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THE NONCONVERGENCE OF A CLASS OF
MEASURABLE FUNCTIONS

Abstract

Let {εn} be a sequence of positive numbers converging to 0. For
each n divide the unit interval [0, 1] into sub-intervals of the type [kεn,
(k + 1)εn), k = 0, 1, 2, . . . and define a function fn as 1,−1, 1,−1, . . .
successively on these intervals. If {fnk} is any subsequence of {fn}
then the set of points at which {fnk} converges has Lebesgue measure
zero. This is a generalization of the well known analogous result for
Rademacher functions.

1 Introduction

Often, in theory as well as in applications, it is required to prove the conver-
gence or nonconvergence of a given sequence of measurable functions. The
most well known example of nonconvergence is the sequence of Rademacher
functions. These functions take only two values and the sequence converges
nowhere on the unit interval. The purpose of this note, is to discuss a general
class of such functions which exhibit the same property. The motivation to
consider the general case comes from game theory.

2 Rademacher Functions

For n = 1, 2, . . . , the nth Rademacher function rn is defined on the unit
interval [0, 1] by

rn(t) = (−1)k if
k

2n
≤ t < k + 1

2n
, k = 0, 1, . . . , 2n
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Intuitively, for every n = 1, 2, . . . , divide the unit interval [0, 1] into 2n

intervals of equal length and define the function rn as 1,−1, 1,−1 successively
on these intervals. Thus, r1 is 1 on [0, 1/2) and −1 on [1/2, 1). r2 is 1 on
[0, 1/4) ∪ [1/2, 3/4) and −1 on [1/4, 1/2) ∪ [3/4, 1). A key aspect of these
functions, among others, is the following well known result.

Proposition 1 Let {rnk} be any subsequence of {rn}. Then the set of points
at which {rnk} converges has Lebesgue measure zero.

3 A General Class of Functions

The nth Rademacher function rn, is defined by dividing the unit interval [0, 1]
into 2n intervals, each of equal length (1/2n). As n tends to infinity, the
lengths of these intervals go to zero. Here, a generalization of Proposition 1
will be obtained by focusing on this aspect.

Proposition 2 Let {εn} be a sequence of positive numbers converging to 0
and {fn} a sequence of real valued measurable functions on the unit interval
[0, 1] given by

fn(t) = (−1)k if kεn ≤ t < (k + 1)εn, k = 0, 1, 2, . . .

Let {fnk} be any subsequence of {fn}. Then the set of points at which {fnk}
converges has Lebesgue measure zero.

For any fixed n, if t belongs to the interval [kεn, (k + 1)εn) for an even
integer k then the function fn takes value 1 at t, otherwise it takes value −1.
If εn = (1/2n) for each n then the functions are the Rademacher functions.
The assertion is that no subsequence of {fn} converges on a set of positive
Lebesgue measure. The issue, therefore, is to show that the lim inf of a
sequence of unions of uniformly spaced intervals, with gaps the same size as
the intervals, is a set of measure zero if the lengths of the intervals approach 0.

An elementary fact about intervals on the real line is used in the proof. Let
[a, b) and [c, d) be two nondegenerate intervals on the real line and suppose that
their intersection is nonempty. Then, the intersection is also a nondegenerate
interval closed in the left and open at the right. This fact generalizes to any
two families of finite number of such intervals, i.e., the nonempty intersection
of any two collections of finite number of nondegenerate left closed and right
open intervals is itself a finite collection of nondegenerate left closed and right
open intervals.
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Proof. Since every subsequence is a sequence of the same type, it’s enough
to prove the result for the entire sequence. For any t, fn(t) takes at most
two values, 1 and −1. So, if the sequence {fn(t)} converges at any t, its limit
will be 1 or −1. So, it needs to be shown that the set of points at which the
functions converge to either has Lebesgue measure zero.

Towards this end, for any n, let An denote the set of points at which fn

is 1. An = {t ∈ [0, 1)|fn(t) = 1} ⊆ ∪∞k=0[2kεn, (2k + 1)εn). Let Bn = {t ∈
[0, 1)|fm(t) = 1 for all m ≥ n}. Then Bn = ∩m≥nAm and ∪∞n=1Bn is precisely
the set of points where {fn} converges to 1. If n < n′ then Bn ⊆ Bn′ . So,
λ(∪∞n=1Bn) = supn λ(Bn) where λ denotes Lebesgue measure. Therefore, to
show that λ(∪∞n=1Bn) = 0, it suffices to show that λ(Bn) = 0 for each n.

Consider first, Am ∩ [a, b) where m ≥ 1 and [a, b) ⊆ [0, 1). λ(Am ∩ [a, b)) =
λ(Am ∩ [0, b)) − λ(Am ∩ [0, a)). Any x ≥ 0 can be written as x = 2nεm + r
where n is a nonnegative integer and 0 ≤ r < 2εm. So, λ(Am ∩ [0, x)) =
nεm + min{r, εm} = nεm + (1/2)(r + εm − |r − εm|) = (x/2) + (1/2)dx where
dx is the distance between x and the set {2kεm|k = 0, 1, 2, . . . }.

Therefore, λ(Am ∩ [a, b)) = [(b − a)/2] + (1/2)[db − da], which gives [(b −
a)/2]− (1/2)da ≤ λ(Am ∩ [a, b)) ≤ [(b− a)/2] + (1/2)db. Equality can hold on
either side. da ≤ εm and db ≤ εm, yield the estimates [(b− a)/2]− (1/2)εm ≤
λ(Am ∩ [a, b)) ≤ [(b− a)/2] + (1/2)εm.

If one further assumes that, εm ≤ (1/p)(b − a) for an integer p > 1,
then Am ∩ [a, b) is nonempty and λ(Am ∩ [a, b)) ≤ (b − a)[(1/2) + (1/2p)] ≤
(3/4)(b− a).

That λ(Bn) = 0 for each n can be easily established now. Let 0 ≤ δn =
infF {λ(∩i∈FAi)} where the infimum is taken over all nonempty finite subsets
F of {n, n+ 1, . . . }. Bn is a subset of ∩i∈FAi for any such F , so, λ(Bn) ≤ δn.
Therefore, to show that λ(Bn) = 0, it suffices to show that δn is zero.

Suppose to the contrary. Then for some F , 0 < δn ≤ λ(∩i∈FAi) < (4/3)δn.
Obviously, ∩i∈FAi is nonempty. For any i, Ai is a finite union of pairwise
disjoint nondegenerate intervals, closed in the left and open at the right. Since
F is finite and ∩i∈FAi is nonempty, ∩i∈FAi is a finite union of pairwise disjoint
nondegenerate intervals. Let θn be the minimum length of the constituent
intervals of ∩i∈FAi. Since these intervals are nondegenerate and there are
finitely many of them, θn > 0. Choose an integer m such that m > supF and
εm ≤ (1/p)θn for some integer p > 1. Such an m exists because F is finite and
{εk} → 0.

Let P be any of the constituent intervals of ∩i∈FAi. Then εm ≤ (1/p)λ(P ).
The arguments given above imply that λ(Am ∩ P ) ≤ [(1/2) + (1/2p)]λ(P ) ≤
(3/4)λ(P ). Taking the union over all the constituent intervals P contained in
∩i∈FAi yields that λ([∩i∈FAi]∩Am) ≤ (3/4)λ(∩i∈FAi) < δn. This contradic-
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tion establishes that δn = 0 which implies that λ(Bn) = 0 for any n. So, the
set of points at which the sequence of functions converges to 1 has Lebesgue
measure zero.

An analogous argument can be used to show that the set of points where
{fn} converges to −1 has Lebesgue measure zero. The obvious modification
required above is to redefine An for each n as the set of points at which fn

is −1. An = {t ∈ [0, 1)|fn(t) = −1} ⊆ ∪∞k=0[(2k + 1)εn, (2k + 2)εn). Let
Bn = {t ∈ [0, 1)|fm(t) = −1 for all m ≥ n}. Then Bn = ∩m≥nAm as before
and ∪∞n=1Bn is the set of points where {fn} converges to −1. To estimate
λ(Am∩[a, b)), take x and dx as before. λ(Am∩[0, x)) = nεm+max{0, r−εm} =
nεm + (1/2)(r − εm + |r − εm|) = (x/2) − (1/2)dx. So, λ(Am ∩ [a, b)) =
[(b− a)/2]− (1/2)[db− da] which yields λ(Am ∩ [a, b)) ≤ [(b− a)/2] + (1/2)εm.
Proceeding as before, one can conclude that the set of points at which {fn}
converges to −1 has Lebesgue measure zero.

Therefore, the set of points at which any given subsequence of functions
converges has Lebesgue measure zero. This completes the proof. �
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