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Analyzing posteriors by the information
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Abstract: We give bounds on the concentration of (pseudo) posterior distri-
butions, both for correct and misspecified models. The bounds are derived us-
ing the information inequality, entropy estimates, and empirical process meth-
ods.

1. Introduction

The posterior distribution corresponding to a prior probability distribution IT on
a set P of probability densities on a given measurable space (X, A) is the random
probability measure defined through

(1) dI(p| X) o< p(X) dI1(p).

Here the element X of X is considered distributed according to some fixed true
density ¢ on (X, .A), which may or may not belong to P. To make the expression
well defined we assume that II is a probability distribution on a o-field on P for
which the map (z,p) — p(x) is jointly measurable, that the dominating measure
for P on (X, A) is o-finite, and that the “norming constant” [ p(X)dIl(p) is finite
and positive with probability one under q.

Several authors have studied whether the posterior distribution can recover the
true demnsity ¢, often in an asymptotic setting where X is a vector of n i.i.d. ob-
servations and n — oo. The study of posterior consistency, the contraction of a
sequence of posterior distributions to a Dirac measure at ¢, was initiated by [9],
while study of the rate of contraction, in the nonparametric situation, was taken
up more recently by [2]. These papers phrase their results in terms of a testing
criterion, which can be traced back to [8]. Subsequently refinements and different
approaches were found. In the present note we give a simplified presentation of
the interesting approach by [13], which is based on the information inequality, and
relate it to the testing approach. We also cover misspecified models and the range
of pseudo posteriors that bridge the gap between Bayes and maximum likelihood.

We are mainly interested in the true posterior distribution (1), but consider,
more generally, the random probability measures defined by, for p > 0,

(2) dIT,(p| X) o< p”(X) dI1(p).

For p € (0,1] these distributions are defined as soon as the posterior distribution,
which is the special case p = 1, is defined. For p > 1 finiteness of the norming
integral [ p”(X)dII(p) is not automatic, but must be assumed.
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It turns out that results are easiest to obtain for the random measures with
p < 1. This makes this choice attractive for the purpose of recovery of a true
parameter. The disadvantage is that these “pseudo-posteriors” lack a clear inter-
pretation, which may also make them computationally inaccessible. Admittedly
not much is known at this time about the frequentist meaning of the spread in the
(pseudo) posterior distribution (and the corresponding posterior credibility sets),
so that even the interpretation of the true posterior distribution may not extend
beyond the Bayesian realm.

For increasing p the “pseudo likelihood” p — p?(X) increasingly accentuates
the high points of the likelihood and decreases its lows. The pseudo posterior in
the limit case p = oo could be interpreted as a Dirac measure at the maximum
likelihood estimator(s). The potential instability of the nonparametric maximum
likelihood estimator and stability of a Bayesian estimator is well documented. It
seems interesting that further deaccentuating the heights in the likelihood (p < 1)
increases the stability.

We note that “stability” means here that the method works in more situations.
It is not a measure of quality in a given situation, when multiple methods work.

2. Information theory

For nonnegative, integrable functions p and ¢ on a measure space (X, A, u), and
a > 0, we define

pa(p,q) = /paql_a du (Hellinger transform),
Ru(p,q) = — log/paql_a du (Renyi divergence),

KL(p,q) = /(log(q/p))qd,u (Kullback-Leibler divergence),

h(p,q) = \//(\/]_7 —V/9)?dp (Hellinger distance).

For a > 1 the Hellinger transform and negative Renyi divergence may be infinite,
depending on p and ¢q. The Kullback-Leibler divergence may be infinite, but is
always well defined; by convention K (p,q) = oo if Q(p = 0) > 0. We note that the
Hellinger distance is sometimes defined as our h(p, ¢)/2; furthermore, the order of
the arguments in K (p, ¢) may differ.

In the following lemma we recall some elementary properties. Let P denote the
measure with density p, and let |P|| = P(X) = [ pdu denote its Li-norm.

Lemma 2.1. For nonnegative integrable functions p and q the map o — pa(p, q) is
convez on [0, 1] with limits Q(p > 0) and P(q > 0), and derivatives —K L(p, q1,>0)
and —KL(q,plg>o) at o = 0 at o = 1. Furthermore, the maps p — pa(p,q) and
p+— KL(p,q) from Li(n) to R are upper and lower semicontinuous, respectively,
and for a € (0,1),

(i) pa(p,q) <[P 1Q'~ < | Pl + (1 = )| Q]|

(ii) B*(p,q) = ||P|| + |Ql = 2p1/2(p, ©)-
(iii) (a A (1—a)h?(p,q) < allP||+ (1 = )||Ql = palp,q) < h*(p,q)-
() |Q|l — pa(p,q) < aKL(p,q), if Q < P.

(v) B*(p,q) + |1Q| = IP|| < KL(p, q).
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Finally, for probability densities p and q, and a € (0,1),

(vi) Ra(p,q) = 0.
(vii) 1 —pa(p,q) < Ra(p,q) < pi " (p,q) — 1.
(viii) (a A (1 —a))h?(p,q) < Ra ( q) < h*(p,q)/(1 = h*(p,q)), if h(p,q) < 1.
(iz) a=Y(1 — a)"'Ra(p,q) tends to KL(p,q) and KL(q,p) as o | 0 or a 1 1,
respectively, if P and Q are mutually absolutely continuous.

Proof. The first assertion follows from convexity of the map a — e®¥, for any
y € R; for a precise proof see e.g. [5]. Statement (i) follows from Holder s and
Young’s inequalities. The lower inequality of statement (iii) for o < 1/2 follows from
rearranging the inequality p, < (1 —2a)po + 2ap; /2, which is a consequence of the
convexity of a + p,, combined with the bound (i) on po and the rewrite (ii) of p; /2;
the inequality for o > 1/2 follows similarly from p, < (2—2a)p; /24 (2ac—1)p1. The
upper inequality follows similarly from considering 1/2 as the convex combination
of a and 1 —a. Assertion (iv) is equivalent to po(p, ¢) —aK L(p, ¢lp>0)a < pa(p, q),
which is true again by convexity and the fact that K L(p, g1p>0) is the derivative of
a— pa(p,q) at @ = 0. Statement (v) follows from combining (iv) (with a = 1/2)
and (ii) if @ < P; in the other case it is trivial, because K L(p,q) = co. Assertion
(vii) follows from 1 — 2 < —logz < 1/x — 1, for « > 0. Inequalities (viii) are found
by combining (vii) with (iii). O

Part (viii) of the lemma shows that for probability densities any Renyi divergence
is (almost) interchangeable with the squared Hellinger distance. An advantage of the
former is its exact additivity for product measures. Unfortunately, the equivalence
does not extend to general nonnegative functions. Part (iii) of the lemma suggests
to redefine the Renyi divergence as R (p, ¢) + log(a||P|| + (1 — o) ||Q]|) if p or ¢ do
not integrate to one, in which case it becomes again comparable to h2(p, q).

For probability densities the Kullback-Leibler divergence dominates the squared
Hellinger distance, and hence essentially also the Renyi divergence, but by its asym-
metry it does not compare easily on arguments with different total masses.

For a collection P of densities we define

pa(P,q) = sup  pa(p,q),
pEconv (P)
R.(P,q)= inf Ru(p.q),
( q) pEconv (P) (p q)
KL(P,q)= sup KL(p,q).
pEconv (P)

Here conv (P) denotes the convex hull of P, defined as the set of all averages
f pdIl(p) relative to priors II on P. One motivation for taking the supremum or
infimum over the convex hull is that the functionals become sub-multiplicative and
super-additive relative to product measures. See Lemma 4.1. Because the Kullback-
Leibler divergence is convex in its arguments, taking the supremum over the convex
hull rather than over just P does not make the expression bigger in this case.

The Hellinger transform, as a function of «, is well known from the theory of
statistical experiments (see [7]). The function o — pu(p, ¢) fully characterizes the
binary statistical experiment (P, Q). In [5] it is used in the Bayesian setting to
bound testing errors, through the following lemma.

Lemma 2.2. For any set P of densities, and numbers c,d > 0, with ¢ ranging
over all tests, and any o € (0,1),

inf sup (cP¢ 4+ dQ(1 — ¢)) < cd*~*pu (P, q).
¢ pep
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In the intended applications the error probabilities P¢ and Q(1—¢) are typically
exponentially small, of the form e~ for £ — 0o and a positive constant ¢ whose
numerical value is not essential. Then there may also not be much loss in using
affinities rather than tests, in particular in the symmetric case ¢ = d, in view of the

following lemma.

Lemma 2.3. For any set P of probability densities, and numbers c¢,d > 0,

02(Poa) < it sup (cPo + dQ(1L - 0)).

¢ pep
Proof. By the minimax theorem for testing the infimum over ¢ on the right side
can be expressed as the supremum of (¢+d — ||cp —dg||1)/2 over p ranging through
the convex hull of P. Furthermore, using the Cauchy-Schwarz inequality we can
bound the square Li-distance ||cp — dg||T by (¢ + d)? — 4edps 2(p, q). Some algebra
concludes the proof. O

The main tool in the following is the nonnegativeness of the Kullback-Leibler
divergence (for probability densities), which is a well-known and immediate con-
sequence of Jensen’s inequality, and also of Lemma 2.1(v). For easy reference we
state this fact in a slightly adapted form.

Lemma 2.4. For a given, arbitrary nonnegative function v and a probability mea-
sure II on a measurable space P, we have for every probability density w relative
to 11,

3) / (log w)uw dIT — / (log v)wdIT > — log / v Il

FEquality is attained for w o« v.

Proof. Were v a probability density, then the right side would be zero and the state-
ment follows from the nonnegativity of the Kullback-Leibler information. A general
function v can be normalized to a probability density by dividing by [ v dII. Because
JwdIl = 1, this changes the left side by adding log [ v dII, which is independent
of w and thus does not change the minimizing w. O

3. General result

The following theorem, due to [13], gives a bound on the concentration of the pseudo
posterior II,, defined in (2).

Theorem 3.1. For any numbers o > 0, 5 € (0,1), v > 0 and X distributed
according to q, for p= (ya+ B)/(v+1),

E [ Rap.)dt, (0] X) < =y + log [ 0500 aniy)
+7E10g/<§ (X) dIL(p).

Proof. Applying (3) for a fixed observation X with v(p) o< (p/q)*(X), we find, for
any probability density w relative to II,

Joguywan—a [ (105206 ut)ane) =~ [(2) 00y
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Applying (3) again, this time with v(p) x (p/q)?(X)/ps(p, q), we find

/(log w)w dIl — ﬁ/(logg(X))w(p) dll(p) + /logpg(p, q) w(p) dII(p)
Z _IOg CB(X)a

where c5(X) = [(p/q)?(X)/ps(p,q) dll(p) is the norming constant. We add the
second inequality to v times the first inequality. The resulting inequality can be
reorganized into

/ Rg(p, q) w(p) dll(p)
(1) < (04 1) [toguwpwatt - ot ) [ (10820 )i iy
+~log / (%’) " (X) dTI(p) + log c5(X),

If X is distributed according to the density ¢, then, by Jensen’s inequality,

E(p/a)"(X)

p) <logl=0.
ps(p,q) )

Elogcp(X) <logEcp(X) = log/
This shows that the last term on the right of (4) can be deleted after taking the
expectation. The expectation R: = Evlog [(p/q)*(X) dII(p) of the second last term
is copied to the bound given by the theorem. By Lemma 2.4 the remaining part of
the right side (the difference of the first two terms) is minimized with respect to
probability densities w, for fixed X, by w(p) & p”(X). For this minimizing function
w(p) dII(p) in the left side becomes dIl,(p| X). It follows that

1

TT1 [E/Rﬁ(p, q) dll,(p| X) — R}

w

< Einf U(logw)w dIl — p/(log g(X))w(p) dH(p)}
< inf [ / (log w)w dII + p / E(log %(X))w(p) dH(p)}
= inf { / (log w)w dIT — / (log e PKE@D)) gy (p) dH(p)}
= —log / e~ PRE®D gri(p).

Here the last step follows again by Lemma 2.4. ]

The Renyi divergence Rg(p,q) is nonnegative and vanishes for p = ¢. Hence
the left side of the theorem can be viewed as a measure for the concentration of
the pseudo posterior distribution near gq. The easiest interpretation is obtained by
bounding the Renyi divergence below by the Hellinger distance, e.g. for § = 1/2
twice the left side of Theorem 3.1 is an upper bound on E [ h?(p, q) dI1,(p| X), as
2R1/2 > h2.

The first term on the right of the theorem is a measure of concentration of the
prior II near ¢q. As e ?KL(:9) < 1 for all p and II is a probability measure, this term
is always nonnegative; it is near zero if K L(p, ¢) = 0 with high prior probability. An
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explicit bound, following from Markov’s inequality Ee=*% > e P*P(Z < z), valid
for any variable Z and any z, is

— log/e_”KL(p"J) dll(p) < e?p —logTl(p: K L(p,q) < €2).

The right side is bounded by 2(p + ¢) if
(5) (p: KL(p,q) < &) > e~

This is a version of the prior mass condition in [2] or [3] stripped from any reference
to a sampling model. The condition requires that the prior sufficiently charges
Kullback-Leibler neighbourhoods of ¢, and in some form is necessary for sufficient
posterior concentration near q.

The downside of the theorem is the second term on its right side. By Jensen’s
inequality,

(6) Elog/(§>a(X) dll(p) < log/pa(pﬂ) dll(p).

For a < 1, the Hellinger transform p,(p,q) is bounded by 1, and hence the right
side is bounded above by log1 = 0. For a > 1, the inequality is still valid, but the
right side may not even be finite.

Therefore, for a« < 1 the second term of the upper bound can be omitted and
the theorem is very satisfying; for o > 1 additional arguments are necessary. Closer
inspection shows that the case a < 1 covers the pseudo posteriors with p < 1, but
unfortunately excludes the true posterior (p = 1) and pseudo posteriors with p > 1.
The parameters are related by

_ya+f
v+17

For fixed o > f the parameter p increases from g to « as 7y increases from 0 to oo;
for a < 8 it decreases from [ to a. Any choice 5 < 1 requires to choose a > 1 to
reach p = 1 for some finite ~.

On the other hand, any p < 1 is possible. Combined with the preceding obser-
vations this yields the following corollary.

Corollary 3.1. If (5) holds for given c,e > 0, then for any p < 1,

e%(p+c)
(1=p)Ap)

Proof. We use Theorem 3.1 with 8 = 1/2, so that its left side is an upper bound
on twice the left side of the lemma, with the first term on its right side bounded
using the prior mass condition (5) as indicated, and with a value of o smaller than
1, so that the second term on its right side is bounded above by 0.

For 0 < p < 1/2 we choose aw = 0 and v+ 1 = 1/(2p); for p = 1/2 we choose
v = 0; and for 1/2 < p < 1 we choose a = 1 and v = (p — 1/2)/(1 — p), giving
Y1 =1/(2(1 - p). O

For a > 1 the second term in the bound must be analyzed separately. This diffi-
culty reflects the finding that posterior contraction cannot be ensured by sufficient
prior mass in a neighbourhood of the true density alone, but the full model, or

B / B (p, q) dIL, (p| X) <



Analyzing posteriors 233

the spread of the posterior over the model, must be taken into account. Various
approaches have made this precise. Conditions that imply the existence of good
tests of g versus elements of P are one possibility. As shown by [8] and [1] bounds
on the metric entropy of (subsets of) P ensure existence of suitable tests. Tests are
related to affinities, as shown in Lemma 2.2. The next theorem shows that affinities
may also be used to analyze the additional term.

Following [5] for 8 € (0,1) and an arbitrary metric d on P define the cover-
ing number for testing Nyg(e,P,d) (for ¢ > 0) as the minimal number of sets
By, ..., By needed to cover {p € P:e < d(p,q) < 2¢} and such that

2
Rﬂ(BMJ)Z%, i=1,...,N.

Theorem 3.2. Let P = UpexPx be a countable partition of P such that Ny g(e, Pk,
d) < Ni(e) for every € > g9 > 0, for nonincreasing functions Ni: (0,00) — R. If
(5) holds, then for any 0 < 6 < B < 1, any € > g, and for X distributed according
to g,

1 )

~E / G OUILTES

(1+080-0)]  1-8
3-5 35

< g2 {14— log{2+4502 Z Ni(e (Pk)‘s}.

keK

Proof. Let Po1. = {p € P:KL(p,q) < €2}, Po2x = {p € P:d(p,q) < e}, and
for i = 1,2,... and k € K let P;1k,...,PinN,, , be a minimal cover of the set
{p € Pyric < d(p,q) < (i + 1)e} by sets such that Rg(P; i, q) > i’c?/4, for
every (j,k). By the definition of the covering numbers for testing we can choose
Niix < Nypglie, Py, d) < Ni(ie) < Ni(e) for i > 1. Make the sets P; ; 5 disjoint by
sequentially omitting previous sets, thus giving a partition {P; ; x} of P, indexed
by M:={(3,5,k):t=1,2,...;5=1,...,Nipsk € K} U{(0,1,%),(0,2,%)}.

If p € Py for i > 1, then d?(p,q) < (i + 1)%* < 16R3(P;j .k, q). Consequently

1
) E/ &*(p,q)d(p| X) < Y Rp(Pyjn @) H(Pi el X).
PEPo,1,«UPo,2,« (4,3,k)

In the right side we can replace P; j 1, in Rg(P; j i, q), in view of the latter’s definition
as an infimum, by any p; ; x in the convex hull of P; ; 1.

View the numbers (II(P; ; x): (¢,4,k) € M) as a prior on the model (p; ;: (3, J,
k) € M) consisting of the densities p; ; , defined by

S / p )
o Posn W(Pijr)

The corresponding posterior gives the posterior probabilities of the densities p; ; »
and can be identified with the collection of numbers

Pi gk (X)IL(P; j 1) _ fp dH( ) _
2 i) Pigd (OI(Ps k) fp
In other words, the posterior in this “discretized setting” is the collection (IL(P; ;x|

X):(i,5,k) € K) of posterior probabilities of the partitioning sets in the original
setting.

H(Pi’j,k| X).
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By Theorem 3.1 applied with p = 1, the given 3, and « and +y satisfying ya+f8 =
~ + 1, the expected value of the right side of (7) is bounded above by

—(y+Dlog Y e KEPuardII(P; ;1) +Elog > (%) (XII(P e )-
(4,4,k) (4,4,k)

The first term becomes bigger if we leave off all terms of the sum except the (0, 1, *)-
term, which is

~(7+ Dlog[e KL DII(Py, )] < (74 1)(1+ )e?

in view of (5). By the subadditivity of the map x ~ 2%, for § < 1, the second term
is bounded by

ad
g Di,j, <7
Teto 3 (P4)CON(P0° < Jlow 3 st 1P
(4,3,k) (4,3,k)

by Jensen’s inequality and concavity of the logarithm. We choose ad = 8 < 1
and then have that pas(pi jk,q) is bounded by 1 for any (i,7,k) and equal to
p(Pijkq) = e s (Pijma) < e’i252/4, for the remaining terms (1,7, k). Since
Pijk C Pi, and there are at most Ny (e) indices j for given (i,k), the series is
bounded by 2430, 3, Ni(e)e "< /AIN(Py)° = 2432, Ni(e)II(Py)® /(574 = 1).
Here e /4 —1 > £2/4 > £2/4.

For the given choices of parameters we have v/d = (1 —5)/(8 —90) and v+ 1 =
B(1—08)/(B — ). This yields the bound as in the theorem. O

The partition P = Ug Py in the theorem allows to trade off the complexity of
submodels Py versus their prior masses, similarly as in [4]. For simplicity in the
following we restrict to a partition in one set (no partition).

The theorem makes no assumption on the sampling model for the observation
X, and uses a distance on the full data model. Notwithstanding the notation, it
W111 typically be applied Wlth a large €. The factor 2 inside the logarlthm will then
be negligible and a rate €2 is attained if >, Ny (e)II(Pg)° < e°

From the convexity of Hellinger balls and Lemma 2.1(viii), it can be seen that
for d the Hellinger distance the covering numbers for testing are dominated by the
more usual local covering numbers or Le Cam dimension:

Ny g(e,P,h) < N(eb,{p € P:e < h(p,q) < 2¢},h),

where b =1— (BA (1 —B))"'/2/2 and N (e, P,d) is the minimal number of balls of
radius € needed to cover P (cf. [10], [5], page 642; for 5 = 1/2 we can use b = 1/4).
This observation allows to deduce a result that is analogous to the main result of

[2].

Corollary 3.2. Suppose that N(c/4,{p € P:e < d(p, ) < 2e},h) < N(e) for
every € > g9 and a nonincreasing function N:(0,00) — R. If (5) holds, then, for
X distributed according to q and every € > €,

—E/hQ(p, q) dll(p| X) < e*(3 +c) + log N(¢) + log,, (4/3) + log 3.



Analyzing posteriors 235

Proof. We apply the theorem with d = h, § = 1/2 and a partition in a single
set. We bound II(P)° by 1, and next let § | 0. Then the parameter in square
brackets tends to 2 + ¢, and the parameter in front of the logarithm tends to
(1 —)/B = 1/2. Because h? < KL, the “missing part” of the integral, over the
set {p: KL(p,q) < €2}, is bounded by &2, raising 2 + ¢ to 3 + c. Finally we simplify
using the inequalities log(2 + =) < log3 + log, = and log, (zy) < log, = + log, v,
for any z,y > 0. O

An alternative method, evoked in [13], to estimate the remainder term in The-
orem 3.1 for « > 1 is to cover the support of the prior by (upper) brackets. For
any partition P = Ué\’:l’Pj, by subadditivity of the map z — z'/, for o > 1, and
Jensen’s inequality,

Elog/(‘g)a(X) dll(p) < aElogﬁ:l(;;g g)(X)H(pj)l/a

N
< ozlogz</ sup pdu) H(Pj)l/a.
j=1

pEP;

A crude bound on the sum in the right side is NN max; fsuppepjpd,u. Because
p € P; are probability densities, the integral will be bigger than 1. By constructing
the partition from a minimal set [I1,u1],...,[In,un] of e2-brackets in Ly (u) that
covers P, the overshoot is at most 2, and the preceding display can be bounded
by
alog N[](52777, Li(p)) + ag?.

Unfortunately, this approach does not appear to yield the “correct” rate in general.
For this we would like to see the entropy log N (g, P,d) at ¢, and not at €2, in the
bound, probably for another metric d than the L;(u)-metric. One might try to
compensate this by taking also the prior masses into account; see e.g. [6] for results
in this direction.

In the following section we use empirical process methods to improve the brack-
eting approach in the case of i.i.d. observations.

4. Independent experiments

If the observation is a random sample Xi,...,X, of size n, then we apply the
preceding with p and ¢ product densities. The Hellinger affinity is multiplicative
and the Renyi divergence and Kullback-Leibler divergence are additive relative to
independent observations. For collections of measures we have defined these quan-
tities by taking the supremum or infimum over the convex hull. This destroys exact
multiplicativity or additivity, but sub-multiplicativity and super- or sub- additivity
are retained.

Given sets P; of densities relative to dominating measures p; on measurable
spaces (X;, A;), let Py x Py denote the set of all densities (z1,x2) — p1(x1)p2(x2)
relative to p; ® po.

Lemma 4.1. For any sets P1,Ps of probability densities and probability densities
q1,42 and any o € (07 1)7

Pa(P1 %X P2, a1 % G2) < pa(P1,q1)pa(P2,q2),

Ro(P1 X Payq1 X q2) > Ra(P1,q1) + Ra(P2,q2),

KL(P1 x P2,q1 X q2) = KL(P1, 1) + KL(P2, q2).



236 W. Kruijer and A. van der Vaart

Proof. The first inequality is due to Le Cam (also see [5], p. 866, or [13]). It follows
from writing po ([ p1 X p2 dII(p1,p2), 1 X ¢2) for a given probability measure II in
the form

/{/(/pl(xl) fpj%;x;(lj)njﬁg(f;;ﬂ dHl(p1)>a(JI(l‘1)l_a dp (1)

([ o) i) aat) (o).

Here 1I; are the marginal distributions of IT and Ily|; is a conditional distribution
(in the sense that dIlyj (p2|p1)dlli(p1) = dll(p1, p2); no regularity condition on
existence of a conditional is necessary). The term within square brackets is bounded
above by pa(P1,q1). Next the remaining integral is bounded above by pa(Pa, g2).
The second inequality is an immediate consequence.

To prove the third we first note the Kullback-Leibler divergence is convex (in both
its arguments), whence the convex hull in the definition of K L(P, q) is unnecesaary:
this is equal to sup,cp K L(p, q). The assertion then follows from the additivity:
KL(p1 X p2,q1 X ¢2) = KL(p1,q1) + KL(p2, ¢2). O

Consider an application of Theorem 3.2 to the case of i.i.d. observations from a
density ¢ and a prior IT on a model P for one observation. Thus the model P in
Theorem 3.2 is the model P™ = {p*™:p € P} in the present set-up. We replace € in
Theorem 3.2 by y/ne and the metric d on P" by /nh for h the Hellinger distance
on the model P for one observation. The prior mass condition (5) becomes

(8) I(p: KL(p,q) < £2) > e~"",

Corollary 4.1. Suppose that N(e/4,{p € P:e < d(p,q) < 2e},h) < N(eg) for
every € > 0 and a nonincreasing function N:(0,00) — R. If (8) holds, then, for
X1,..., X, an i.i.d. sample from q and € > 1/+/n,

1 1 1
1—6E/h2(p,q) dl(p| X1,...,X,) <2(3+4¢) + ﬁlogN(e) + Elog 12.

Proof. This follows from Theorem 3.2 upon making the substitutions as explained,
and using the inequality Ny g(v/ne, P™,d) < N g(e, P, h). O

For log N (g,,) =< ne2 the bound is of the order 2. This is the “correct” expression
of the rate in the complexity of the model (cf. [8], [1]).

We have not been able to bound the concentration of pseudo posterior distribu-
tions with p > 1 by similar arguments. It seems that stronger control of the model
than just covering numbers are needed. For maximum likelihood estimators (the
case p = 00) a basic result due to [12] is in terms of the bracketing integral

5
J[](§,P,h):/ \/log Nj(g, P, h) de,
0

where N[j(e,P,h) is the minimal number of e-brackets relative to the Hellinger
distance needed to cover P (see Definition 2.1.6 of [11]). The maximum likelihood
estimator converges at rate €, equal to the minimal solution to

(9) Jpy (e, P,h) < Vne?.
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(See [12], or [11], Section 3.4.1.) If Jj;(e, P, h) < e(log N[j (e, P, h))*/?, which is the
case if the bracketing entropy varies regularly, then this reduces to log Njj(e, P, h) <
ne?, which can be compared to the rate obtained in Corollary 4.1.

The pseudo posterior contracts at the same rate.

Theorem 4.1. Ife satisfies (8) and (9), then, for X1, ..., X, an i.i.d. sample from
q and any p > 0,

E/h2(p, q) dIL,(p| X1,...,Xn) S &2

Proof. We apply Theorem 3.1 to the product densities, with the substitutions ex-
plained before the statement of Corollary 4.1. It suffices to bound the last term on
the right side of Theorem 3.1, for some « > p, so that there exists v € (0, 00) with
p=(ay+B)/(y+1) for some 3 € (0,1) (e.g. 3 =1/2), whence Rz > h?.

Let G,, be the empirical process of Xi,...,X,, and for 7 < 0 define log, x =
(logz) V T.

By Lemmas 4 and 5 in [12] there exists 7 < 0 such that Qlog.(p/q) < —ch?(p, q)
and ||log.(p/q)/2llo,5 < dh(p,Q), for positive constants ¢,d that depend on 7
only, where | - ||, is the “Bernstein norm” defined in [11], page 324. Furthermore,
following the approach of Theorem 3.4.4 of [11] it can be shown that there exist a
constant e, which also depends on 7 only, such that || log. (p2/q) —log,(p2/q¢)|lo.B <
e h(p1,p2), for every pair of functions with p; < py. These facts imply, by extension
of Lemma 3.4.3 in [11] to higher moments, that, for any 6 > 0,

4 < 74 J[]((S,’P,h)>4
(10) Eh(i,lf))g(Gn logT(p/q))+ < J(6, P, k) (1 + — e )
Since § + J[j(d,P, h) is the area under a decreasing, nonnegative function, the
function § ~ J;j(6,P,h)/é is decreasing. First this shows that Jj;(Cd,P,h) <
CJyy(8,P,h), for every C > 1. Second the function § — J;j(4,P,h)/6? is also
decreasing, implying that (9) holds for any e bigger than its minimal solution.
Therefore for § bigger than this minimal solution the quotient inside the brackets
in (10) is bounded by one and the right side can be simplified to J[4](57 P,h).
For integers i > 1 define P; = {p € P:2""1e < h(p,q) < 2'c}; also set Py = {p €
P:h(p,q) < €}. Then Qlog.(p/q) is bounded above by —ch?(p,q) < —c2272¢2 if
p € P; and ¢ > 1, and is nonpositive for p € Py. Because logz < log, x for every

x>0,
p><n @
—El X)dIl
anBor [ (20) () any)
Xn
< —Esuplog, X
n pepr & q* &)

1 1 ,
<Esup — (Gn log . B) + Esup(sup —G,, log, b_ 022’_252>
pePo VI q/ 4 i>1 \pePp; VI q
By (10) the first expectation on the right is bounded above by a multiple of
n*1/2J[](E,P, h) < €% To bound the second term we apply Markov’s inequality

to see that, for x > 0,

+

1 , E(su Gy log, 4
P(sup —G,, log, L. 221722 > x) < ( pQPGPI T g2 (5/4‘1))+
R g w2 (o + 2B252)

J[4] (2¢e, P, h)

~ n?(x + 2%72e2)4
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Here Jjj(2%, P, h) < 2°Jy(e, P, h) < 2°/ne?, for e satisfying (9). It follows that the
second expectation in the far right side of the second last display is bounded above

by
0o 4i 8 © 5-2i96
2%e 2742
/ Z 2'224dw:€22 5 S
0o — (z+ c2%-22) ; 3c
1=1 =1
This concludes the proof. O

5. Misspecification

The right side of Theorem 3.1 can be small only if K L(p,q) is close to zero with
sufficient prior mass (for p ~ II). Therefore, the theorem does not cover the case
that the density ¢ of the observation is not close to the support of the prior. To
remedy this we adapt the derivation as follows. Let ¢ still be the true density of
the observation and let ¢ be another density, later taken to the “projection” of ¢
on the model.

Theorem 5.1. For any numbers a > 0, 8 € (0,1), v > 0 and X distributed
according to q, for p= (ya+ 8)/(y+ 1),

B / Ry (pa/d, q) AT, (p] X) < — (7 + 1) log / ¢ PK L0 ~KLG0) gry(p)
+9E log/<§) (X) dI(p).

Proof. We follow the same steps as in the proof of Theorem 3.1, except that we make
the choices, first v(p) o< (p/q)*(X) and second v(p) o< (p/3)°(X)/ps(pa/d:q). O

The bound of the theorem is true for any q. However, it is clear that the first
term on the right can be small only if the prior puts sufficient mass on densities p
such that K L(p,q)— KL(q,q) = Qlog d/p is close to zero, i.e. on densities p close to
G. Furthermore, the theorem is useless unless Rg(pg/q,q) is nonnegative. Because
pq/q is not a probability density, this is not guaranteed, not even when S € (0, 1).
This is illustrated in Figure 1, taken from [5]. The Renyi divergence Rg(pq/q, q) is
positive if and only if the Hellinger affinity ps(pg/q, ¢) is bounded above by 1. As
a function of g the Hellinger affinity is convex with right limit Q(p > 0) at 8 =0
and left limit fq>0 pq/qdv at B = 1. If the latter limit is strictly bigger than 1, then
there are two cases:

1. The right derivative at S = 0 is negative; then there exists 8 > 0 for which
pp(re/d,q) < 1.

2. The right derivative at 8 = 0 is positive; then pg(pg/d,q) > Q(p > 0), which
is typically one, throughout (0, 1).

By Lemma 2.1, if the distributions are absolutely continuous, this right derivative
is equal to —KL(pq/q,q) = KL(G,q) — KL(p,q). We conclude that Rg(pg/q,q)
will be positive for some § for a set P of p only if G is chosen to minimize the
Kullback-Leibler divergence p — K L(p, q) over P.

This argument is made in [5] in a testing context, accompanied with examples
where pg(pq/d,q) < 1 for a sufficiently small 8 > 0, uniformly in densities p in the
support of the prior, and where Rg(pg/d, q) is bounded below by a natural distance.
It would be interesting to investigate similar consequences of Theorem 5.1.
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Fi1G 1. The Hellinger transforms 8 — pg(p,q), for @ = N(0,2) and P the measure defined by

dpP =

(dN(3/2,1)/dN(0,1))dQ (left) and dP = (dN(3/2,1)/dN(1,1))dQ (right). Intercepts with

the vertical axis at the right and left of the graphs equal ||Q|| =1 = Q(p > 0) and ||P|| = P(g > 0)
respectively. The slope at 0 equals —K L(p, q), and has different sign in the two cases.
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