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DUALITY AND STABILITY IN EXTREMUM PROBLEMS
INVOLVING CONVEX FUNCTIONS

R. TYRRELL ROCKAFELLAR

In the theory of minimizing or maximizing functions subject
to constraints, a given problem sometimes leads to a certain
4'dual" problem. The two problems are bound together like the
strategy problems of the opposing players in a two-person
game: neither can be solved without implicitly solving the
other. The duality correspondence between linear programs
is the best known example of this phenomenon. In the early
1950's Fenchel came up with a general theory of convex and
concave functions on Rn which was capable of predicting and
explaining the duality in many problems. This paper attempts
a further development of FencheΓs theory, in both finite- and
infinite-dimensional spaces. FencheΓs model problems are
broadened by building a linear transformation into them.
The stability of the extrema in these problems is investigated
and shown to be a necessary and sufficient condition for the
duality to manifest itself in full force. New light is thereby
thrown on the "duality gaps" which are known to occur
in some finite-dimensional convex programs and infinite-
dimensional linear programs.

Let E and F be real vector spaces, finite- or infinite-dimensional,

and let A be a linear transformation from E to F. Let / be a finite-

valued convex function given on a nonempty convex set C in E. Let

g be a finite-valued concave function given on a nonempty convex set

D in F. We shall be concerned with the problem

minimize f(x) — g(Ax) ,

subject to x e C and AxeD .

This may be called a convex program, since it actually involves

minimizing a certain convex function over the convex set in E consisting

of the vectors satisfying the given constraints. If / and g are identically

0 on C and D, (P) reduces to the problem of finding a vector xeC

such that AxeD.

The theory of conjugate functions devised by Fenchel [5] will

enable us to construct a problem dual to (P). It is a concave program

similar in form to (P), namely

maximize g*(y*) — f*(A*y*) ,
( ) subject to #* e D* and A*y* e C* .
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Here A* is the linear transformation from F* to 2?* adjoint to A,
where E* and F * are spaces paired with E and F. The elements
f*9C*, g*,D*, are defined by the conjugate operation. (The pertinent
facts about conjugate functions in paired spaces will be summarized
briefly in § 2, as background for the precise formulation of (P) and
(P*) in § 3.)

Practically the same construction leads from (P*) back to (P)
again, so that (P) is in turn the dual of (P*). Therefore, for each
theorem we prove which relates properties of (P) to those of (P*),
there is a dual theorem in which the roles of the two problems are
reversed.

Fenchel [6] initiated the finite-dimensional study of (P) and (P*)
in the case where E = F and A is the identity transformation. An
account of Fenchel's elegant duality theory may also be found in Karlin's
book [9, p. 218 ff.] (The original theory contained some minor errors
which were reproduced by Karlin; these will be cited in § 7 along with
counterexamples.) We have already devoted a paper [18] to an
infinite-dimensional extension of this special case. In that paper it
was also shown how the Lagrange multiplier theory of convex programs
could be deduced by calculating the subdiίferential of the function
being minimized. Subdiίferentials will again be useful here.

One advantage of the model problem (P), as opposed to the earlier
one where E = F and A = I, lies in its flexibility. For example, it is
very easy to express a linear program as (P), and the dual problem
(P*) then will be the familiar dual linear program (see § 3). This was
not so in FencheFs theory. A lengthy and complicated argument was
needed there to derive the linear programming duality from the kind
involving conjugate functions [6, p. 113 if.]. Various other well known
dual pairs of problems, such as quadratic programs, may also be viewed
as instances of (P) and (P*). We shall not deal with such special cases
below.

Our work here has been directed especially to finite-dimensional
spaces. Many of the results appeared in that setting in the author's
dissertation [16]. Certain theorems from [16] were announced in [17].
Generalization to infinite-dimensional spaces turns out to be virtually
painless, however, and we have therefore broadened the statement of
the theory to include it. We hope it may be possible to apply our
results about infinite-dimensional convex programs to control theory or
the calculus of variations, perhaps with A as a differential operator.
Duality theorems for infinite-dimensional linear programs have already
appeared in the work of Duffin [3], Kretchmer [10] and Fan [4].

The proofs of our main results are based on a device of perturba-
tion explained in §4. We investigate what happens to (P) if the set
D and its function g are displaced from their original position by a
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small amount z e F. The inίimum in the perturbed problem (P(z)) is
a convex function of the displacement z, and its behavior at z — 0
can therefore be studied in the light of the theory of conjugate convex
functions. This leads to a crucial notion of stability. Roughly speaking,
we say (P) is "stably set" if the inίimum changes only gradually when
(P) is perturbed. In the unstable case, on the other hand, the infimum
begins to drop off at an infinitely steep rate under the slightest displace-
ment (or, what often amounts to the same thing, under the slightest
relaxation of the constraints).

Stability criteria are developed in § 4. These mostly require that
the constraints can be satisfied in some strong sense, e.g. that there
exist some xeC such that Ax is an interior point of D.

Interest in stability has its own natural justification. It is surpris-
ing, though, that stability is also the condition on which the duality
theorems in § 5 depend. We shall prove, for instance, that (P) is
stably set and has a solution, if and only if (P*) is stably set and has
a solution, and that the minimum in (P) then equals the maximum in

(P*)
The stable case again is the one in which the solutions to (P) and

(P*) can be characterized using subdifferentials. In § 8 we show that
they are precisely the solutions to a certain system of "subdifferential
equations" which we call the extremality conditions. For linear
programs, the extremality conditions are the well known complementary
slackness conditions. A minimax characterization of the solutions is
given in §9. It, too, is closely tied in with stability.

A weaker kind of duality between extrema in (P) and (P*) is
brought to light in § 6. It resembles that first disclosed in the linear
case by Duffin [3]. The study of this duality yields the two counter-
examples given in § 7.

2* Convex functions in paired spaces* In this section, we
shall review some facts and terminology which will be needed in the
rest of the paper.

Let E and E* be real vector spaces in duality with respect to a
certain bilinear function <( , •>. Assume that E and E* have been
assigned locally convex Hausdorff topologies compatible with this
duality, so that the elements of each space can be identified with the
continuous linear functionals on the other. We shall then speak of E
and E* as topologically paired spaces. The theory of such pairings
may be found in [1, Chap. IV].

The reader who is interested primarily in the finite-dimensional
case will not need a working knowledge of topological vector space
theory in what follows. Instead, he can simply interpret E and E*
as Rn, with <(x, x*y as the ordinary inner product of two numerical
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vectors x and x*.
Most of FenchePs results in [5] and [6] about convex functions

have been generalized to infinite-dimensional spaces by Brondsted [2]
and Moreau [12]. We refer the reader to these papers for the details
and the geometric motivation which are missing from our brief outline.

By an (infinite-valued) convex function f on E, we shall mean an
everywhere-defined /, with values in the extended real interval
[— oo, +oo] ? whose {upper) epigraph

{(x, μ)\xeE,μeR,μ^ f(χ)}

is a convex set in E 0 R. If / does not assume both + °° and — oo
as values, this convexity condition can be expressed as

+ (1 - X)x2) ^ \f(xx) + (1 - λ)/(α?2)

when x1 e E, xλ e E, 0 < λ < 1. The set {x \ f(x) < + oo}, which is the
projection of the epigraph of / on to E} is convex when / is convex.
We call it the effective domain of /.

A convex function / on E is said to be proper if f(x) > — oo for
all x, and f(x) < +oo for at least one x. Then the effective domain
of / is nonempty, and / is finite there. Conversely, given a finite-
valued convex function / on a nonempty convex set C in E, one can
set f(x) = + oo for all x $ C. In this way one gets a proper convex
function on E having C as its effective domain.

A convex function / on E is lower semi-continuous (l.s.c.) if, for
each real μ, the convex level set

{x e E I f(x) £ μ}

is closed. Since our duality theory will be directly applicable only to
lower semi-continuous convex functions, it is important to realize that
this is a constructive property. Given any convex function / on E,
we can construct a l.s.c. convex function / on E, called the l.s.c. hull
of /, by taking

(2.1) f(x) = lim inf f(z) for each x .
z-*x

The epigraph of / is just the closure of the epigraph of /. For a
l.s.c. convex function / which is not proper, the epigraph is a closed
convex "vertical cylinder," so that / can not have any values other
than + oo and — oo.

A one-to-one correspondence between the l.s.c. proper convex
functions f on E and / * on E* is defined by the formulas

/*(»*) = sup {<»,«?*>-/(«)},

( 2 # 2 ) f(x) = sup {O, x*> - f*(x*)} .
X*
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Functions / and / * satisfying (2.2) are said to be conjugate to each
other.

A vector x* e E* is said to be a sub-gradient of the convex
function / at the point x e E if

(2.3) f(x + z) ̂  f(x) + <z, x*> for all z .

The set of all such sub-gradients at x is a closed convex (perhaps
empty) set in E* denoted by df(x). The (multiple-valued, or set-valued)
mapping df: x —> 3/(a?) is called the sub-differential of / . If / is finite
and differentiate at x in the ordinary finite-dimensional sense, df(x)
consists of a single element, namely the ordinary gradient Vf(x). More
generally, if f(x) is finite the one-sided directional derivative

(2.4) f'(x; z) = lim [f(x + Xz) - f(x)]/X

exists for every z, and it is a (positively homogeneous) convex function
of z. Then #* e 3/(x) if and only if /'($; z) ̂  <z, x*> for all z, and
such an x* exists if and only if f'(x; z) is bounded below in z on some
neighborhood of 0. The theory of directional derivatives and sub-
differentials of convex functions has recently undergone considerable
development; see [13], [14], [18], [19], and the papers cited there.

A function g is said to be concave if — g is convex. The theory
of concave functions thus parallels the theory just outlined, with only
the obvious and natural changes. In particular, the formulas

g*(y*) = inf {<#, #*> - g(y)} ,

( 2 ' 5 ) g(v) = ™t{<v,v*>-g*(v*)},
y*

define a one-to-one conjugate correspondence among upper semi-continuous
proper concave functions.

3* The dual programs* Let E and E* be topologically paired
real vector spaces, and likewise F and F*. Let A be a continuous
linear transformation from E to F, and let A* be its adjoint. Thus
A* is the continuous linear transformation such that

ζAx, y*y = ζx, A*y*y for all xe E and y* eF* .

(When E = E* = Rn and F = F* = Rm, one can of course identify A
with a certain m x n matrix and A* with the n x m transpose matrix.)
Furthermore, let / and / * be lower semi-continuous proper convex func-
tions on E and E* conjugate to each other by formulas (2.2). Let g
and g* be upper semi-continuous proper concave functions on jPand F*
conjugate to each other by (2.5). Let C be the convex set consisting
of the points where / is finite (i.e. the effective domain of / ) , and
define C*9 D and D* similarly for /* , g and g*. This notation will be
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in effect for the rest of the paper. It is summarized in Fig. 1 for
convenient reference.
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The two extremum problems which we associate with this choice
of elements are

(P) minimize f(x) — g(Ax) over x e E ,

(P*) maximize g*(y*) — f*(A*y*) over y* e F* .

Note that, unless it is identically +©o, the minimand in (P) is a l.s.c.
proper convex function on E. It is finite at x if and only if

(3.1) xeC and AxeD .

Now + co is the worst possible candidate for a minimum, so alternatively
we can view the minimization in (P) as taking place subject to (3.1)
instead of over all of E, as in the problem (P) described in the
introduction. We therefore call conditions (3.1) the implicit constraints
of (P) and say that (P) is consistent if they are satisfied by at least
one x. Similarly, the conditions

(3.2) y*eD* and i y e C *

are called the implicit constraints of (P*), and (P*) is said to be consistent
if they can be satisfied.

Let us now demonstrate how the above scheme fits in with the
duality between linear programs. Assume that E and F have been
partially ordered in the usual way, i.e. by naming a closed convex
cone in each space to serve as nonnegative orthant. Give E* and F*
the dual orderings (so that x* ^ 0 if and only if ζx, £*)> ̂  0 for all x ^ 0,
etc.) In particular, one could take E = E* = Rn and F = F* = Rm

with the standard coordinatewise partial ordering. Fix any b e F and
6* G J5*. The problems

minimize ζx, 6*> in x subject

to x ^ 0 and Ax ^ 6 ,

maximize <δ, ?/*> in y* subject
(lin P*)

to y* > 0 and A*y* < δ* ,
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are the dual linear programs in this situation. To reformulate (lin P)
in the model form (P), one need only set

f(x) = (χf b*y if x ^ 0, f(x) = + oo otherwise ,

g(y) = 0 if y Ξ> 6, g(y) = -co otherwise .

In this elementary case, the conjugate functions may be calculated at
once from (2.2) and (2.5) as

/*(&*) = 0 if x* ^ 6*,/*(α*) = +oo otherwise ,

#*(?/*) = <6,#*> if y* ^ 0, fif*(2/*) = - oo otherwise .

substitution of these into (P*) yields (lin P*) as desired. The implicit
constraints in (P) and (P*) correspond to the explicit ones in (lin P)
and (lin P*).

The duality between (P) and (P*) is not precisely symmetric.
But it is clear that (P*) is equivalent to

(P) minimize f{y*) - g'(A*y*) over y* e F* ,

where f'(y*) = - g*(y*) and g'(x*) = -/*(&*). The conjugates / ' and
g' are given by f'*(y) = —g( — y) and g'*(x) — —f( — x). The dual which
our theory assigns to (P'), namely

(P'*) maximize g'*(x) — f'*(Ax) over x e E ,

is therefore in turn just the negative of (P). This fact allows us
immediately to dualize to (P*) any results proved for (P).

It is convenient to denote the infimum in (P) and the supremum
in (P*) by inf (P) and sup (P*). Notice that (P) is inconsistent if and
only if inf (P) = +°o, and that (P*) is inconsistent if and only if
sup(P*) = -co. Hence, information about whether the implicit con-
straints (3.1) and (3.2) can be satisfied will appear in our theorems in
the guise of some statement about inf (P) and sup (P*). This is one
of the many technical advantages which result from allowing infinite-
valued functions.

A vector x will be called a solution to (P) if x satisfies the implicit
constraints (3.1) and the infimum is achieved at x. (Thus we do not
speak of solutions when (P) is inconsistent, even though the minimum
+ oo is trivially achieved everywhere in that case.) The solutions to
(P), when they exist, evidently form a closed convex set in E.
Likewise, y* is a solution to (P*) if the supremum in (P*) is achieved
at y* and is not — oo. We follow the convention of writing min (P)
and max(P*), instead of inf (P) and sup(P*), in order to indicate that
an extremum is achieved.

A basic fact about the relationship between (P) and (P*) can be
proved right away.
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LEMMA 1. inf (P) ^ sup (P*) .

Proof. Let x e E and y* e F*. The inequality

(3.3) f{x) - g(Ax) ^ g*{y*) - f*(A*y*)

holds trivially if the left side is + oo 9 or if the right side is — oo.
We may therefore assume x and y* satisfy the implicit constraints of
(P) and (P*). All four functional values in (3.3) are then finite, so
that (3.3) follows from the inequalities

f(x) + f*(A*y*) ^ <x, A*y*> ,
g(Ax) + g*(y*) £ <Ax, y*> ,

which are immediate from the definition of the conjugate correspondence.

COROLLARY. If (P) and (P*) are both consistent, then inf(P)
and sup (P*) are both finite.

4> Perturbation and stability* Some results about the stability
of (P) and (P*) will now be established. These will be very important
in the subsequent study of duality. For simplicity, we shall only deal
with (P). The theorems and definitions below are to be dualized to
(P*) in the natural way.

For each ze F, we consider the perturbed problem obtained by
translating the graph of g by the amount z, namely

(P(s)) minimize f(x) - gz(Ax) , where gz(y) = g(y - z) .

Obviously, (P(0)) = (P).

LEMMA 2. The function h defined by h(z) = inf (P(z)) is a convex
function on F.

Proof. To prove that h is convex, we must prove that its epigraph
is a convex set in FφR. It is enough actually to show that, if

(4.1) hfa) < μx < oo , h{z) < / * 2 < o o , 0 < λ < 1 f

then

(4.2)

Given (4.1), we can always find real numbers μllf μ12, μ21, μ22 and vectors
x1 and x2 in E such that
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μi = μn - μtz and μ2 = μ21 - μ22

fix,) < μn and g(Axλ - zx) > μ12 ,

f(x2) < μ2ί and g(Ax2 - z2) > μ22 .

Since / is a proper convex function,

f(Xx, + (1 - X)x2) < Xμn + (1 - \)μΆ .

Likewise, by the concavity of g and the linearity of A,

g(A(\x1 + (1 - X)x2) - {Xzx + (1 - X)z2)) > Xμn + (1 - λ)μ2 2 .

Therefore, for x = λ ^ + (1 — X)x2,

h(\z1 + (1 - λ)22) ̂  /(a?) - ^(Aα; - (Xz, + (1 - λ)22»

< (λ/£u + (1 - λ)^21) - (λ^12 + (1 - λ)^22) = Xμ, + (1 - X)μ2 ,

which is (4.2). Thus h is convex as claimed.

We can now define what we mean by a stably set problem. This
is best done by first describing instability.

Suppose that inf (P(0)) = inf (P) is finite. For each z e F, the
directional derivative

(4.3) lim [inf (P(ez)) - inf (P)]/ε
ε J O

exists by the convexity in Lemma 2. We shall say (P) is unstably
set, if in every neighborhood of 0 one can choose vectors z for which
this directional derivative is a negative number of arbitrarily large
magnitude. (In the finite-dimensional case, it actually follows from
the convexity of the directional derivative function that this happens
if and only if the rate of change (4.3) is — oo in some direction.) We
shall say that (P) is stably set, on the other hand, if it is consistent
but not unstably set.

THEOREM 1. Suppose there exists at least one x e E, such that f
is finite at x, and g is finite and continuous at Ax. Then (P) is
stably set, and inf (P(#)) is a continuous function of z in some neigh-
borhood of z = 0.

Proof. Let h(z) = inί (P(z)) as in Lemma 2. Evidently the effective
domain of h is

{z I h(z) < + oo} = {Ax - y\f(x) < +°°,g(y) > - -}
( 4 ' 4 )

The hypothesis implies that A(C) intersects the interior of D, and
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hence that

(4.5) 0 e A(C) - int D g int (A(C) - D) .

Now it is a general fact [2] that a convex function is continuous at
an interior point of its effective domain if and only if its epigraph has a
nonempty interior. Applying this fact to the concave function g in
view of our hypothesis, we see that

G = {(y, μ)\ye F, g{y) ^ μ > - oo}

has a nonempty interior. But, for any (x, λ) in the epigraph of /,
the set

{(Ax - y, λ - μ) I μ ^ g(y)} = (Ax, λ) - G

is contained in the epigraph of h. The epigraph of h therefore has
a nonempty interior, too. Hence h is continuous throughout the interior
of its effective domain (4.4), which contains the origin by (4.5). We
must still show this implies (P) is stably set. Stability would be
automatic if h(0) = — co. We know on the other hand from (4.5) that
h(0) =7^+00. In the remaining case, where h(0) is finite, (P) is stably
set if and only if the directional derivative function h'(0; z) is bounded
below in z in some neighborhood of 2 = 0. The conclusion we want
will follow from two known elementary facts about the directional
derivatives of a convex function:

h(z) ^ Λ(0) + λ'(0; z) for all z ,
( 4 ' 6 ) h'(0; z) ^ -Λ'(0; -z) for all z .

The first inequality implies, since h is continuous at 0, that h'(0; z)
has a finite upper bound in z on some neighborhood of 0. The second
inequality translates the upper bound into a lower bound. This proves
the theorem.

The stability condition in Theorem 1 implies that (P) is super-
consistent, in the sense that there exists some x satisfying

(4.7) xeC and Ax e int D .

Conversely, super-consistency implies the condition in Theorem 1 in those
situations where g is necessarily continuous on the interior of D.
That would be true in finite-dimensional spaces, where a finite convex
(or concave) function on an open set is always continuous, as is well
known. More generally, it has been shown [20] that, in tonnele spaces
[1], a l.s.c. convex function is continuous at every interior point of
its effective domain. The class of tonnele spaces includes, besides
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finite-dimensional spaces, all Banach spaces and all reflexive spaces.
Thus we may state:

COROLLARY. If (P) is super-consistent and F is a tonnele space,
then (P) is stably set, and inf (P(z)) is continuous in z in some
neighborhood of z = 0.

There is another useful consistency condition which guarantees
stability in finite-dimensional spaces. We say that (P) is strongly
consistent if there exists some xeE satisfying

(4.8) x G ri C and Ax e ri D .

Here "ri" denotes the relative interior of a finite-dimensional convex
set, which is its interior with respect to the smallest aίfine manifold
(translate of a subspace) containing it.

THEOREM 2. If E and F are finite-dimensional and (P) is
strongly consistent, then (P) is stably set.

Proof. Due to finite-dimensionality, the convex function h, where
h(z) = inf (P(#)), is automatically continuous when restricted to the
relative interior of its effective domain, which is given by (4.4).
Thus if

(4.9) 0 e ri (A(C) - D)

we can show, by practically the same directional derivative argument
used in the proof of Theorem 1, that (P) is stably set. Strong con-
sistency, on the other hand, means that

(4.10) 0 G A(ri C) - ri D .

The problem is to establish that (4.10) implies (4.9). This is just a
matter of the calculus of relative interiors. The following general
rules, which lead to the equivalence of (4.9) and (4.10), are actually
valid:

ri(A(C)) = A(riC),

ri (A + A) = ri A + ri A

(where A and A are convex sets, A + A is their vector sum, etc.).
The proof of these rules would be time-consuming, since we would be
obliged to develop the elementary theory of relative interiors in some
detail. Rather than proceed in this straightforward manner, we shall
merely point out that Theorem 2 also follows from Theorem 3 below
via an extension of FencheΓs theorem given by the author elsewhere
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[17, Corollary 1]. This chain of proof, while extremely roundabout,
is at least a space-saving expedient for us here.

It is clear that various other stability criteria could be based on
special assumptions about the nature of / and g. We shall not attempt
to develop them in this paper. Strong consistency is unlikely to be
of any help in infinite-dimensional spaces, because relative interiors are
so badly behaved there; formulas (4.11) fail almost completely, even
in Hubert spaces.

5. Strong duality theorems. We shall now prove our strongest
results about the relationship between the dual programs (P) and (P*).

THEOREM 3. If (P) is stably set, then

inf (P) = max (P*) .

The latter also implies conversely that (P) is stably set. Dually,

min (P) = sup (P*)

if and only if (P*) is stably set.

Proof. Let h(z) = inf (P(z)) as in Lemma 2. We shall show first
that (P) is stably set if and only if the convex function h is sub-
differentiable at 0, i.e. dh(O) is not empty. It is a trivial consequence
of the definition (2.3) of "sub-gradient," that dh(O) is empty when
h(0) = +oo, while 3Λ(0) = F * when h(0) = -oo. Now h(0) = inf (P),
so (P) is, by definition, stably set when h(0) = — °° and not stably set
when h(0) — + oo. The issue is thus reduced to the case where inf (P)
is finite. Then (P) is stably set if and only if the directional derivative
function fe'(0; z) is bounded below in some neighborhood of z — 0. But
that is precisely the known condition for subdifferentiability which we
cited in § 2.

Next we shall demonstrate that y* e dh(O) if and only if

(5.1) inf (P) £ g*(y*) - f*(A*y*) .

The existence of a y* satisfying (5.1) is, of course, equivalent to
inf (P) = max (P*) by Lemma 1. By definition, y* e dh(O) means

h(z) ^ h(0) + <z, τ/*> for all z e F .

This is equivalent to
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Λ(0) g inf {h(z) - <z, */*>}
z

(5.2) = inf inf {f(x) - g(Ax - z) - <z, ?/*>}
Z X

= inf inf {ζAx - z, y*> - g(Ax - z) - (Ax, y*> + f(x)} .
x z

Now h(0) = inf (P) is finite, so we must have

- co < inf {ζAx — z, τ/*> - g(Ax — z)} = g*(y*) < +^o
z

for any x e C, and hence trivially for every x. Thus (5.2) implies

inf (P) ^ inf {g*(y*) - ζAx, τ/*> + f(x)}
X

= g*(y*) - sup{<>, A*y*> - f(x)} ,
x

which is the same as (5.1). This proves the first half of the theorem.
The other half, involving the stability of (P*), follows now by duality.

THEOREM 4. If (P) and (P*) are both stably set, then both have
solutions and + co > min (P) = max (P*) > — oo.

Proof. Theorem 3 implies that min (P) = max (P*) when (P) and
(P*) are both stably set. But the minimand in (P) never has the value
— co 9 so that an infimum of — oo could not be attained as our use of
"min" is meant to indicate. Therefore, min (P) > — oo, and dually
max (P) < + oo.

THEOREM 5. (P) is stably set and has a solution, if and only if
(P*) is stably set and has a solution.

Proof. By Theorem 3, the condition that (P) be stably set and
have a solution is equivalent to having min (P) = max (P*). Dually,
this is equivalent to the condition that (P*) be stably set and have a
solution.

6. Weak duality theorems. So far, we have given conditions
guaranteeing that inf (P) = sup (P*). The theorem below explains the
exact way in which inf (P) and sup (P*) can fail to be equal. It does
this by expressing sup(P*) in terms of the situation in (P) itself.

THEOREM 6. The formula

sup (P*) - lim inf [inf (P(z))]
z-*0

is valid, except in the trivial case where the left side is - c o and
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the right side + °°.

Proof. Let h(z) = inf (P(z)) as in Lemma 2, and let h be the l.s.c.
hull of h, i.e.,

h(y) = lim inf h(z) .
z-*y

Then h is a l.s.c. convex function on F. We want to prove that

(6.1) sup(P*) =

except when sup(P*) = — co and h(0) = +oo. We consider first the
case where Λ is proper. Then h has a conjugate Λ* given by

h*(y*) = sup {<#, τ/*> - Λ(τ/)} for each f e F * ,
2/

and, since Λ is in turn the conjugate of h*, we have

(6.2) A(0) = sup {<0, ?/*> - h*(y*)} .
2 / *

Observe that

-h*(y*) = inf {lim inf h(z) - O , »*>} = inf {h(z) - <z, y*>} .
y z-+y z

We have already calculated the latter inίimum in the proof of Theorem
3, where it turned out to be g*(y*) — f*(A*y*). The conjugate func-
tion fe* is therefore just the negative of the maximand in (P*). Hence
(6.1) follows from (6.2). Now we consider the other case, where the
l.s.c. convex function h is not proper. Then h can have no values
other than + oo and — oo. But h can not be identically + <χ>, since
h is not (the effective domain of h being the nonempty set in (4.4)).
Therefore h assumes the value — oo somewhere, so that

- sup {<#, y*y - h(y)} = - oo for all y* .
y

Our other calculation of this supremum above, where it was —h*(y*),
is also still valid. Therefore the maximand in (P*) is identically — oo.
Thus, when h is improper, the left side of (6.1) is — oo} while the
right side might be either — oo or + oo. The formula is therefore
true to the extent claimed.

Of course, there is also a formula dual to the one in Theorem 6,
expressing inf (P) in terms of the situation in (P*).

The "lim inf" in Theorem 6 can also be described as the lowest μ
such that

/(«•) ~ 9(Vi) — μ
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for some nets (or sequences) {x^ and {y^ satisfying

(6.3) Xi e C , Vi^D , AXi - yt = zt —> 0 .

The problem of determining this μ is an "asymptotic" twin of (P).
Let us define (P) to be normal if it is equivalent to its twin, i.e. if

(6.4) inf (P) - lim inf [inf P(z))] .
z-*Q

(This means that the perturbation function h is lower semi-continuous
at 0.) Thus (P) is normal if and only if the lowest μ described above
can be reached with Ax{ — yt = 0 for all i, instead of merely
Axi — Vi—+0, whenever sequences of type (6.3) exist at all. One can
define normality of (P*) in a dual manner.

An obvious way to guarantee normality would be through various
compactness conditions designed to prevent bad asymptotic behavior.
We shall not go into these here. Actually, such conditions would
essentially be dual to continuity conditions, like the one in Theorem 1,
on the conjugate functions. This is shown by the general results in
[15] and [20].

The geometric picture makes it clear that abnormal programs must
really be very peculiar. Nonetheless they do exist—two examples are
given in the next section.

On the brighter side of things, the notion of normality allows us
to state, as a corollary to Theorem 6 and its dual, another theorem
like those in § 5.

THEOREM 7. (P) is normal and inf (P) is finite, if and only if
(P*) is normal and sup (P*) is finite. In that case

inf (P) = sup (P*) .

Conversely, the latter implies both (P) and (P*) are normal.

7 Counterexamples* In general, inf (P) and sup (P*) have to
satisfy

(7.1) + oo ^ inf (P) ^ sup (P*) ^ - oo ,

as we saw in Lemma 1. We shall now show, however, that all the
relationships compatible with this basic inequality can occur. The four
cases where inf (P) and sup(P*) are finite and equal, or both +ooy or
both — co, or oppositely infinite, can be disposed of immediately.
All four are already well known from the special case where (P) and
(P*) are finite-dimensional dual linear programs. The two cases where
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only one extremum is finite, and the case where both are finite, but
unequal, will be covered by counterexamples below. The first two
are dual to each other, so they only require one construction.

Examples are already known [10] of infinite-dimensional linear
programs for which (7.1) holds with strict inequalities. This is
impossible for finite-dimensional linear programs. We shall see in
Example 1, however, that it is possible in the finite-dimensional non-
linear case even in the simpler context considered by Fenchel, where
E — F and A is the identity. This contradicts a theorem of Fenchel
[6, p. 106] which is also in Karlin's book [9, p. 229]. The error was
first discovered by J. Stoer. It arises in the proof of a preliminary
theorem [6, p. 95], [9, p. 222], which states a formula for the con-
jugate of the sum of two convex functions. The given formula might
not be valid outside the relative interior of the set Γt + Γ2 in question.
(Fenchel has pointed out to the author that approximately the same
error also occurs in a neighboring theorem [6, p. 97], [9, p. 223],
where it was noticed by A. Brondsted.)

Notice that, in both of the following examples, all the extrema
are attained. Both programs (P) are abnormal and unstably set,
according to Theorems 3 and 7. In both cases we assume that

E = E* = F = F * = R2 and A = I.

EXAMPLE 1. ( + oo > min(P) > max(P*) > - o o ) . Let f(ξl9 ξ2) = 0
if ξ, = 0 but = + oo otherwise. Let g(ζu ξ2) = min {1, (ζ1ζ2)

112} if ξ 1 ^ 0
and ξ2 Ξ> 0, with g(ξl9 f£) = — ©o otherwise. For any z — {ηu η2), (P(z))
is the problem

minimize f(ξu £) - #(fx - ηu ξ2 - η2) over ξ1 and ξ2 ,

which is the same as

minimize f(ξL + η1,ξ2 + η.) — g(ξu £*) over ξ, and ς2 .

The minimand is + oo unless — ηι — ξx ^ 0 and ξ2 ^ 0, and in the latter
case it is

m a x { - l , -(-^f .) 1 / 2 } .

Therefore

inf

1 if ? ? i < 0 ,

0 if ^ = 0 ,

^ if ^ > 0 .

It follows from Theorem 6 that sup (P*) = - 1 , although inf (P) = 0.
Obviously inf (P) is attained at ς, = 0 and ξ2 = 0. On the other hand,
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/*(0, 0) = sup {-/(ft, ft) I (ft, ft) 6 W) = 0 ,

<7*(0, 0) - inf {-fKft, ft) I (ft, ft) G #2} - - 1 .

The maximand in (P*), which is just g* — / * , hence attains its
supremum at ft* = 0 and ft* = 0. We are therefore justified in writing
max (P*) and min (P) in place of sup (P*) and inf (P).

EXAMPLE 2. ( + °° > min (P) > max (P*) = — ©o.) Again let
/(ίi, £2) = 0 if ft = 0, but = + 00 otherwise. Let g(ξu ft) = (ftft)1/2

if Ci ̂  0 and ft Ξ> 0, but = — 00 otherwise. Arguing as in Example
1 we get

Therefore sup (P*) = — 00 by Theorem 6. The maximand in (P*) is
then identically — 00, so the supremum is trivially attained. On the
other hand,

inf (P) = inf (P(0, 0)) - 0 ,

and this is attained at ft = 0 and ft = 0.

8* Extremalίty conditions. Solutions to convex programs have
often been characterized as the solutions to certain systems of equations
and inequalities. This is analogous to the situation in the calculus,
where one minimizes a function by solving the equations which arise
when the gradient is set equal to zero. The theory of subdifferentials
is the bridge connecting these two situations, as we have already tried
to demonstrate in [18]. We shall now explain how the same idea can
be put to work here.

Consider first the finite-dimensional case where the functions / and
g are everywhere finite and differentiate. Then f(x) — g(Ax) is minimal
if and only if

(8.1) 0 = F(f - goA)(x) = Ff(x) - A*(Pg(Ax)) .

This leads us to ask whether the same condition, but with ordinary
gradients replaced by sub-gradients, i.e. the condition that

(8.2) Oed(f - go A)(x) = dg(x) - A*(dg(Ax)) ,

might play an equally substantial role in the general theory. As a
matter of fact, it is trivially true that f — goA achieves a finite
minimum precisely at those points x where 0 is a subgradient.
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Therefore, the real question in (8.2) lies in whether the subdifferential
of / — g o A can be reduced to those of / and g in the manner indicated.
We shall see in a moment that this is very closely related to the
question of the stability of (P).

It is known that the definitions of "sub-gradient" and "conjugate"
imply the equivalence of the three conditions

(8.3) x* e df(x) , x e df*(x*) , f(x) + /*(&*) ^ <x, £*> .

Likewise, in the concave case

(8.4) y* e dg(y) , y G dg*(y*) , g(y) + g*(y*) ^ O , y*> ,

are equivalent. Therefore 0 belongs to the set at the right of (8.2)
if and only if

(8.5) Axedg*(y*) and A*y*edf(x)

for some y*. We call relations (8.5) the extremalίty conditions for
(P) and (P*).

The extremality conditions can be expressed in many ways using
the equivalences in (8.3) and (8.4). For instance, we can put them in
the form: xedf*(x*) and y*edg(y), where x* = A*2/* and y — Ax.
This says that the extremality conditions can be satisfied if and only if
it is possible to complete a circuit via the four mappings indicated in
Fig. 2.

FIGURE 2.

E A ^ F

df* ] * I dg

E* * F*

THEOREM 8. (P) and (P*) are stably set if and only if the
extremality conditions can be satisfied. In fact, in that case, x is
a solution to (P) and y* is a solution to (P*), if and only if x and
y* satisfy the extremality conditions.

Proof. Suppose first that x and y* satisfy the extremality con-
ditions. By means of the equivalence in (8.3) and (8.4), we can express
these conditions in the alternate form:

( 8 7 )

g(Ax) + g*(y*) ^ (Ax,
These imply that
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(8.8) /(3j) - g(Ax) £ g*(y*) ~ f*(A*g*) .

Hence x is a solution to (P) and y* is a solution to (P*) by Lemma 1.
Furthermore, we have min(P) — max (P*), so that (P) and (P*) are
stably set by Theorem 3. Conversely, suppose (P) and (P*) are both
stably set. By Theorem 4 both (P) and (P*) have solutions, and for
any two such solutions x and y* (8.8) is true. Now

f{x) + /*(&*) ^ <x, x*>

is true all x and x* by definition of the conjugate correspondence in
(2.2), and similarly g(y) + g*(y*) ^ ζy, y*y. Therefore (8.8) implies

<x, A*y*> ^ fix) + f*(A*y*) ^ QiAx) + #*(£*) ^ <Ax, y*> .

This in turn yields the extremality conditions in the form of (8.7).

COROLLARY. Suppose (P) is stably set. Then x is a solution to
(P) if and only if there exists a y* such that x and y* satisfy the
extremality conditions.

Proof. This is immediate from Theorem 5 and the present theorem.

The extremality conditions tie together situations which otherwise
would seem unrelated. They become a system of partial derivative
equations when / and g* are differentiate in the usual way. At the
other end of the spectrum, consider the case where (P) and (P*) are
the dual linear programs (linP) and (linP*) described in §3. The
extremality conditions, when we express them in form (8.7) and
substitute the particular functions in question, then reduce to

x ^ 0 , 6* - A*ψ ^ 0 , <Sc, 6* - A*£*> = 0 ,

Ax - b ^ 0 , ψ ^ 0 , <Jίx - 6, £*> = 0 .

These are the complementary slackness conditions for linear programs.

9. Minimax characterization* The finite-valued function K on
C x ΰ * defined by

Kix, y*) = fix) + g*(y*) - <Ax, y*>

will be called the Kuhn-Tucker function of (P) and (P*). It is, of
course, convex in x and concave in T/*. A pair (x, y*) is said to be a
saddle-point of K if xeC,y* e D*, and

(9.1) K(x, y*) - min Kix, y*) = max K(x, y*) .
xeo y*en*

Then the real number Kix, y*) in (9.1) is called the minimax of K.
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THEOREM 9. The Kuhn-Tucker function K has a saddle-point if
and only if (P) and (P*) are stably set. In the latter case, (%, y*)
is a saddle-point of K if and only if x is a solution to (P) and ψ is
a solution to (P*). Then

(9.2) minimax K = min (P) = max (P*) .

Proof. Observe first that , for any xeC and y*eD*,

inf K(x, ψ) = g*(y*) ~ sup {<>, A*y*> - f(x)} = g*(y*) - f*(A*y*) ,

mpK(x, y*) = f(x) - inf {<Az, y*> - g*(y*)} = f(x) - g(Ax) .
y*£D* y*GD*

Therefore (xf y*) is a saddle-point of K if and only if

(9.3) f(x) - g(Ax) - g*{y*) ~ f*{A*y*) ,

in which case the latter is also the minimax of K. Of course, by
Lemma 1, (9.3) is equivalent to min(P) = max (P*) being attained at
x and y*. The desired conclusion therefore follows from Theorem 3.

COROLLARY. Suppose (P) is stably set. Then x is a solution to
(P) if and only if there exists a y* such that (x, y*) is a saddle-point
of the Kuhn-Tucker function K.

Proof. Obvious from Theorem 5 and the theorem above.
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