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Abstract

The purpose of this article is to give a solution to a problem raised by
A. Maliszewski in [5] by showing that any lower semicontinuous func-
tion can be represented as a sum of two lower semicontinuous strong
Swigtkowski functions.

We deal with the classes of real functions defined on the interval [0,1]. The
symbols C, D, @, S*, lsc and usc stand for the class of continuous, Darboux,
quasi-continuous, strong Swiatkowski, lower and upper semicontinuous func-
tions, respectively. S*lsc denotes S* N lsc and Dlsc denotes D Nlisc. Cy is
the set of all points of continuity of the function f, Dy is the set of all points
of discontinuity of the function f and f [ F denotes the restriction of the
function f to the set F. The set B is bilaterally c-dense in the set A (A C. B)
iff for each z € A the sets (x,z + ) N B, (x — §,2) N B are nondenumerable
for every § > 0.

A. Lindenbaum, in [3] provides the proof that every real function can be
represented by a sum of Darboux functions. A similar result is valid for the
functions of Baire 1 class. Every function of Baire 1 class can be represented
by a sum of Darboux Baire 1 functions, [1]. In [5], A. Maliszewski shows that
every cliquish function can be represented by a sum of a strong Swigtkowski
Baire one function and a strong Swiatkowski function and also that every
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16 ROBERT MENKYNA

lower semicontinuous function can be represented by a sum of Darboux quasi-
continuous lower semicontinuous functions, [6]. In the remainder of this article
we show the stronger assertion: lsc = S*lsc + S*lsc, that is: for an arbitrary
lower semicontinuous function f, there exist strong Swiatkowski lower semi-
continuous functions ¢ and h such that f = g+ h. An analogous assertion for
the class usc is valid, too. We begin with four lemmas:

Lemma 1. Let f be a lower semicontinuous function defined on [0,1] and let
K be any closed subset of the set Cy. If a function g < f is continuous and
the set A= {x;g(x) = f (z)} C Cy, then there exists a continuous function h
such that g < h < f and

(x) (x) foreveryze AUK
g(x) <h(z)< f(x) foreveryz ¢ AUK.

PROOF. Since the function f € lsc, there exists a sequence of continuous
functions f1 < fo < f3 < .... which converges to the function f. We can
demand that f1 < fo < f3 < .... — f. Otherwise we would replace the
sequence of functions f,,n =1,2,... by f, — %

The set A = {z;g(z) = f (z)} is closed, because f —g > 0 and f—g € lsc.
Now let I, = (an,bn),n =1,2,... be the sequence of contiguous intervals of
the set AUK and let the function f attain its minimum on the interval [ay,, by,]
at a point £,. Then there exists an index 4,, such that

1
f (&) — —< fi, (x) < f(x), for every x € [an,by] .
Next we choose a sequence of points an, ,by,,k=0,1,2,...
Ay = < Ay < Ay < Apy = bny < by, <bp, <--- = by

Let {imk}?’:l, ink > in be an increasing sequence of natural numbers such
that

Jins (@) > g(x), for every x € [ay,, by, ]

and
1

LA o (0) > (ba) — ~.

fin,k (an) > f(an) — k A

A sequence with these property exists, because f (x) > g (z) on the compact
set [an,,bn,] and f () — f(x). We define a function h as follows, where
n,k e N.
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onk(x) + %(fin,k-u ({,C) - flnk(‘r)) T e [ank7ank—1]

Gny =Ang_q

@) =3 o (@) + et (fy (@) = fon (@) 2 € [y by

K _b"k—l

f(x) reAUK.

The function h is continuous on every contiguous interval I, = (an,b,),n =
1,2,... of the set AU K and for each x € [ank,ank,fl]

f@)> fi, o (@) 2 h(z) = fi, , (2)
holds. Therefore,
f(x)>h(z)>f, (x), Vo€ (an,an,_,|, Vk €N

and because a,, € Cy, it follows that

1

flap) = lim f(z)> lim h(z)> lUm f; , ()= fi, , (an) > f(an) — —.

a:—)ai $_>aj; (E—>ai " " k
Consequently

lim h(x)= f(an,) =h(a,) and similarly lim h(z) =h(b,),

1;—>ai T—b,,

that is, the function h is continuous on every interval [a,,b,], n =1,2,... .

In order to prove the continuity of the function h on the interval [0, 1],
it is sufficient, by the construction of h, to show that h is continuous at an
arbitrary point g € K U A. Let a sequence z;, j = 1,2,... converge to the
point xqg. Since the restriction f | AUK = h [ AU K is continuous, it can be
assumed that x; € I,(;), 7 = 1,2,... and because h [ [ay,b,] is continuous
for each n € N, we can assume that n (j) — oo. For each j there exists a point
&n(5) € [an(), bn(s)]s such that

1
f (5n(j)) - m < h(x;) < f(x5).
zo € AU K C Cy implies

h(wo) = F (w0) = lim (&)~ —— < lim h(z;) < lim f(2;) = f (s0),

n(j) ~ n—oo

and therefore
h(zo) = lim h(z;).

J]—00
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The inequality
g(x) <h(z)< f(x) for everyx ¢ AUK
follows directly from the definition of the function h, because
g9(x) < fi, (@) < fi,, (@) <h(x) < fi, p (@) < fl2),
T € [ank,ankil] U [bnk,pbnk] .
O

Definition 2. Let P be a perfect set. We say that the function f is from the
class K (P) iff f is constant on every contiguous interval of the set P and we
denote by CK (P) the class C N K (P).

Remark 3. The class CK (P) has the following properties.
Let Py, P be perfect sets, P) C. P, and let o, 8 be real numbers, then
feCK((P)= feCK(P)
f,g€e CK(P)=af+Bgec CK(P).
Lemma 4. Let f > 0 be a continuous function, K a closed set, P a nowhere

dense perfect set and K C. P. Then there exists a function g € CK (P) such
that 0 < g < f and g (x) = f (x) for every x € K.

PROOF. Let (a,b) be a contiguous interval of the set K and let the function
f attain its minimum on the closed contiguous interval I = [a,b] at a point c.
The set I N{x; f (z) = f(c)} is closed. Then there exist

min (I 0 {z; f () = f(c)}) and max (I N {z; f (z) = f(¢)}).

If a = min (I N{x; f(x) = f(c)}), we set ap = a. On the other hand, if we
have that @ < min (I N {z; f (x) = f (¢)}), we choose

ap € P, a < ap <min (IN{z; f(z) = f()}),

such that ag is the left boundary point of some contiguous interval of the
set P. Such a point exists, because a € K C. P. Analogously, we de-
fine a point by € P. If max (I N{z; f(x) = f(c)}) = b then by = b and if
max (I N{z; f () = f(c)}) < b, we choose

bo € P, max (I N{z; f(z)=f(c)}) <bp <b,

where by is the right boundary point of some contiguous interval of the set P.
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In the case a < ag, we define a function f; on the interval [a,ag]. Since
f(x) > f(c) for every x € [a,ap], there exists a constant M > 0, such that
f(x) > f(a)—M > f(c) on the interval [a, ag] . The function f is continuous
at the point a. Then a sequence of points ag > a; > ag > .... — a exists such
that

f(x)>f(a)—%, Ve € [a,an-1], n=1,2,....

Let f1 (a) = f (a) and let the graph of f; be linear segments that join points

[a’Oaf(C)]?[alaf(a)_M]v[a2af(a)_%]a”'a[an»f(a)_%]v'“ . Appar'
ently, the function f; is continuous and decreasing over the interval [a, aq] .
Moreover,

fe) < fi(x) < f(x), Vo € (a,a0],

because
M
f1(x) <f(a)—? < f(x), Ve €lan,an-1], n=1,2,....

Now, let Q7 = {¢;};,—; be the sequence of all rational numbers of the interval
(f(¢),f(a)), and let T={I,,n=1,2,...}, I, C I, be the sequence of all
closed contiguous intervals of the set [a, ag] N P. Since [a, ag] N P is the perfect
set and a, ag € [a,ap] N P then it is evident that

Iiﬁlj:(b, VIZ',I]‘ e, 275], 27]6{1,2,}
and
{a,ao}ﬂL‘:@, Vi6{1,2,...}.

The set 7 is ordered, I; < I, I;,I; € I, it means that max l; < minlI;. We
define a mapping
G:{I,,n=12,...} - Qr

inductively.
In the first step, let G (I1) = ¢;,, where g;, is the first member of the
sequence (Q; from which follows the condition

f1 (LL') > Giq s Vr € ,[1.

Such a ¢;, exists, because min {f; (z),x € I1} > f (c) and the set Q; is dense
in the interval (f (c), f (a)). Denote @1 the sequence, which is created by
excluding the element ¢;, from the sequence Q);.

In the n-th step define the mapping G on the set {I3, I, ..., I,}, such that

G(Ij)=¢q; €Qr, 1<j<n,
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Vie{l,2,....n} = fi(x) > qy, Vo € I},
I, <Ii=GIn)=q, >a, =GI), Ym,l € {1,2,...,n}

and let @, be the sequence which we get from the sequence @Q; by excluding

Qivs Qigs -5 iy, -
In the n + 1-th step we set G (In41) = ¢i,.,, such that ¢; ., is the first
member of the sequence @,,, that satisfies the following conditions:

fl (l‘) > Qi1 Vo € In+1>

and
ifm,l € {1,2,...,n}AIm <In+1 <I; = Qipy > Qinyr > iy

Such ¢;,,, exists, because
Iy < Lny1 <Ii=q, >q, Amin{fi (z),2 € I,11} > ¢,

and the set @, is dense in (f (c), f (a)). Denote @,+1 the sequence that we
get by excluding the element ¢;,,, from the sequence Q).

Next, we show that the mapping G : {I,,,n =1,2,...} — @y is one to one
mapping. With respect to the construction of G it is sufficient to show that
G map the set T onto the set Q;: G (Z) = Q. Suppose that G (Z) & Q.
Then there exists a sequence @, and go € Qr \ G (Z) such that ¢ is the first
member of the sequence @,,. Let

Imax:max{-[j;]- <j< n/\qij >(J0}
and
Iinin :min{Ij;l <ji<nAg; < qo}.

For every = € I,ax the inequality fi (x) > g is valid. Because the function f;
is decreasing, then max Iax < f1 ! (go) and therefore there exists an infinite
number of intervals Iy, € {I,41, 42, .....} such that

Irnax < Ik < Imin A f1 (33) > qo,Vx (S Ik.

If Iy, is the first such interval in the sequence {I,11, 42, .....}, then ac-
cording to the definition of the mapping G, G (I,) = qo. This contradicts the
assumption ¢o € Q1 \ G (7).

Let g be the function defined on the interval [a, ag) by

g(x)=sup{G{I), ] €T Nz <minl}.
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If by < b then, in a similar way, we define a function g on the interval (bg, ]
and let
g (z) = f(c) for every z € [ag, bo] -

It is easy to verify that the function g is continuous on the interval [a,b], 0 <
f(e) <g(x) < f(x), Vo €la,b], f(a) =g(a), f(b) = g(b) and moreover, g
is constant on each contiguous interval I of the set [a,b] N P.

Now let the function g be defined on each contiguous interval of the set K
in the same manner as above and let

gIK=f1K.

Such a function g is continuous on the interval [0,1]. It is sufficient to show
that the function g is continuous at an arbitrary point g € K. Let a sequence
z;,7 =1,2,... converge to the point x(. The restriction g | K is a continuous
function and ¢ is a continuous function on each closed contiguous interval of
the set K. Applying the same reasoning as in Lemma 1, it can be assumed
that z; € I,,,,j =1,2,..., where I,,, = (anj , bnj) is a sequence of contiguous
intervals of the set K and n; — oo. If the function f attains its minimum
over [anj,bnj] at a point ¢, then the same holds for the function g and
f (cnj) =g (cnj) . The sequence ¢,,,j =1,2,... again converges to the point
zo and

f(@o) = lim f(cn,) = lim g (eo;) < lim g (z;)
< jlij;of(xj) = f (z0) = g (x0) -

That is,
lim g (z;) = g (o).

‘]*)OO
The function g, as defined above, satisfies the assertion of Lemma 4, because
it is continuous, constant on each interval contiguous of the set P, 0 < g < f
and g (z) = f (x) for every z € K. O

Lemma 5. Let f be a lower semicontinuous function defined on [0,1] and let
K be any closed subset of the set Cy. If a function g < f is continuous, the
set A= {z;9(z) = f(z)} C Cy and the set AU K is nowhere dense in [0, 1],
then there exists a perfect set P C Cy, nowhere dense in [0, 1], and a function
h € CK (P) such that

AUK Cc. P
h(z) = f(z) foreveryx € AUK
g(x) < h(z)< f(x) foreveryx ¢ AUK.
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PROOF. If (a,b) is a contiguous interval of the set A|J K, then, for an arbitrary
x € (a,b),

g(x) <h(x) <f(z).
We will show that there exist sequences a;,b; € Cy¢,a; | at,b; T b7, =
1,2,..., a; = by, such that

max {g (z),z € [a;11,a;]} <min{h (z),z € [a;+1,a;]}

max {h (z),x € [ai+1,a:]} <min{f (x),z € [ay1,a:]}

for each interval [a;+1, a;] and that the same is true for each interval [b;, b;11].
Let {zn},— o, {yn},—o be arbitrary sequences of points z,,y, € Cy,

G < xe< a1 <xp=Yo <Y1 <Yz <---—b.
Since f —h €lsc, h—g e C and
Vo € [Tnt1,2n] : f(x) —h(z) >0Ah(z)—g(x) >0,
then there exists €,, > 0, such that
Ve € [Xny1,%n] 0 f(x) —h(x) >e, AR(z) —g(x) > ep.

The functions h and g are uniformly continuous on the interval [, 11, Z,], so
there exists d,, > 0, such that for every z,y € [x41, ] it holds
1 1
oyl < 60 = A () = h ()] < 3en Alg () ~ 9 0)] < 5en
Now we choose an arbitrary finite sequence of points
a € Cr,i€{0,1,2, ...k},
Tppr=ay, <ap 1 <....<ay <ay <ag =Ty,
such that
lafy, — a'| <8, for everyie€{0,1,2,... k,—1}.
m

Let the function f attain its minimum on the interval [a?, |, a?| at a point £
and the function h at a point n*, that is

F&) =min{f (z); z € [a} 1, a7 ]} AR (") = min {h(2); x € [af}y,a}]}.

Every z € [a?, |, a?] satisfies the condition |z — al| < &,. Then

1
h(z) <h(al)+ 3€n
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and because £ € [al’,,,al’] then | — al’| < §,. Therefore
1
M)~ 5en < h(ED).

According to the definition of &,,, we have f (") — h (§*) > &,. Consequently,
using the foregoing inequalities, we have that Va € [agﬂrl, aﬂ,

1 1
f & >h(£?)+5n>h(a?)f§€n+€n>h(a?)+§sn > h(x).
That is,

max {h (z);z € [a}y1,a}]} <min{f (z);z € [a},,,a}]}.

If we use the same arguments as in the previous procedure and if (f, h, &) is
replaced by (h, g,n}"), we get that Vz € [aﬂ_l, aﬂ,

1 1
ROE) > g () + e > g (@) = 5en+ e > g (al) + 360 > 9 (2.
That is,

max {g (z);z € [a}y1,a}]} <min{h(2);2z € [al\y,a]]}.

kn—11°°

It is evident that the sequence {{a?}izo
e

the right hand side and satisfies the inequalities from the preface of the proof.
On the interval [yg,b) we proceed analogously.

We choose a perfect nowhere dense subset P of the interval [a, b] such that
the set {a;,b;;9=1,2,...} C. P. Then Lemma 4 implies that there exists a
continuous function h; defined on the interval [a,b], such that

hi(a) = h(a), by (b) = h(b),

converges to the point a from

and
hi (ai) = h(a:), ha (bi) = h(bi),
min {h (a;) ,h(ait1)} < h1 (z) < max{h(a;),h(ai+1)}
hold for every i = 1,2,... and every « € (a;+1,a;). In the same manner,

min {/ (b;) ; h (bi1)} < by (2) < max {h (b;) , h (bit1)}

for every x € (b;, b;+1) . Moreover, the function h; is constant on every contigu-
ous interval of the set P. Naturally, since the set {a,b,a;,b;;i=1,2,...} C.
Cy, according to Lemma 2 in [8] we can choose P C Cfy. If we replace the
function h by the function of type h; on every contiguous interval of the set
AU K, we obtain the assertion of Lemma 5. O
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The class of strong Swiatkowski functions was defined by T. Marik and T.
Swiatkowski in [7].

Definition 6. We say that f is a strong Swigtkowski function if, whenever
a < b and y is a number between f (a) and f (b), then there exists an zy €
(a,b) N Cy such that f(xo) =y.

Lemma 7. Suppose that a sequence of continuous functions s; < sy < s3 <

. converges on [0, 1] to the function s. For a double sequence of positive real
numbers (0p,6,), n=1,2,..., (6n,en) = (0,0) and a sequence of closed sets
Fy C F, C F3C ..., we consider the following properties:

(1) |x1 — 2| < 0p, = |8n (1) — 85 (22)] < €1
(i) x € [0,1] = dist (z, F,) < 0p,
(iii) Sp+1/Fn = $n/Fy, for everyn=1,2,...
(i) F=FLUFRUFU--- CC,

(v) if x, € Dy, there are sequences x;,y; € Fyi =1,2,..., x; T o, ¥; 4 o,
such that

s(x;) < s(xo), s(yi) < s(xg) and s(x;) — s(xo), s(yi) — s (o).

We make the following inference about the function s :
1. From properties (i)-(iii), it follows that the function s € Dlsc,
2. From properties (i)—(iv) it follows that the function s € QDlsc, and
3. From properties (i)—(v) it follows that the function s € S*lsc.
ProOF. Evidently s € Isc. Let (i)-(4i) be satisfied. Then it is sufficient to

show ([2]) that for an arbitrary z € [0, 1], there exist sequences z,, 1 xo and
Yn 4 To such that

nhﬁn;(} s(xy) = nhHH;O $(yn) = s (o) -

Naturally, if xp = 0 or g = 1, we consider only one of these. Given the
assumptions of Lemma 7, for every n = 1,2... there exist z, < x¢ <

Yn, TnsYn € F, such that |z, —xo| < 20,, |yn — xo| < 20, and s(z,) =

Sn (Tn), S (Yn) = Sn (yYn) - Moreover |s,, (xn) — Sn (20)| < 2e, and |Sy, (Yn) — Sn (20)]| <
2e,,. Since (0,,&,) — (0,0) and s, (x9) — s (zg), the inequality

|s (zn) = 5 (20)| = [sn (2n) = s (z0)| < |sn (¥n) = sn (20)] + [8n (20) — s (20)]

< 2ep, + [8n (o) — s (x0)]
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implies that s (z,) — s (z0) and analogously s (y,) — s (x0) .

Let (i)-(iv) be satisfied. Because in the sequences above z,,y, € Cs, the
assertion that s € Qlsc directly follows from Lemma 3.4. in [4].

Let (i)-(v) be satisfied and let @ < b and y be a number between s (a) and
s (b) . We assume that s (a) >y > s (b) and denote
xo = min{z € [a,b] ;s (x) < y}. Such x( exists, because the function s € Isc,
y > s(b) and thus the set {z € [a,b];s(x) <y} is not empty and closed.
Evidently s(z9) = y, since opposite case leads to a contradiction with the
Darboux property of the function s. The point zy € Cs. In the case z¢ € Dy,
(v) implies the existence of a point z; < x¢ such that s(z1) < s(zg) = v,
which contradicts to g = min {x € [a,b];s (z) < y} . We proceed analogously
when s (a) <y < s(b). O

Theorem 8. Let f be a lower semicontinuous function. Then there are strong
Swigtkowski lower semicontinuous functions g and h such that f = g+ h.

ProOOF. The function f € lsc. Without loss of generality we may consider
f > 0 and the existence of sequence of continuous functions 0 < f{ < f9 <
Y <. = f. According to Lemma 5, we can construct a sequence of nowhere
dense perfect sets P, C Cy and a sequence of functions f, € CK (P,), n =
1,2,... such that f2 < f, < f2+1 and P, C. P,t1. Therefore, let

P C.PyC.P3C.---CCyC0,1]
to be a sequence of nowhere dense perfect sets and let
0<fi<fo<fz<...,fn€CK(P,),n=12,...,

be a sequence of functions which converges on [0, 1] to the function f. Let

sz UDT“ where D1 C Dy C D3 C ...

n=1

are closed sets. We denote

o0
P=JP.
n=1
Let e,, n =1,2,... be a sequence of positive real numbers, ¢, — 0.

In the first step we define

flsz:hlzh*{7 glng:O.
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The functions hq, g; are uniformly continuous on [0, 1]. Then for given ; > 0,
there exists ;1 > 0 such that for every x1,zo € [0,1] it holds

| xr1 — To |< 01 $| gl(xl) —gl(l’g) |< e1 N | hl(l‘l) — hl(l‘g) ‘< £1.
Let Fy C Cy be a finite set, such that
dist (z, F1) < 61, for every z € [0,1].

If IF k = 1,2,... is the sequence of all contiguous intervals of the set Py,
only for a finite number of intervals I¥ it holds that I¥ N Dy # (). In the case
IF N Dy # (), we may choose a finite set I} such that the boundary points of
interval I{“ are from the set Fy. Let K; be a finite subset of the set Cf \ P,
such that:

1. Ky NFy =0 and dist (z, K1) < 81, for every z € [0,1].

2. If I¥ N Dy # 0 then Ky N IF # 0, min(K; N I¥) < min(I¥ N Dy) and
max(If N Dy) < max (Ky NIT).

We continue to the second step. According to Lemma 5, there exist a nowhere
dense perfect set Py and a function f5 € CK (P5) such that

FiuUP, CCPQ*CCf\KL
5 (x) = f(x) for every z € Fi,
max {f; (x), f2 (z)} < f5 (z) < f(x) for every xz ¢ Fi.

Denote 1§,k = 1,2,... the sequence of all contiguous closed intervals of the
set Py. The sets Fy, K; are finite, F} N K; = . Because F; C. P; then
I N Fy =0 for each k = 1,2,... . We know that I§ N (D; U K;) #  holds

only for finite number of intervals I¥. Let the set {Ié“ , 152, ceey Ié“""} consist

of all of these intervals. The set F; and the set | Ié” ,4=1,2,...,m are closed
and disjoint. Then the function

. 0 ifzeIV,i=1,2,....m
g5 (x) = " " .
f5(x) = fi(z) ifxelh

is continuous on the closed set F; U (U Ig’i =12, m) . According to the

Tietze theorem there is a continuous extension of the function g5 on [0,1].
Since f5 — f{ is a continuous function and 0 < f5 — f{ then there exists a
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continuous extension g3 such that 0 < g5 < f5 — ff. Consequently, by Lemma
4, there exists a continuous function g3, 0 < g5 < f5 — fi such that

g5 (I) =0, if I N (D1 U Ky) # 0,
95 € CK (Py),
6 (@) = f5 (@) — £ (a) for everyz € Fy.
We define the function h3 by the equation
£~ fi =g+ b
and the functions go and hs:
g2 = g1+ 95, ha = hy + hj.

The functions hs, g2 are uniformly continuous on [0, 1], then for given 5 > 0,
there exists do > 0 such that for every z1,z2 € [0,1] it holds

| 21 — 23 [< 02 =] ga(21) — g2(22) [< €2 A | ha(21) — ha(22) |< €2

Let F, C Cf \ K; be a finite set, Fy C Fy, such that for every z € [0, 1]
1
dist (T,, Fz) < 552

Again, we may choose a set Fy such that if I¥ N Dy # (), then the boundary
points of the interval I§ are from the set Fy. Let K9 D K be a finite subset
of the set C'y \ P U Py, such that:

1. Ko N Fy =0, and dist (z, K3) < £6,, for every z € [0,1].

2. If I¥ N Dy # 0 then Ko N I # 0, min(Ky N I§) < min(I¥ N Dy) and
max (1§ N Dy) < max (Ky N1} .

By induction, for every n = 2,3,4,... can be found nowhere dense perfect set
Pr, Pr_, C. Pr, a continuous function f € CK (P}):

anlupnCcP;CCf\Kn*h (1)
fi @) = f (@) for every @ € Fy i, (2)
max {f;q (), fn (m)} < fr(z) < f(z) for every x ¢ F,,_1, (3)

and a continuous function ¢,0 < g* < f* — f*_, such that
gn (IF) =0, i IV N (Dy1 UK,—1) # 0, (4)
gn € CK (P7), ()

gn (@) = fr(z)— fr_i (z) for every x € F,,_4 (6)
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where If,f, k = 1,2,... are contiguous intervals of the set PY. We define the
function A} by the equation

fo—=faci =90 +hy (7)
and the functions g,, and h,,:
gn = gn—-1 +g:,7 hn :hn—l“i’hz (8)

For given &, > 0, there exists d,,1 > &, > 0 such that for every z1, 25 € [0,1]
it holds

| 1 — @2 |< 0 =] gn(21) — gn(z2) |< en A | An(z1) — hp(z2) |< €p.

Let F,, C C¢ \ K, be a finite set, F,,_; C F,, such that for every x € [0,1]
. 1
dist (z, F,) < —0n.
n

Again, we may choose a set F), such that if I¥ N D,, # (), then the boundary
points of interval I,’j are from the set F,,. Let K,, D K, _1 be a finite subset
of the set C; \ P U Py, such that the following two conditions hold:

1. K, NF, =0 and dist (z, K,,) < %57,,, for every x € [0,1].

2. If I¥ N D,, # 0, then K,, N IF # (), min(K,, N I¥) < min(I* N D,,) and
max (I} N D,) < max (K, N If) .

We notice that the sequences of continuous functions g, and h,, n =
1,2,... are nondecreasing, f} = ¢, + h,. From the inequalities 0 < f,, <
fr < f, it follows that the sequence f;: converges to the function f. Evidently
the sequences g,, and h,, are convergent too, g, — g € lsc, h,, = h € lsc and
g+ h = f. Moreover, we have sequences of closed sets

FirCcFh CF3C...and KiC Ky CKzC...

and the double sequence (%6,1, sn) — (0,0), such that:
(i.) If |1 — za| < %= then

| gn(ml) - gn(xZ) |< En and | hn(xl) - hn(xQ) |< En-
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(ii.) If € [0,1] then dist (z, F},) < 16, and dist (z, K;,) < 16,,.

Evidently, from (4) it follows that g /K, = 0 and from (8) we see that
Ini1/Kn = gn/Kn + g:+1/Kn'
Moreover, from (7) and (6) it follows that

h:wl/Fn = fr*LJrl/Fn — ol Fn — 92+1/Fn =0,

and from (8) that hyi1/F, = hy/F, + hy/F,. Putting these together we
conclude that:

(iii.) gnt1/Kn = gn/K, and hpy1/F, = hy/F,.

Because the double sequence (16,,£,) — (0,0), the functions & and g satisfy
conditions (i)—(#ii) of Lemma 7 and thus g,h € Dlsc. Since f,g,h € lsc and
f =g+ hitis easy to show that the set C is the subset of the set Cy N C}.
Therefore,

(iv.)

K=K UK,UK3U---CC;CC,, and F=F,UFUF;U---C Cf C Cj.

Next we prove that the functions h and g are strong Swigtkowski func-
tions. Because conditions (i)—(iv) are satisfied, it is sufficient to prove that
the functions h and g satisfy the condition (v) in Lemma 7, too.

Let g be an arbitrary point of discontinuity of the function g. Because
D, C Dy, there exists ng such that xo € Dy, N 29 ¢ D,, for n < ng
and a sequence {I,’i"}zo:l, IS I8 518 D - D {xo}, where I¥r is a
contiguous interval of the sets Pr. Each function ¢},n < ng is constant on
the interval I*», and according to (4), g} /I¥» =0, for n > ng. If n > ng
then I¥» N D, # 0 and therefore for every n > ny we can choose points
TnyYn € KN I’;n, Tp < o < Yn. We may demand dist (z,,y,) < %(5,,.
Evidently z,, T xg A yn 4 o and

g (xn) = Gno (xn) = 9no (.’L'()) =g (*T;O) 3
9 (Yn) = gno (Un) = gn, (20) = g (o)
and thus the function g satisfies the condition (v) from Lemma 7.
Now let zy be an arbitrary point of discontinuity of the function h. Again,

because D}, C Dy, there exists ng such that g € D,,, with z¢ ¢ D,, for n < ng
and there exists a sequence of contiguous intervals

Ino D) Im;—&-l D) In0+2 DD {xO}a
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and of perfect sets
P CePpi1 CePpiinC....

n n

Let I,4; = (25,y5),7 = 1,2,... . Because
In0+j n Dno—i—j 2 Ino+j N Dny D {xO} # 0

the points z;,y; € Fy,+;. Using the same arguments as in the the paragraph
above, z; T zo Ay; | zo. According to Remark 3, from (7), (8) it follows that
the function h,,4; € CK (P;:O n j) . Then the function A, ; is constant on the
interval [x;,y;] and therefore

Prgtj (T5) = hng+j (20) = Pngtj (y5) -

The point z; € Fyy4; C Frotj41 C Frgtj+2 C ... . Then according to (iii.)
we have

Png+j (T7) = hng+j+1 (%5) = hngpjta (¥5) = -+ = h(z))
and

h(2)) = hng+j (25) = hng+j (x0) < h(20).
Based on the same reasoning
h(Y;) = hng+5 (Y5) = hnotj (o) < h(20)

holds, too. The function h also satisfies the condition (v) from Lemma 7 and
then by Lemma 7 the functions g, h € S*lsc. O
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