upp/2il-p)} (5.8)

= [JVr < (Λ/P)1/(1~P)(1 + upfAi-pJj-iMi-p)]

= [Nr<ξptp.(u)}

where tp-{u) = (1 + UJ/>/2(i-p))-i/α(i-p) fOΓ α > 0. We therefore need to

bound P(Nr < ξptp-(u)) Ξ PP{U), say, for each u. To this end, choose

ε € (0,1) and set

vp =

where K is a positive constant. Notice that the maximum value of C(t) — tp
occurs at the point ίmax = pι^1~p^ξP so that ξpvp is to the left of ίmax for
p sufficiently small. Let wp be the unique value greater than tmax/ξp which
satisfies

C(ξpvp) - ξpvpp = C(ξpwp) - ξpwpp.

Define u\ and u<ι by

tp-(u\) — vp, and tp-(u2) = wp.

The range of u is split first into the three intervals I, II, and III defined by

I. u\ < u, II. U2 < u < HI, III. 0 < u < U2

Although these intervals are described for u, their resulting partitions of
the n-axis through ξptp-(u) are the more natural, and should be used by
the reader in drawing figures to assist with the reading. Consider interval
I. Observe first that since Nr is bounded below by m r, we have P(Nr <
ξptp-(u)) = 0 whenever u is such that tp-(u)ξp < mr. Consider therefore
only those u for which tp-(u)ξp > mr. Unlike for the continuous problem
we are unable to get a single bound that applies over the entire interval I,
but must further split I into subintervals, Iα and I&, say, as follows. Define
us by ξptp-(us) = m! where m! is a constant greater than mr to be fixed
later. Then define Iα = (u^, oo) and I& = (ui, us]-
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For u's in interval Iα, Nr < ξptp-(u) implies that Sn > C(n) for some
mr <n <m!'. The probability that Sn crosses C(ή) in Iα is bounded by the
probability that Sn crosses the horizontal line, Lo, of height C(mr) before
ra'; that is

P(Nr < ξPtp-(u)) < P(Nr<ξptp-(u3)) =

W^ (5.9)

We note that (5.9) is the reason we defined mr as in (5.1). It should also
be noted that it is easy to show that this is the smallest that mr can be if
Theorem 5.2 is to be true.

On interval I& we bound the curve from below with the line L\ that passes
through the points (m1\C(mf)) and (ξpvpi C(ξpvp)). We use a result due to
Tacklind (1942) to obtain a suitable bound on the probability of crossing
L\. Denote the slope and intercept of L\ by ap and βp, respectively. Let
Tfc denote the time of the fcth success, that is, 2* = inf{j > 0 : Sj = k}.
Our process Sn increases only at n's which coincide with a T^, so the time of
crossing of L\ must be equal to T& for some k. Sn will cross at time T^ if and
only if k > βp + αpΓfc, or equivalently, if and only if T& — (k — βp)/ap < 0.
The independent and equidistributed increments for Tacklind's theorem are
Tfc — Tk-i — ]~/OLP, and their generating function is

φ{s) = E(es{Tk-Tk-1-1/a^ = pe-'W"*-1^! - qe8)'1.

According to Tacklind's result we have

P(absorption) < e~Rβp/ap

for any R > 0 such that φ(—R) < 1. It may be shown that R = Rp =
—koap\n(p)/βp may be used where ko is a positive constant. In fact, the
calculation of φ(—Rp) shows that it converges to 0 as p —> 0. Therefore,

P{Nr < ξptp-{u)) < P(absorption) < e~Rpβp/ap = ekoHp) = pk°

for u\ < u < u3 and for p sufficiently small. Choose fco, then m/, and then ε
such that

fco > -r6/2, C(rri) > 2fc0, and 1/2 - ε/2 - ko/C(m') > 0.

We can then combine (5.1) with this to get

P(Nr < εptp-(u)) < KpTr (5.10)

for any u > txi, for p sufficiently small, where τr = min(fco, \C(mr)']) >
-rb/2.
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Next, consider interval II. For this interval we use the same bound on the
interval I section and a line, L2, which has slope p and passes through the
point (£pVp,C(ξpυp)) on the interval II section. The probability of crossing
the boundary formed by LQ, L I , and L2 between mr and ξptp-(u) is less than
or equal to the probability bound in (5.10) plus the probability of crossing
Z/2 between 0 and ξp. By means of the Skorokhod and Bernstein Inequalities,
we obtain

P( max \Sk - kp\ < δ) <
l<fc<ξp

where σ2 = pq and

δ = C(ξpVp) - ξpvpp = Λ

Hence, ξpσ
2 + <5/3 = O ί p - ^ 1 " ^ ) , leading to

P(Nr<ξptp-(u)) <
{OΛZ)

for suitable i ί whenever ui < u < u\.
For interval III the method is similar, but the L2 line is replaced by the

line L3 which is below L2, has slope p, and passes through (ξptp-(u), C(ξptp-(u)).
Whereas L2 depends only on p, L3 depends on u as well as on p. Once again
we use the bound in (5.10) for the interval I section of the bound. We again
use the Skorokhod and Bernstein Inequalities to obtain (5.11) but this time
with

δ = C(ξptp-(u))-ξptp-(u)p

It may be shown as in Hubert and Pyke (1997) that upf^1-^ -> 0 and
tp-{u) -> 1 over 0 < u < u2, from which it follows that δ = O(jpPl2{ ι~p)u).
It follows then that the probability of crossing L$ satisfies

cxpf -Q(uV»/(1-/')) •>
exPiO(p-p/(i-p))+O(wp-p/2(i-p))/

g-KminίO^^.Oίup-"/^1-"))) < e

for p sufficiently small. In view of (5.10), this leads to

P(N < ξptp-(u)) < KlP

τ> + e~κ*u (5.14)
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for 0 < u < U2, and p sufficiently small. To simplify, we combine the three
bounds in (5.10), (5.12), and (5.14) to get

P(N < ξptp-(u)) < KlP

Tr + e-K2P-ε^ι-ri + e-κ3u = κ^prr + e-κ5u

(5.15)

for u > 0 and p sufficiently small.
Consider now the right hand tail of Nr in the case a > 0. The set

[Z;ir>u,Nr>ξp] = \pb/2\C(Nr)/Nr)
a-pa\>u,N-r>ξp)

= \pb/2(Pa-(C(Nr)/Nr)
a)>u]

= [Nr > {A/p)ιl^-p\l - uppMi-P)))-i/a(i-p)

= [Nr > ξptp+(u)]

(5.16)

where tp+(u) = (1 - upp/2(i-p))-i/α(i-p)# j t i s important to note from the

second line in the above expression that always u < pa+b/2 = p-6/2^-6).

Now Nr > ξptp+(u) implies that the partial sums Sn have remained below

the stopping curve for n = rar,... , ξptp+(u) which implies in particular that

Sξptp+(u) < C(ξptp+(u)). (Note that we take a u which gives us an integer

value of ξptp+(u) here.) Thus,

P(Nr > ξptp(u)) < P(Sξptp+{u)C(ξptp+(u)))

-np ^^ C(n) - np
p

n n

where n — ξptp+(u). Bennett's Inequality with n = ξptp+(u), t = (C(n) —

np)/n, σ2 = pq and b = — p states that

for — p < t < 0. An expansion of the logarithm inside the braces, together

with the fact that bt/σ2 is positive, leads to

P(Nr > ξPtPφ)) < e~K^ = <Γ™2I°\ (5.17)

Upon substituting x = upp^2^1~p^ we get

tp+{u) = (1 - x)-ιl<ι-P\ n = ξp{l-x)-ιl^ι-p\ and

t = 9M. _ p = An-fi-P) _ p
n

= Aξ~^-P\l - xfla -p = - x)ι'a - 1).
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From (5.17) we then obtain, making use of the fact that p~P^λ~P) = u2/x1,

P(Nr > ξptp+(u)) < exp{-Kξp(l - a O - W i - p y { ( i - x)^ - l)*}/pq}
= expi-Kp-riV-tiil - z)-Vα(i-P){i _ (i _ x)i/α}2}
< e-Ku*J(x)

(5.18)

where

J(z) = aΓ 2(l - ^ - ^ ( ^ ^ { i _ (1 _ x)Vαj2β

Because of the form of tp+ and the remark following (5.16), x is always
between 0 and 1 for all values of p and u to be considered. It follows then
that J must have a strictly positive minimum. Prom that and (5.18) we
conclude that

p(Nr > ξptp+iu)) < e~Ku2 (5.19)

for all p G (0,1) and u > 0.

For the case of α < 0, the steps in the proof are similar to the above.
The definition oίtp-(u) changes to tp-(u) = (i_^pp/2(i-p))-i/α(i-p) s o t h a t

[Z;,r > tι,JVr < ίp]
[Nr < ξptp-(u)]. The range of ix, and hence of n, is split into three in-
tervals as before. Intervals I and II are similar since they depend only on
the curve C and on the values rar, ra', vp, wp, and ξp. Interval Iα is exactly
the same so we get the same result as in (5.7), namely,

for u in Iα. For I&, proceed as before but choose ko, ε, and m' such that

fc0 > -r(2α + 6)/2, C(m') > 2A;0, and 1/2 - ε/2 - ko/C(m') > 0,

for which

P(Nr<ξptp-(u))<pk° (5.20)

for ui < u < uz and p sufficiently small. With these changes the conclusions
for u in intervals I and II are

P(Nr < ξptp-(μ)) < KpTr;Ul < u

P(Nr < ξpip-(ti)) < e-KlP~ε"/(1~P) +K2p
Tr; u2<u<ux

where τ r = min(fco, [C(m r)]) > —r(2α + 6)/2. Interval III is nearly the same

as it was for α > 0; the only difference is in the definition of ίp_. Again, in

Bernstein's Inequality

δ = C(ξptp-(u) - ξptp-(u)p)
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for p sufficiently small, so that (5.13), and hence (5.14) and (5.15), hold also
when a < 0.

For the right hand tail of Nr when α < 0, tp+ is defined by tp+(u) =
(1 + wpp/2(i-p))-i/α(i-p)# Proceed as before to (5.17), the bound obtained
from Bennett's Inequality. The substitution x = upp/2^1'^ now leads to
quantities in which 1 + x replaces the former 1 — #, namely,

tp+(u) = (l + x j-^α-p), n = £p(i + x)-V*(W>)? a n d

Since 0 < x/u < 1 by definition of x, we have p~p/(1~p) = u2x~2 > u2εx~2ε

for any 0 < ε < 1. thus, the bound's exponent satisfies

i« -1}2

> Ku2εχ-2ε(l + ̂ " ^ ^ - ^ { ( l + x)ιla - I} 2,

for all 0 < ε < 1. Here, x takes on all positive values in contrast to the
previous case of a > 0. We check first that when ε = 1

lim x" 2 ( l + x)"1/α(1-^{(l + x)ι'a - I} 2

is positive. Moreover, if —l/α(l — p) > 2, then the limit as x —•> oo is
also either positive or +oo. However, to cover the other case, choose ε =
7 = min{l, —l/2α(l — p)} for which the limit inferior of nt2σ~2 as x —> oo
exceeds i ίu 2 ε . Since the two limits are bounded away from zero, the function
is continuous, and the function is always positive; it must have a strictly
positive minimum, enabling us to conclude

P(Nr > ξptp+(u)) < e-κ"2Ί (5.21)

for u > 0 and appropriate constants K and 0 < ε < 1. •
This completes the derivation of the bounds of Theorem 5.1 for the Z*r

of (5.7). It would remain to show that hey apply as well to the desired Zp,r

of (5.3). The only difference between the two is that Z*r uses C(Nr)/Nr

to estimate p, whereas Zp,r uses XNΓ- Recall from (5.6) that the difference
is small. However, it requires considerable detail to handle it adequately,
detail that we will not give; the reader will find one approach in Hubert
(1986). the setting, however, can be clarified by introducing the simplifying
notation Xp = p~ιXχr and Yp = p~1ANf~1 in terms of which (5.3), (5.6)
and (5.7) become

YP < Xp<Yp + {pYp/A)ιl^-p)
(5.22)

z;r = p-p/d-pψi i t l ) \ \
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In this notation, the event (JVr < ξp) = (Yp > 1) C (Xp > 1), while the
event (Nr > ξp) = (Yp < 1) C (Xp < 1 + {p/A)1^1"^). It is again necessary
to separate the cases of α > 0 and α < 0, but in both cases one handles
the difference Z*r — Zp^r through the inequalities of (5.22) and applying
the bounds already obtained for Yp to control the difference (Xp — Yp) <

6. Remarks and Open Problems. In this paper, we have presented a new
approach to the asymptotic analysis of the sequential estimation problem
for functions of the Binomial parameter p. Instead of letting the goal of
the problem (such as the accuracy or the cost per observation) change in
order to drive the asymptotics, this approach leaves the goal unchanged,
focusing instead upon asymptotics in which the parameter approaches zero.
Within this different framework we have given conditions under which the
procedures are efficient with respect to having the random sample sizes close
to the best fixed sample sizes (Section 3), shown that the estimator and
sample size are asymptotically normal (Section 4) and obtained essentially
exponential tail bounds for the sample size that yield uniform integrability
of the loss functions and the consequent consistency of the estimator and
convergence of the risk (Section 5). The proofs of these results depend
significantly upon the particular power form of the functions g and h in the
loss function of (3.1).

It would be of interest to study this problem for more general g and h.
To see how such a generalization might proceed, consider (1.1)—(1.4) and
the start of the proof of Theorem 3.1. If we follow the same procedure and
put off the specialization until later we come up with the stopping time
N = inf{n > 0 : Sn > n ξ " 1 ^ ) } where ξp = h(p)g'(p)2p/c and ξ'1 is the
inverse of ξp, namely, ξ " 1 ^ ) = p.

In order for the definition of N to make sense we take ξp to be a monotone,
decreasing function of p, so that the ideal expected sample size, ξp, increases
as p —• 0, which certainly is reasonable in the context of our problem.

Presumably, if n ξ " 1 ^ ) is increasing, concave, and sufficiently smooth,
(as it is in this paper when 2α + b < 0) then similar theorems to those that
we have proved may still hold. However, the methods of proof used here
are not easily adaptable to this more general case; we make essential use of
the fact that we could explicitly invert ξp and solve certain equalities and
inequalities that arise. The outline of the proofs may well carry over to
the more general situation, but the details appear to become substantially
more difficult. One particular special case that is easy is the case h(p) = 1
and g(p) = log(p). In this case, nξ~1(ή) is constant, so the problem is very
similar to that of the boundary case, 2α + b = 0, when g and h are powers
of p. As in that case, Np/ξp does not converge to 1 (see the discussion prior
to (1.10)).



290 Hubert & Fyke

Several aspects of our approach to the problem have been ad hoc in na-
ture, though they are consistent with work in the literature. For example,
we have arbitrarily chosen a loss function which is a function of p multiplied
by squared error loss. The loss could clearly take a more general form than
this. The fact that the loss was squared did not play an important role and
the proofs would probably go through with little modification for other pow-
ers. The multiplicative nature of the loss was useful as a simplifying feature,
thought it is not clear that one would choose something more general.

Another ad hoc feature of the formulation is that we use g(x) to estimate
g(p). This is done to simplify the problem and to make our results compa-
rable to other results in the literature. A more general approach would be
one in which the problem is stated in terms of a general estimator, in, and
the actual form of tn becomes one of the outputs of the analysis.

An Empirical Model. An important feature of the continuous problem
studied in Hubert and Pyke (1997) was that it was possible to describe the
entire family of stopping problems, indexed by p, in terms of a single random
process. This application of the self-similarity of Brownian Motion resulted
in a simpler analysis, which in turn suggested the approach used here in
Section 5 for the discrete problem even though the Bernoulli random walks
do not have this self-similarity property. There is, however, a way to embed
all of the stopping problems for the Binomial case into a single process based
upon a sequence of uniform rv's. This embedding is described as follows.

Let C/Ί, U2,... be iid uniform (0,1) rv's. View each of the C/i's plotted
at (Ui,i) so that one is on each of the dashed lines in Figure 6.1. Let 5 Λ | P

be the number of E/ί's out of the first n that are less than p, that is,

Figure 6.1
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(6.1)

Let C be the same function as defined in (3.6). The stopping time
defined as

is

= inf{n > 0 : (6.2)

This is the same as the stopping time N defined in (3.5) where there the
parameter p was suppressed from the notation. With this formulation we
have defined the entire family of stopping problems on the single random
process {f7n; n > 1}. We think of the curve C(n) as a roof over the process
(see Figure 6.2). Notice that C does not depend on p. The value of N^
is the value of n at the point where for the first time SU)P > C(n). With
the coupling implicit in this formulation, NPl > NP2 for p\ < P2> In the
previous sections, we study N^ as p —> 0, utilizing, of course, only the
marginal distributions of the N^p\ However, the formulation given here
raises interesting questions about a stopping 'curve' determined by the first
crossings of a surface by a random surface. Here, for example, the set of
N^'s form a curve in the (n,p) plane; see Figure 6.3. It would be of interest
in particular to determine in this model, the a.s. rate at which this curve
approaches +oo as p —> 0.

Figure 6.2
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