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A FUNCTIONAL ANALYTIC PROOF OF
THE LEBESGUE-DARST
DECOMPOSITION THEOREM

Abstract

The aim of this paper is to give a functional analytic proof of the
Lebesgue-Darst decomposition theorem [1]. We show that the decom-
position of a nonnegative valued additive set function into absolutely
continuous and singular parts with respect to another derives from the
Riesz orthogonal decomposition theorem employed in a corresponding
Hilbert space.

1 Introduction

Throughout this paper we fix a ring % over a nonempty set T, that is
Z is defined to be a nonempty family # C & (T) which is closed under the
operations of union, intersection, and difference. For a subset E of T we define
the characteristic function x, by letting

1, ifteE,

XE (t) =
0, else.

The function lattice of the R-valued Z-simple functions (i.e., the R-linear span
of the characteristic functions of Z-measurable sets) is denoted by .. If a
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nonnegative valued additive set function v on Z is given, then we set

(0]%), :=/w-wdv, (o € .7),

T

which defines a semi inner product on .. By factorizing with the kernel of
(-]*)v, as usual, . becomes a (real) pre-Hilbert space. The corresponding
equivalence class of a function ¢ € . will be denoted also by the symbol
¢. Let £?(v) stand for completion of . with respect to the corresponding
Hilbert norm || - ||,,, so that -#?(v) becomes a (real) Hilbert space in which .
forms a dense linear manifold by definition. Note that .#2(v) in fact does not
consist of proper ' — R functions. Nevertheless, each element of .#?(v) can
be approximated with Z-simple functions, i.e., for each h € £?(v) there is a
sequence (g )nen from % such that

||h_ @nllz% = (h_ Spn|h_ (Pn)l/ — 0.

We notice here that Darst [1] treated only the case when Z is an algebra,
that is when T € %, or equivalently, when the function 1 belongs to .7.
Nevertheless, if we assume v to be bounded, that is

C(v) := sup v(F) < o0,
EeZz

then the linear functional

sDH/sodv, (ped)
T

turns out to be continuous with respect to the norm || - ||, (by norm bound
C(v)), so that the Riesz representation theorem yields a (unique) vector
v € £*(v) such that

(@|D)y = [ ¢ dv, (ped).
/

Of course, if .7 is an algebra, then 7 = 1. But in the general case ¥ must not
belong to .7

Henceforth, we fix another bounded nonnegative additive set function pu
on #, and we define the objects (- |-), and .Z?(u) just as above. We say that
v is absolutely continuous with respect to u if for any sequence (E,,)nen from
Z u(E,) — 0 implies v(E,) — 0. On the other hand, v is said to be singular
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with respect to p if for any nonnegative additive set function ¥ inequalities
¥ < p and ¥ < v imply ¢ = 0, see [2].
Let us consider first the following linear submanifold of £2(u) x £2(v):

J={(p,p) | p €T, (1)

that is the identical "mapping” from . C £?(u) into £?(v). Note that
the u- and v-equivalence classes of a function ¢ € % can completely differ
from each other, therefore, one concludes that J is only a so called ”multival-
ued operator”, i.e., a linear relation, unless v is u-absolutely continuous. In
particular, the following linear manifold

m:={feL*v) |0 f) e}

the so called multivalued part of J, can be nontrivial (see e.g. [3]). On the
other hand, one easily verifies that 9 is closed, and that

M = {f € fz(”) ’ 3(Pn)nen C 7 such that H‘Pn”u = 0,|f —enll, — O}'

Therefore we have the following orthogonal decomposition of the Hilbert space
Z%(v) along M: L?(v) = M @ M, thanks to the classical Riesz orthogonal
decomposition theorem. Let P stand for the orthogonal projection of .#2(v)
onto M.

Our claim in the rest of the paper is to show that the following orthogonal
decomposition

v=Pvoe (- PP

of the functional 7 corresponds to the Lebesgue-Darst decomposition of the
additive set function v. More precisely, by letting

vs(E) == (Xp | PV)y  and  ve(E) = (xz [(I = P)V)y (2)

for £ € #, we obtain that v = vs + v,, where both v, and v, are nonnegative
valued additive set functions such that v, is p-singular, and that v, is pu-
absolutely continuous.

We also notice that other functional analytic approaches treating the Le-
besgue-Darst decomposition can be found in [6] and [7]. The treatment in these
papers is based on the Lebesgue-type decomposition of nonnegative hermitian
forms, cf. [4]. The approach contained herein does not make use of this general
decomposition theorem, moreover, the only tools we employ are (more or less)
elementary Hilbert space arguments.
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2 Some auxiliary results
In this section we state three technical lemmas that are needed in the proof
of our main theorem.

Lemma 1. Let E be any set of Z, and let (¢n)nen be a sequence from &
such that ¢, — Px, in £*(v) and that ||os]|, — 0. Then we also have
Xi ¢n = Pxy  in Z%(v).

PROOF. First of all one concludes that ||x, ¥n — Xz @mlly — 0 and that
X5 @nllpy = 0. Therefore the sequence (X -¢n)nen converges in the Hilbert
space .Z?(v) such that the corresponding limit f belongs to 9. In order to
prove equality Py, = f, fix a function ¢ € . and choose a sequence (¥, )neN
from . such that ¢,, — Pt and that ||¢,]/, — 0. We can conclude just as
above that nlgr;o Xg - Un € M. Therefore,

(PXE |’(/})V = (XE ‘P,(/])V = nli)néo
= lim (Px, [ Xe ¥n)y = Hm (on|xs ¥n)
nli—>Holo(XE “enlUn)y = (fI PV = (f[¥),

that means that Py, — f is orthogonal to the dense manifold .# of Z2(v).
Consequently, Px, = f, as it is claimed. O

(Xp [ ¥n)y = Hm (X [ Xp - Pn)y

Lemma 2. Let E, F € Z. Then following three assertions hold:

a) If ENF =0 then Px, L Px,, and likewise (I — P)x, L (I — P)x, in
L2(v).

b) vs(E) = [Px,l} and va(E) = (I = P)xs |7
¢) The functionals Px, and (I — P)x, are positive in the sense that
(e Pxg)y >0 and (el (I = P)xp)y >0
forallpe s ¢ >0.

PROOF. Statement a) is an easy consequence of Lemma 1. To prove b), let
E € % and choose a sequence (@, )nen from . such that ¢, — Px, and that
| onll% = 0. Then, due to Lemma 1 we conclude that

(E) = (Pxe 1)y = lim (s 7)o = lim [ - d
T

= lim (SOTL|XE)II = (PXE ‘XE)V = ||PXE||3

n—oo
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The second identity of b) follows from the Parseval formula:
va(E) = v(E) = vs(E) =[x, I} = IPx: 7 = 1T = P)x,. 7.

Finally, if ¢ € . is nonnegative, then there is are two finite systems (¢4 )aca
of nonnegative numbers, and (E,)qca of some sets from Z# such that ¢ =

Z CaXp, - Then, according to statement a),

acA
(@1 Pxp)y =Y alXe, | PXs)v = D Ca(PXpnp, | PXpos, v > 0.
a€cA acA
The second identity of ¢) is proved analogously. O

The last result of this section states that each functional of .#?(v) which
is positive in the sense of Lemma 2 can be approximated by nonnegative Z-
simple functions (with respect to the norm of .#?(v), of course):

Lemma 3. Assume that f € £%(v) is positive in the sense that (o] f), >0
for all p € 7 with ¢ > 0. Then there is a sequence (U, )nen of nonnegative
R -simple functions such that 1, — f in L?(v).

PROOF. Let (p,)nen be any sequence from .7 that converges to f in .£2(v).
For fixed integer n, let ,f (resp., ¢,, ) denote the positive (resp., the negative)
part of ,,. Clearly, that both ;} and ¢, are nonnegative %Z-simple functions,
and that the sequences (¢;})nen, (¢, )nen also converge in £2(v). Let fT
and f~ stand for the corresponding limit vectors. Since p,, = @, — ¢, for all
integer n, it suffices to show that f~ = 0. Indeed, since ¢, > 0, we have that
(¢ | f)v = 0. Consequently,

0< (fi |f)u = nlggo(@; ‘(pn)u = RILH;O(¢; | - 907:)1/ = _Hfi”Z <0,
which means just that f~ =0, i.e., li_>m oy =f. O

3 The Lebesgue—Darst decomposition theorem

We are now in position to prove the main result of the paper, the Lebesgue—
Darst decomposition theorem.

Theorem 4. Assume that p and v are nonnegative valued bounded additive
set functions on the ring Z. Then

V="Vs+ VU,
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is according to the Lebesgue-Darst decomposition, that is vs and v are both
nonnegative valued additive set functions such that vs is p-singular, and v, is
u-absolutely continuous.

PROOF. The nonnegativity of the set functions in question is clear from Lemma
2b). We prove first the absolute continuity of v,: consider a sequence (E,,)nen
from Z such that u(FE,) — 0. We need to show that v,(E,) — 0 as well. Ac-
cording to the boundedness of v, the sequence (v,(E,))nen is also bounded.
Assume indirectly that there is a subsequence (E,, )ken such that

Va(En,) = a # 0.

According to the boundedness of (X, )nen in Z%(v), we may also assume that
(XE% Jken converges weakly in #2(v), namely to a vector y € £?(v). Hence
the pair (0, x) belongs to the weak closure of the linear relation J defined in
(1). Since weak and norm closures of a linear manifold in a normed space
are the same, we obtain that (0,x) € J as well, and therefore that y € 9.
Consequently,
a= lim v,(E,, )= lim (x, |(I-P)),=x|I-P)),=0,
k— o0 k— o0 "k

which is a contradiction.

In order to prove the p-singularity of v, fix a nonnegative valued additive
set function 9 on & such that 9 < p and ¥ < v. We need to show that ¥ = 0.
First of all observe that

= [edd,  (peS), (3)
/

defines a continuous linear functional on the dense linear manifold . of £?(v).
Therefore, thanks to the Riesz representation theorem, there is a (unique)

vector 9 in .£2 (v) such that

<so|3>y:/sodw9, (pe ).

T

We show first that 9 € 9. Let E € 2, and choose a sequence (¥ )nen Of
nonnegative %Z-simple functions tending to (I — P)x, in .£?(v). The existence
of such a sequence is due to Lemma 2 c¢) and Lemma 3. Since 0 < ¢ < v by
assumption, we obtain that

-~ -~ -~

0< (XE | (I - P)Q?)V = ((I - P)XE ‘19)11 = nh_g;(wn | 19)1/
< tim (¢ | PD)y = (I — P)y, | PP)y =0,

T n—oo
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which means that (I—P)J € {x, | E € Z}* = {0}, i.e., ¥ € M. On the other
hand, since ¥ < pu, the functional in (3) is continuous also with respect to the
norm || - ||,. Therefore, according again to the Riesz representation theorem,
there is a (unique) vector © € £?(u) such that

<w\@>#=/«pdﬁ=<w|5>u, (o).
T

Finally, by considering a sequence (¢, )nen from . such that o, — 9 and
that ¢y ||, — 0, it follows that

19112 = lim (pn | )y = lim (0] ©), =0,

which completes the proof. O
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