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ON THE SUMS OF LOWER
SEMICONTINUOUS STRONG
ŚWIĄTKOWSKI FUNCTIONS

Abstract

The purpose of this article is to give a solution to a problem raised by
A. Maliszewski in [5] by showing that any lower semicontinuous func-
tion can be represented as a sum of two lower semicontinuous strong
Świątkowski functions.

We deal with the classes of real functions defined on the interval [0, 1]. The
symbols C, D, Q, S∗, lsc and usc stand for the class of continuous, Darboux,
quasi-continuous, strong Świątkowski, lower and upper semicontinuous func-
tions, respectively. S∗lsc denotes S∗ ∩ lsc and Dlsc denotes D ∩ lsc. Cf is
the set of all points of continuity of the function f , Df is the set of all points
of discontinuity of the function f and f � F denotes the restriction of the
function f to the set F. The set B is bilaterally c-dense in the set A (A ⊂c B)
iff for each x ∈ A the sets (x, x+ δ) ∩ B, (x− δ, x) ∩ B are nondenumerable
for every δ > 0.

A. Lindenbaum, in [3] provides the proof that every real function can be
represented by a sum of Darboux functions. A similar result is valid for the
functions of Baire 1 class. Every function of Baire 1 class can be represented
by a sum of Darboux Baire 1 functions, [1]. In [5], A. Maliszewski shows that
every cliquish function can be represented by a sum of a strong Świątkowski
Baire one function and a strong Świątkowski function and also that every
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lower semicontinuous function can be represented by a sum of Darboux quasi-
continuous lower semicontinuous functions, [6]. In the remainder of this article
we show the stronger assertion: lsc = S∗lsc+ S∗lsc, that is: for an arbitrary
lower semicontinuous function f , there exist strong Świątkowski lower semi-
continuous functions g and h such that f = g+ h. An analogous assertion for
the class usc is valid, too. We begin with four lemmas:

Lemma 1. Let f be a lower semicontinuous function defined on [0, 1] and let
K be any closed subset of the set Cf . If a function g ≤ f is continuous and
the set A = {x; g (x) = f (x)} ⊂ Cf , then there exists a continuous function h
such that g ≤ h ≤ f and

h (x) = f (x) for every x ∈ A ∪K
g (x) < h (x) < f (x) for every x /∈ A ∪K.

Proof. Since the function f ∈ lsc, there exists a sequence of continuous
functions f1 ≤ f2 ≤ f3 ≤ . . . . which converges to the function f. We can
demand that f1 < f2 < f3 < . . . . → f. Otherwise we would replace the
sequence of functions fn, n = 1, 2, . . . by fn − 1

n .

The set A = {x; g (x) = f (x)} is closed, because f −g ≥ 0 and f −g ∈ lsc.
Now let In = (an, bn) , n = 1, 2, . . . be the sequence of contiguous intervals of
the set A∪K and let the function f attain its minimum on the interval [an, bn]
at a point ξn. Then there exists an index in such that

f (ξn)−
1

n
< fin (x) < f (x) , for every x ∈ [an, bn] .

Next we choose a sequence of points ank
, bnk

, k = 0, 1, 2, . . .

an ← · · · < an2
< an1

< an0
= bn0

< bn1
< bn2

< · · · → bn.

Let {in,k}∞k=1, in,k ≥ in be an increasing sequence of natural numbers such
that

fin,k
(x) > g (x) , for every x ∈ [ank

, bnk
]

and

fin,k
(an) > f (an)−

1

k
∧ fin,k

(bn) > f (bn)−
1

k
.

A sequence with these property exists, because f (x) > g (x) on the compact
set [ank

, bnk
] and fn (x) → f (x) . We define a function h as follows, where

n, k ∈ N.
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h(x) =


fin,k

(x) +
x−ank−1

ank
−ank−1

(fin,k+1
(x)− fin,k

(x)) x ∈ [ank
, ank−1

]

fin,k
(x) +

x−bnk−1

bnk
−bnk−1

(fin,k+1
(x)− fin,k

(x)) x ∈ [bnk−1
, bnk

]

f(x) x ∈ A ∪K.

The function h is continuous on every contiguous interval In = (an, bn) , n =
1, 2, . . . of the set A ∪K and for each x ∈

[
ank

, ank−1

]
f (x) > fin,k+1

(x) ≥ h (x) ≥ fin,k
(x)

holds. Therefore,

f (x) > h (x) ≥ fin,k
(x) , ∀x ∈

(
an, ank−1

]
, ∀k ∈ N

and because an ∈ Cf , it follows that

f (an) = lim
x→a+n

f (x) ≥ lim
x→a+n

h (x) ≥ lim
x→a+n

fin,k
(x) = fin,k

(an) > f (an)−
1

k
.

Consequently

lim
x→a+n

h (x) = f (an) = h (an) and similarly lim
x→b−n

h (x) = h (bn) ,

that is, the function h is continuous on every interval [an, bn] , n = 1, 2, . . . .
In order to prove the continuity of the function h on the interval [0, 1],

it is sufficient, by the construction of h, to show that h is continuous at an
arbitrary point x0 ∈ K ∪ A. Let a sequence xj , j = 1, 2, . . . converge to the
point x0. Since the restriction f � A ∪K = h � A ∪K is continuous, it can be
assumed that xj ∈ In(j), j = 1, 2, . . . and because h � [an, bn] is continuous
for each n ∈ N, we can assume that n (j)→∞. For each j there exists a point
ξn(j) ∈

[
an(j), bn(j)

]
, such that

f
(
ξn(j)

)
− 1

n (j)
< h (xj) < f (xj) .

x0 ∈ A ∪K ⊆ Cf implies

h (x0) = f (x0) = lim
j→∞

f (ξj)−
1

n(j)
≤ lim
n→∞

h (xj) ≤ lim
n→∞

f (xj) = f (x0) ,

and therefore
h (x0) = lim

j→∞
h (xj) .
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The inequality

g (x) < h (x) < f (x) for every x /∈ A ∪K

follows directly from the definition of the function h, because

g (x) < fin (x) < fin,k
(x) ≤ h (x) ≤ fin,k+1

(x) < f (x) ,

x ∈
[
ank

, ank−1

]
∪
[
bnk−1

, bnk

]
.

Definition 2. Let P be a perfect set. We say that the function f is from the
class K (P ) iff f is constant on every contiguous interval of the set P and we
denote by CK (P ) the class C ∩K (P ) .

Remark 3. The class CK (P ) has the following properties.
Let P1, P be perfect sets, P1 ⊂c P , and let α, β be real numbers, then

f ∈ CK (P1)⇒ f ∈ CK (P )

f, g ∈ CK (P )⇒ αf + βg ∈ CK (P ) .

Lemma 4. Let f ≥ 0 be a continuous function, K a closed set, P a nowhere
dense perfect set and K ⊂c P. Then there exists a function g ∈ CK (P ) such
that 0 ≤ g ≤ f and g (x) = f (x) for every x ∈ K.

Proof. Let (a, b) be a contiguous interval of the set K and let the function
f attain its minimum on the closed contiguous interval I = [a, b] at a point c.
The set I ∩ {x; f (x) = f (c)} is closed. Then there exist

min (I ∩ {x; f (x) = f (c)}) and max (I ∩ {x; f (x) = f (c)}) .

If a = min (I ∩ {x; f (x) = f (c)}), we set a0 = a. On the other hand, if we
have that a < min (I ∩ {x; f (x) = f (c)}) , we choose

a0 ∈ P, a < a0 < min (I ∩ {x; f (x) = f (c)}) ,

such that a0 is the left boundary point of some contiguous interval of the
set P. Such a point exists, because a ∈ K ⊂c P . Analogously, we de-
fine a point b0 ∈ P. If max (I ∩ {x; f (x) = f (c)}) = b then b0 = b and if
max (I ∩ {x; f (x) = f (c)}) < b, we choose

b0 ∈ P, max (I ∩ {x; f (x) = f (c)}) < b0 < b,

where b0 is the right boundary point of some contiguous interval of the set P.



Sums of Lower Semicontinuous Strong Świątkowski Functions 19

In the case a < a0, we define a function f1 on the interval [a, a0] . Since
f (x) > f (c) for every x ∈ [a, a0], there exists a constant M > 0, such that
f (x) > f (a)−M > f (c) on the interval [a, a0] . The function f is continuous
at the point a. Then a sequence of points a0 > a1 > a2 > . . . .→ a exists such
that

f (x) > f (a)− M

n
, ∀x ∈ [a, an−1] , n = 1, 2, . . . .

Let f1 (a) = f (a) and let the graph of f1 be linear segments that join points
[a0, f (c)] , [a1, f (a)−M ] ,

[
a2, f (a)− M

2

]
, . . . ,

[
an, f (a)− M

n

]
, . . . . Appar-

ently, the function f1 is continuous and decreasing over the interval [a, a0] .
Moreover,

f (c) ≤ f1 (x) < f (x) , ∀x ∈ (a, a0] ,

because

f1 (x) < f (a)− M

n
< f (x) , ∀x ∈ [an, an−1] , n = 1, 2, . . . .

Now, let QI = {qi}∞i=1 be the sequence of all rational numbers of the interval
(f (c) , f (a)) , and let I = {In, n = 1, 2, . . . } , In ⊂ I, be the sequence of all
closed contiguous intervals of the set [a, a0]∩P. Since [a, a0]∩P is the perfect
set and a, a0 ∈ [a, a0] ∩ P then it is evident that

Ii ∩ Ij = ∅, ∀Ii, Ij ∈ I, i 6= j, i, j ∈ {1, 2, . . . }

and
{a, a0} ∩ Ii = ∅, ∀i ∈ {1, 2, . . . } .

The set I is ordered, Ii < Ij , Ii, Ij ∈ I, it means that max Ii < min Ij . We
define a mapping

G : {In, n = 1, 2, . . . } → QI

inductively.
In the first step, let G (I1) = qi1 , where qi1 is the first member of the

sequence QI from which follows the condition

f1 (x) > qi1 , ∀x ∈ I1.

Such a qi1 exists, because min {f1 (x) , x ∈ I1} > f (c) and the set QI is dense
in the interval (f (c) , f (a)). Denote Q1 the sequence, which is created by
excluding the element qi1 from the sequence QI .

In the n-th step define the mapping G on the set {I1, I2, . . . , In}, such that

G (Ij) = qij ∈ QI , 1 ≤ j ≤ n,
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∀j ∈ {1, 2, . . . , n} ⇒ f1 (x) > qij , ∀x ∈ Ij ,

Im < Il ⇒ G (Im) = qim > qil = G (Il) , ∀m, l ∈ {1, 2, . . . , n}

and let Qn be the sequence which we get from the sequence QI by excluding
qi1 , qi2 , . . . , qin .

In the n + 1-th step we set G (In+1) = qin+1 , such that qin+1 is the first
member of the sequence Qn, that satisfies the following conditions:

f1 (x) > qin+1
, ∀x ∈ In+1,

and
if m, l ∈ {1, 2, . . . , n} ∧ Im < In+1 < Il ⇒ qim > qin+1

> qil .

Such qin+1 exists, because

Im < In+1 < Il ⇒ qim > qil ∧min {f1 (x) , x ∈ In+1} > qil

and the set Qn is dense in (f (c) , f (a)) . Denote Qn+1 the sequence that we
get by excluding the element qin+1 from the sequence Qn.

Next, we show that the mapping G : {In, n = 1, 2, . . . } → QI is one to one
mapping. With respect to the construction of G it is sufficient to show that
G map the set I onto the set QI : G (I) = QI . Suppose that G (I) $ QI .
Then there exists a sequence Qn and q0 ∈ QI \G (I) such that q0 is the first
member of the sequence Qn. Let

Imax = max
{
Ij ; 1 ≤ j ≤ n ∧ qij > q0

}
and

Imin = min
{
Ij ; 1 ≤ j ≤ n ∧ qij < q0

}
.

For every x ∈ Imax the inequality f1 (x) > q0 is valid. Because the function f1
is decreasing, then max Imax < f−11 (q0) and therefore there exists an infinite
number of intervals Ik ∈ {In+1, In+2, . . . ..} such that

Imax < Ik < Imin ∧ f1 (x) > q0,∀x ∈ Ik.

If Ik0 is the first such interval in the sequence {In+1, In+2, . . . ..} , then ac-
cording to the definition of the mapping G, G (Ik0) = q0. This contradicts the
assumption q0 ∈ QI \G (I).

Let g be the function defined on the interval [a, a0) by

g (x) = sup {G (I) , I ∈ I ∧ x < min I} .
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If b0 < b then, in a similar way, we define a function g on the interval (b0, b]
and let

g (x) = f (c) for every x ∈ [a0, b0] .

It is easy to verify that the function g is continuous on the interval [a, b] , 0 ≤
f (c) ≤ g (x) ≤ f (x) , ∀x ∈ [a, b], f (a) = g (a) , f (b) = g (b) and moreover, g
is constant on each contiguous interval I of the set [a, b] ∩ P.

Now let the function g be defined on each contiguous interval of the set K
in the same manner as above and let

g � K = f � K.

Such a function g is continuous on the interval [0, 1]. It is sufficient to show
that the function g is continuous at an arbitrary point x0 ∈ K. Let a sequence
xj , j = 1, 2, . . . converge to the point x0. The restriction g � K is a continuous
function and g is a continuous function on each closed contiguous interval of
the set K. Applying the same reasoning as in Lemma 1, it can be assumed
that xj ∈ Inj

, j = 1, 2, . . . , where Inj
=
(
anj

, bnj

)
is a sequence of contiguous

intervals of the set K and nj → ∞. If the function f attains its minimum
over

[
anj , bnj

]
at a point cnj , then the same holds for the function g and

f
(
cnj

)
= g

(
cnj

)
. The sequence cnj

, j = 1, 2, . . . again converges to the point
x0 and

f (x0) = lim
j→∞

f
(
cnj

)
= lim
j→∞

g
(
cnj

)
≤ lim
j→∞

g (xj)

≤ lim
j→∞

f (xj) = f (x0) = g (x0) .

That is,
lim
j→∞

g (xj) = g (x0) .

The function g, as defined above, satisfies the assertion of Lemma 4, because
it is continuous, constant on each interval contiguous of the set P , 0 ≤ g ≤ f
and g (x) = f (x) for every x ∈ K.

Lemma 5. Let f be a lower semicontinuous function defined on [0, 1] and let
K be any closed subset of the set Cf . If a function g ≤ f is continuous, the
set A = {x; g (x) = f (x)} ⊂ Cf and the set A ∪K is nowhere dense in [0, 1],
then there exists a perfect set P ⊂ Cf , nowhere dense in [0, 1] , and a function
h ∈ CK (P ) such that

A ∪K ⊂c P
h (x) = f (x) for every x ∈ A ∪K

g (x) < h (x) < f (x) for every x /∈ A ∪K.



22 Robert Menkyna

Proof. If (a, b) is a contiguous interval of the set A
⋃
K, then, for an arbitrary

x ∈ (a, b) ,
g (x) < h (x) < f (x) .

We will show that there exist sequences ai, bi ∈ Cf , ai ↓ a+, bi ↑ b−, i =
1, 2, . . . , a1 = b1, such that

max {g (x) , x ∈ [ai+1, ai]} < min {h (x) , x ∈ [ai+1, ai]}

max {h (x) , x ∈ [ai+1, ai]} < min {f (x) , x ∈ [ai+1, ai]}
for each interval [ai+1, ai] and that the same is true for each interval [bi, bi+1].

Let {xn}∞n=0 , {yn}
∞
n=0 be arbitrary sequences of points xn, yn ∈ Cf ,

a← · · · < x2 < x1 < x0 = y0 < y1 < y2 < · · · → b .

Since f − h ∈ lsc, h− g ∈ C and

∀x ∈ [xn+1, xn] : f (x)− h (x) > 0 ∧ h (x)− g (x) > 0,

then there exists εn > 0, such that

∀x ∈ [xn+1, xn] : f (x)− h (x) > εn ∧ h (x)− g (x) > εn.

The functions h and g are uniformly continuous on the interval [xn+1, xn], so
there exists δn > 0, such that for every x, y ∈ [xn+1, xn] it holds

|x− y| < δn ⇒ |h (x)− h (y)| <
1

3
εn ∧ |g (x)− g (y)| <

1

3
εn.

Now we choose an arbitrary finite sequence of points
ani ∈ Cf , i ∈ {0, 1, 2, . . . , kn} ,

xn+1 = ankn < ankn−1 < . . . . < an2 < an1 < an0 = xn,

such that ∣∣ani+1 − ani
∣∣ < δn for every i ∈ {0, 1, 2, . . . , kn − 1} .

Let the function f attain its minimum on the interval
[
ani+1, a

n
i

]
at a point ξni

and the function h at a point ηni , that is

f (ξni ) = min
{
f (x) ; x ∈

[
ani+1, a

n
i

]}
∧ h (ηni ) = min

{
h (x) ; x ∈

[
ani+1, a

n
i

]}
.

Every x ∈
[
ani+1, a

n
i

]
satisfies the condition |x− ani | < δn. Then

h (x) < h (ani ) +
1

3
εn
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and because ξni ∈
[
ani+1, a

n
i

]
then |ξni − ani | < δn. Therefore

h (ani )−
1

3
εn < h (ξni ) .

According to the definition of εn, we have f (ξni )−h (ξni ) > εn. Consequently,
using the foregoing inequalities, we have that ∀x ∈

[
ani+1, a

n
i

]
,

f (ξni ) > h (ξni ) + εn > h (ani )−
1

3
εn + εn > h (ani ) +

1

3
εn > h (x) .

That is,

max
{
h (x) ;x ∈

[
ani+1, a

n
i

]}
< min

{
f (x) ;x ∈

[
ani+1, a

n
i

]}
.

If we use the same arguments as in the previous procedure and if (f, h, ξni ) is
replaced by (h, g, ηni ), we get that ∀x ∈

[
ani+1, a

n
i

]
,

h (ηni ) > g (ηni ) + εn > g (ani )−
1

3
εn + εn > g (ani ) +

1

3
εn > g (x) .

That is,

max
{
g (x) ;x ∈

[
ani+1, a

n
i

]}
< min

{
h (x) ;x ∈

[
ani+1, a

n
i

]}
.

It is evident that the sequence
{
{ani }

kn−1
i=0

}∞
n=0

converges to the point a from
the right hand side and satisfies the inequalities from the preface of the proof.
On the interval [y0, b) we proceed analogously.

We choose a perfect nowhere dense subset P of the interval [a, b] such that
the set {ai, bi; i = 1, 2, . . . } ⊂c P. Then Lemma 4 implies that there exists a
continuous function h1 defined on the interval [a, b] , such that

h1 (a) = h (a) , h1 (b) = h (b) ,

and
h1 (ai) = h (ai) , h1 (bi) = h (bi) ,

min {h (ai) , h (ai+1)} ≤ h1 (x) ≤ max {h (ai) , h (ai+1)}
hold for every i = 1, 2, . . . and every x ∈ (ai+1, ai) . In the same manner,

min {h (bi) , h (bi+1)} ≤ h1 (x) ≤ max {h (bi) , h (bi+1)}

for every x ∈ (bi, bi+1) .Moreover, the function h1 is constant on every contigu-
ous interval of the set P. Naturally, since the set {a, b, ai, bi; i = 1, 2, . . . } ⊂c
Cf , according to Lemma 2 in [8] we can choose P ⊂ Cf . If we replace the
function h by the function of type h1 on every contiguous interval of the set
A ∪K, we obtain the assertion of Lemma 5.
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The class of strong Świątkowski functions was defined by T. Mańk and T.
Świątkowski in [7] .

Definition 6. We say that f is a strong Świątkowski function if, whenever
a < b and y is a number between f (a) and f (b) , then there exists an x0 ∈
(a, b) ∩ Cf such that f (x0) = y.

Lemma 7. Suppose that a sequence of continuous functions s1 ≤ s2 ≤ s3 ≤
. . . converges on [0, 1] to the function s. For a double sequence of positive real
numbers (δn, εn) , n = 1, 2, . . . , (δn, εn)→ (0, 0) and a sequence of closed sets
F1 ⊆ F2 ⊆ F3 ⊆ . . . , we consider the following properties:

(i) |x1 − x2| < δn ⇒ |sn (x1)− sn (x2)| < εn

(ii) x ∈ [0, 1]⇒ dist (x, Fn) < δn

(iii) sn+1/Fn = sn/Fn, for every n = 1, 2, . . .

(iv) F = F1 ∪ F2 ∪ F3 ∪ · · · ⊂ Cs

(v) if xo ∈ Ds, there are sequences xi, yi ∈ F, i = 1, 2, . . . , xi ↑ x0, yi ↓ x0,
such that

s (xi) ≤ s (x0) , s (yi) ≤ s (x0) and s (xi)→ s (x0) , s (yi)→ s (x0) .

We make the following inference about the function s :

1. From properties (i)–(iii), it follows that the function s ∈ Dlsc,

2. From properties (i)–(iv) it follows that the function s ∈ QDlsc, and

3. From properties (i)–(v) it follows that the function s ∈ S∗lsc.

Proof. Evidently s ∈ lsc. Let (i)–(iii) be satisfied. Then it is sufficient to
show ([2]) that for an arbitrary x0 ∈ [0, 1], there exist sequences xn ↑ x0 and
yn ↓ x0 such that

lim
n→∞

s (xn) = lim
n→∞

s (yn) = s (x0) .

Naturally, if x0 = 0 or x0 = 1, we consider only one of these. Given the
assumptions of Lemma 7, for every n = 1, 2 . . . there exist xn < x0 <
yn, xn, yn ∈ Fn such that |xn − x0| < 2δn, |yn − x0| < 2δn and s (xn) =
sn (xn) , s (yn) = sn (yn) .Moreover |sn (xn)− sn (x0)| < 2εn and |sn (yn)− sn (x0)| <
2εn. Since (δn, εn)→ (0, 0) and sn (x0)→ s (x0) , the inequality

|s (xn)− s (x0)| = |sn (xn)− s (x0)| ≤ |sn (xn)− sn (x0)|+ |sn (x0)− s (x0)|
< 2εn + |sn (x0)− s (x0)|
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implies that s (xn)→ s (x0) and analogously s (yn)→ s (x0) .

Let (i)–(iv) be satisfied. Because in the sequences above xn, yn ∈ Cs, the
assertion that s ∈ Qlsc directly follows from Lemma 3.4. in [4] .

Let (i)–(v) be satisfied and let a < b and y be a number between s (a) and
s (b) . We assume that s (a) > y > s (b) and denote
x0 = min {x ∈ [a, b] ; s (x) ≤ y} . Such x0 exists, because the function s ∈ lsc,
y > s (b) and thus the set {x ∈ [a, b] ; s (x) ≤ y} is not empty and closed.
Evidently s (x0) = y, since opposite case leads to a contradiction with the
Darboux property of the function s. The point x0 ∈ Cs. In the case x0 ∈ Ds,
(v) implies the existence of a point x1 < x0 such that s (x1) ≤ s (x0) = y,
which contradicts to x0 = min {x ∈ [a, b] ; s (x) ≤ y} . We proceed analogously
when s (a) < y < s (b) .

Theorem 8. Let f be a lower semicontinuous function. Then there are strong
Świątkowski lower semicontinuous functions g and h such that f = g + h.

Proof. The function f ∈ lsc. Without loss of generality we may consider
f > 0 and the existence of sequence of continuous functions 0 < f01 < f02 <
f03 < · · · → f . According to Lemma 5, we can construct a sequence of nowhere
dense perfect sets Pn ⊂ Cf and a sequence of functions fn ∈ CK (Pn) , n =
1, 2, . . . such that f0n < fn < f0n+1 and Pn ⊂c Pn+1. Therefore, let

P1 ⊂c P2 ⊂c P3 ⊂c · · · ⊂ Cf ⊂ [0, 1]

to be a sequence of nowhere dense perfect sets and let

0 < f1 < f2 < f3 < . . . , fn ∈ CK (Pn) , n = 1, 2, . . . ,

be a sequence of functions which converges on [0, 1] to the function f . Let

Df =

∞⋃
n=1

Dn, where D1 ⊂ D2 ⊂ D3 ⊂ . . .

are closed sets. We denote

P =

∞⋃
n=1

Pn.

Let εn, n = 1, 2, . . . be a sequence of positive real numbers, εn → 0.

In the first step we define

f1 = f∗1 = h1 = h∗1, g1 = g∗1 = 0.
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The functions h1, g1 are uniformly continuous on [0, 1]. Then for given ε1 > 0,
there exists δ1 > 0 such that for every x1, x2 ∈ [0, 1] it holds

| x1 − x2 |< δ1 ⇒| g1(x1)− g1(x2) |< ε1 ∧ | h1(x1)− h1(x2) |< ε1.

Let F1 ⊂ Cf be a finite set, such that

dist (x, F1) < δ1, for every x ∈ [0, 1] .

If Ik1 , k = 1, 2, . . . is the sequence of all contiguous intervals of the set P1,
only for a finite number of intervals Ik1 it holds that Ik1 ∩D1 6= ∅. In the case
Ik1 ∩D1 6= ∅, we may choose a finite set F1 such that the boundary points of
interval Ik1 are from the set F1. Let K1 be a finite subset of the set Cf \ P ,
such that:

1. K1 ∩ F1 = ∅ and dist (x,K1) < δ1, for every x ∈ [0, 1] .

2. If Ik1 ∩ D1 6= ∅ then K1 ∩ Ik1 6= ∅, min(K1 ∩ Ik1 ) < min(Ik1 ∩ D1) and
max(Ik1 ∩D1) < max

(
K1 ∩ Ik1

)
.

We continue to the second step. According to Lemma 5, there exist a nowhere
dense perfect set P ∗2 and a function f∗2 ∈ CK (P ∗2 ) such that

F1 ∪ P2 ⊂c P ∗2 ⊂ Cf \K1,

f∗2 (x) = f (x) for every x ∈ F1,

max {f∗1 (x) , f2 (x)} < f∗2 (x) < f (x) for every x /∈ F1.

Denote Ik2 , k = 1, 2, . . . the sequence of all contiguous closed intervals of the
set P ∗2 . The sets F1, K1 are finite, F1 ∩ K1 = ∅. Because F1 ⊂c P ∗2 then
Ik2 ∩ F1 = ∅ for each k = 1, 2, . . . . We know that Ik2 ∩ (D1 ∪K1) 6= ∅ holds
only for finite number of intervals Ik2 . Let the set

{
Ik12 , Ik22 , . . . , Ikm2

}
consist

of all of these intervals. The set F1 and the set
⋃
Iki2 , i = 1, 2, . . . ,m are closed

and disjoint. Then the function

g∗2 (x) =

{
0 if x ∈

⋃
Iki2 , i = 1, 2, . . . ,m

f∗2 (x)− f∗1 (x) if x ∈ F1

is continuous on the closed set F1 ∪
(⋃

Iki2 , i = 1, 2, . . . ,m
)
. According to the

Tietze theorem there is a continuous extension of the function g∗2 on [0, 1] .
Since f∗2 − f∗1 is a continuous function and 0 ≤ f∗2 − f∗1 then there exists a
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continuous extension g∗2 such that 0 ≤ g∗2 ≤ f∗2 −f∗1 . Consequently, by Lemma
4, there exists a continuous function g∗2 , 0 ≤ g∗2 ≤ f∗2 − f∗1 such that

g∗2
(
Ik2
)
= 0, if Ik2 ∩ (D1 ∪K1) 6= ∅,
g∗2 ∈ CK (P ∗2 ) ,

g∗2 (x) = f∗2 (x)− f∗1 (x) for every x ∈ F1.

We define the function h∗2 by the equation

f∗2 − f∗1 = g∗2 + h∗2

and the functions g2 and h2:

g2 = g1 + g∗2 , h2 = h1 + h∗2.

The functions h2, g2 are uniformly continuous on [0, 1], then for given ε2 > 0,
there exists δ2 > 0 such that for every x1, x2 ∈ [0, 1] it holds

| x1 − x2 |< δ2 ⇒| g2(x1)− g2(x2) |< ε2 ∧ | h2(x1)− h2(x2) |< ε2.

Let F2 ⊂ Cf \K1 be a finite set, F1 ⊂ F2, such that for every x ∈ [0, 1]

dist (x, F2) <
1

2
δ2.

Again, we may choose a set F2 such that if Ik2 ∩D2 6= ∅, then the boundary
points of the interval Ik2 are from the set F2. Let K2 ⊃ K1 be a finite subset
of the set Cf \ P ∪ P ∗2 , such that:

1. K2 ∩ F2 = ∅, and dist (x,K2) <
1
2δ2, for every x ∈ [0, 1] .

2. If Ik2 ∩ D2 6= ∅ then K2 ∩ Ik2 6= ∅, min(K2 ∩ Ik2 ) < min(Ik2 ∩ D2) and
max(Ik2 ∩D2) < max

(
K2 ∩ Ik2

)
.

By induction, for every n = 2, 3, 4, . . . can be found nowhere dense perfect set
P ∗n , P

∗
n−1 ⊂c P ∗n , a continuous function f∗n ∈ CK (P ∗n):

Fn−1 ∪ Pn ⊂c P ∗n ⊂ Cf \Kn−1, (1)
f∗n (x) = f (x) for every x ∈ Fn−1, (2)

max
{
f∗n−1 (x) , fn (x)

}
< f∗n (x) < f (x) for every x /∈ Fn−1, (3)

and a continuous function g∗n, 0 ≤ g∗n ≤ f∗n − f∗n−1 such that

g∗n
(
Ikn
)
= 0, if Ikn ∩ (Dn−1 ∪Kn−1) 6= ∅, (4)

g∗n ∈ CK (P ∗n) , (5)
g∗n (x) = f∗n (x)− f∗n−1 (x) for every x ∈ Fn−1 (6)
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where Ikn, k = 1, 2, . . . are contiguous intervals of the set P ∗n . We define the
function h∗n by the equation

f∗n − f∗n−1 = g∗n + h∗n (7)

and the functions gn and hn:

gn = gn−1 + g∗n, hn = hn−1 + h∗n. (8)

For given εn > 0, there exists δn, 1 ≥ δn > 0 such that for every x1, x2 ∈ [0, 1]
it holds

| x1 − x2 |< δn ⇒| gn(x1)− gn(x2) |< εn ∧ | hn(x1)− hn(x2) |< εn.

Let Fn ⊂ Cf \Kn−1 be a finite set, Fn−1 ⊂ Fn, such that for every x ∈ [0, 1]

dist (x, Fn) <
1

n
δn.

Again, we may choose a set Fn such that if Ikn ∩Dn 6= ∅, then the boundary
points of interval Ikn are from the set Fn. Let Kn ⊃ Kn−1 be a finite subset
of the set Cf \ P ∪ P ∗n , such that the following two conditions hold:

1. Kn ∩ Fn = ∅ and dist (x,Kn) <
1
nδn, for every x ∈ [0, 1] .

2. If Ikn ∩Dn 6= ∅, then Kn ∩ Ikn 6= ∅, min(Kn ∩ Ikn) < min(Ikn ∩Dn) and
max(Ikn ∩Dn) < max

(
Kn ∩ Ikn

)
.

We notice that the sequences of continuous functions gn and hn, n =
1, 2, . . . are nondecreasing, f∗n = gn + hn. From the inequalities 0 < fn <
f∗n ≤ f , it follows that the sequence f∗n converges to the function f . Evidently
the sequences gn and hn are convergent too, gn → g ∈ lsc, hn → h ∈ lsc and
g + h = f. Moreover, we have sequences of closed sets

F1 ⊂ F2 ⊂ F3 ⊂ . . . and K1 ⊂ K2 ⊂ K3 ⊂ . . .

and the double sequence
(
1
nδn, εn

)
→ (0, 0), such that:

(i.) If |x1 − x2| < δn
n then

| gn(x1)− gn(x2) |< εn and | hn(x1)− hn(x2) |< εn.
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(ii.) If x ∈ [0, 1] then dist (x, Fn) <
1
nδn and dist (x,Kn) <

1
nδn.

Evidently, from (4) it follows that g∗n+1/Kn = 0 and from (8) we see that
gn+1/Kn = gn/Kn + g∗n+1/Kn.

Moreover, from (7) and (6) it follows that

h∗n+1/Fn = f∗n+1/Fn − f∗n/Fn − g∗n+1/Fn = 0,

and from (8) that hn+1/Fn = hn/Fn + h∗n+1/Fn. Putting these together we
conclude that:

(iii.) gn+1/Kn = gn/Kn and hn+1/Fn = hn/Fn.

Because the double sequence
(
1
nδn, εn

)
→ (0, 0) , the functions h and g satisfy

conditions (i)–(iii) of Lemma 7 and thus g, h ∈ Dlsc. Since f, g, h ∈ lsc and
f = g + h it is easy to show that the set Cf is the subset of the set Cg ∩ Ch.
Therefore,

(iv.)

K = K1 ∪K2 ∪K3 ∪ · · · ⊂ Cf ⊂ Cg, and F = F1 ∪ F2 ∪ F3 ∪ · · · ⊂ Cf ⊂ Ch.

Next we prove that the functions h and g are strong Świątkowski func-
tions. Because conditions (i)–(iv) are satisfied, it is sufficient to prove that
the functions h and g satisfy the condition (v) in Lemma 7, too.

Let x0 be an arbitrary point of discontinuity of the function g. Because
Dg ⊂ Df , there exists n0 such that x0 ∈ Dn0

∧ x0 /∈ Dn, for n < n0

and a sequence
{
Iknn
}∞
n=1

, Ik11 ⊃ Ik22 ⊃ Ik33 ⊃ · · · ⊃ {x0} , where Iknn is a
contiguous interval of the sets P ∗n . Each function g∗n, n ≤ n0 is constant on
the interval Iknn , and according to (4) , g∗n/I

kn
n = 0, for n > n0. If n > n0

then Iknn ∩ Dn 6= ∅ and therefore for every n > n0 we can choose points
xn, yn ∈ Kn ∩ Iknn , xn < x0 < yn. We may demand dist (xn, yn) <

2
nδn.

Evidently xn ↑ x0 ∧ yn ↓ x0 and

g (xn) = gn0
(xn) = gn0

(x0) = g (x0) ,

g (yn) = gn0
(yn) = gn0

(x0) = g (x0)

and thus the function g satisfies the condition (v) from Lemma 7.
Now let x0 be an arbitrary point of discontinuity of the function h. Again,

because Dh ⊂ Df , there exists n0 such that x0 ∈ Dn0 with x0 /∈ Dn for n < n0
and there exists a sequence of contiguous intervals

In0
⊃ In0+1 ⊃ In0+2 ⊃ · · · ⊃ {x0} ,
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and of perfect sets
P ∗n0
⊂c P ∗n0+1 ⊂c P ∗n0+2 ⊂ . . . .

Let In0+j = (xj , yj) , j = 1, 2, . . . . Because

In0+j ∩Dn0+j ⊃ In0+j ∩Dn0
⊃ {x0} 6= ∅

the points xj , yj ∈ Fn0+j . Using the same arguments as in the the paragraph
above, xj ↑ x0 ∧ yj ↓ x0. According to Remark 3, from (7) , (8) it follows that
the function hn0+j ∈ CK

(
P ∗n0+j

)
. Then the function hn0+j is constant on the

interval [xj , yj ] and therefore

hn0+j (xj) = hn0+j (x0) = hn0+j (yj) .

The point xj ∈ Fn0+j ⊂ Fn0+j+1 ⊂ Fn0+j+2 ⊂ . . . . Then according to (iii.)
we have

hn0+j (xj) = hn0+j+1 (xj) = hn0+j+2 (xj) = · · · = h (xj)

and
h (xj) = hn0+j (xj) = hn0+j (x0) ≤ h (x0) .

Based on the same reasoning

h (yj) = hn0+j (yj) = hn0+j (x0) ≤ h (x0)

holds, too. The function h also satisfies the condition (v) from Lemma 7 and
then by Lemma 7 the functions g, h ∈ S∗lsc.
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