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FRACTIONAL POWERS OF OPERATORS, II
INTERPOLATION SPACES

HixosABURO KOMATSU

This is a continuation of an earlier paper ‘‘Fractional
Powers of Operators’’ published in this Journal concerning
fractional powers A% ac C, of closed linear operators A in
Banach spaces X such that the resolvent (1 + A)™! exists for
all 2 > 0 and A1 + A)™* is uniformly bounded. Various integral
representations of fractional powers and relationship between
fractional powers and interpolation spaces, due to Lions and
others, of X and domain D(A%) are investigated.

In §1 we define the space DJ(A),0 <0< 0,1 <p=-co Oor p=
oo —, as the set of all xe€ X such that

(A + Az e LX) ,

where m is an integer greater than ¢ and L?»(X) is the L* space
of X-valued functions with respect to the measure d\/An over
(0, co).

In §2 we give a new definiticn of fractional power A* for Re
a > 0 and prove the coincidence with the definition given in [2].
Convexity of || A*x || is shown to be an immediate consequence of the
definition. The main result of the section is Theorem 2.6 which says
that if 0 <Rea < o,xec Dy is equivalent to A*xe Dy ™=, In par-
ticular, we have Df** < D(A*)c DE*, For the application of fractional
powers it is important to know whether the domain D(A*) coincides
with Dj** for some p. We see, as a consequence of Theorem 2.6,
that if we have D(A*) = DF for an «, it holds for all Re a > 0.
An example and a counterexample are given. At the end of the sec-
tion we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D7 with
the interpolation space S(p, o/m, X; p, o/m — 1, D(A™)) due to Lions-
Peetre [4]. We also give a direct proof of the fact that D7(4%) =
Do(A).

In §4 we discuss the case in which —A is the infinitesimal
generator of a bounded strongly continuous semi-group T,. A new
space Cy, is introduced in terms of T,x and its coincidence with Dg
is shown. Since CZ,, o +# integer, coincides with C° of [2], this
solves a question of [2] whether C° = D° or not affirmatively. The
coincidence of C7,, with S(p, o/m, X; p, o/m — 1, D(A™)) has been shown
by Lions-Peetre [4]. Further, another integral representation of frac-
tional powers is obtained.
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90 HIKOSABURO KOMATSU

Finally, § 5 deals with the case in which — A is the infinitesimal
generator of a bounded analytic semi-group 7,. Analogous results to
§4 are obtained in terms of APT,x.

1. Spaces D7. Throughout this paper we assume that 4 is a
closed linear operator with a dense domain D(A) in a Banach space X
and satisfies

(L.1) MM+ AT =M,  0<N< oo,

We defined fractional powers in [2] for operators A which may not
have dense domains. It was shown, however, that if Re a > 0, A% is
an operator in D(A) and it is determined by a restriction A, which
has a dense domain in D(A). Thus our requirement on domain D(A)
is not restrictive as far as we consider exponent a with positive real
part. As a consequence we have

(1.2) N+ A — N—oo,m=1,2 ---

for all xe X. As in [2] L stands for a bound of A(A + A)™ =1 —
MN A+ A)

(1.3) JAM+ A L, 0<n< oo,

We will frequently make use of spaces of X-valued functions f(\)
defined on (0, ). By L?(X) we denote the space of all X-valued
measurable functions f(\) such that

171l = (|10 ran)” < = if 15 p < o0
11z~ = sup [IFOV) || < o if p = co.

(1.4)

We admit as an index p = « —, L~7(X) represents the subspace of
all functions f(\)e L*(X) which converge to zero as »—0 and as
A — oo, Since dA/\ is a Haar measure of the multiplicative group
(0, =), an integral kernel K(\/y¢) with S | K(\) [dn/h < oo defines a
0

bounded integral operator in L?(X),1 < p < oo,

DEeFINITION 1.1. Let 0 < 0 < m, where ¢ is a real number and
m an integer, and p be as above. We denote by D7, = DZ,.(A) the
space of all e X such that M(A(\ + A) ™)™z € L?(X) with the norm

(1.5) 12 1log, = ll@llx + VAN + 47" L2 .

Dz, and DZ_, coincide with D° and Dg of [2], respectively.
It is easy to see that DgZ, is a Banach space. Since (A(M + 4)™H)™
is uniformly bounded, only the behavior near infinity of (A(x + A)™)™x
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decides whether » belongs to Dy, or not.

ProposITioN 1.2. If integers m and n are greater than o, the
spaces D7, and D¢, are identical and have equivalent norms.

Proof. It is enough to show that DJ, = Dg,., when m > o.
Because of (1.8) every « e DS, belongs to DJ,... Since

d%wm(x + A = mam (AR + Ay
we have
A
(L6) (AR A+ Ay = e (Al + Ay adppe

This shows

VA A+ A7) 2 £ —— (VAN + A7) 2 2 -

DEeFINITION 1.3, We define D7, 0 > 0,1 < p < -, as the space
Dz, with the least integer m greater than g. We use ¢3(x) to denote
the second term of (1.5), so that DS is a Banach space with the norm

o]l + g7 ().

ProprosiTion 1.4, If ¢ >0, (¢ + A)~ maps Dy continuously into
Dg+,  Futhermore, if p < «—, we have for every x e D]
(L.7) pp + A —ao (D) as p— oo,
Proof. Let xeDZ. Since
INTHAN + A7) (e + A)~w ||
= 2N + A7 TAR + AT AN + A7) ]
= pML [N (AL + A2 ],
¢y + Ay~x belongs to DZt.
Let p £ o —. If xe€D(A), then
(AN + A)7yplpe + Ay
= (AN + A7) — (AN + A)7)"(pe + A~ Aw
converges to (A(\ + A) )™z uniformly in A. On the other hand,
(AL + A H)mp(pe + A is uniformly bounded. Thus it follows that
(AN + Ay )™ pu(pe + A)~'x converges to (AN + A)~Y)™x uniformly in ) for

every & € X. Since || N(AN+A) ) pu{p+A) x| S M || N(AN+HA)y )™ |,
this implies (1.7).
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THEOREM 1.5, DicCDf if o >7 or of o=7 and p=q. The
ingection s continuous. If q < co—, D7 is dense in Dy,

Proof. First we prove that Dg, p < o, is continuously contained
in DZ_.
Let xe DZ. Applying Holder’s inequality to (1.6), we obtain

| o —1\Mpe m 4 —\m+1p I p
INCAQ + A2 | S o | (Al o+ A7)0 o

where p’ = p/(p — 1). Hence xe DZ. Considering the integral over
the interval (g, \), we have similarly

AR + Ay yr || < 227 s Ap + Ayyms |

N
T V([ netae + ayyme pazeye).

The second term tends to zero as gt — oo uniformly in \ > £ and so
does the first term as N — oo. Therefore, xc DJ_.

Since M (AN + Ay ) x e LX) N L*~(X), it is in any LY X) with
P =g < oo,

If 7 <o,DZ is contained in D} for any ¢q. Hence every D/ is
contained in Dy,

Let ¢ < ««—. Repeated application of Proposition 1.4 shows that
D™ is dense in D} for positive integer m. Since Dg contains some
Di+m, it is dense in Dy.

2. PFractional powers. If xe€ Df, the integral

a R r(m) * a—1 —1\m
(2.1) Aﬁ—lwmmn_m&K (A(n + A)ywda

converges absolutely for 0 < Rea =< o and represents a continuous
operator from DZ into X. Moreover, AJx is analytic in «a for
0 <Rea <o.

A%x does not depend on m. In fact, substitution of (1.6} into
(2.1) gives

Xpp — F(m)/’n Sm m—1 —1\m+1 Seo a—m—1
Atx = A A tad A d.
Y= Tl m —a o (Alge + A)7)madpe an
_ I'(m + 1) S‘” a1 Al L A)-Yym+igd
T@Im + 1T —ay Jo Al A7

This shows that A% depends only on z and not on Df to which x
belongs,
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Obviously we have
(2.2) Az(p(pe + Ay = (p(pe + AT Ase, we DE

Since the left-hand side and (p(y + A)~)™** are continuous in X, and
(pe(pe + Ay™)** is one-to-one, it follows that Aj is closable in X, In
view of Theorem 1.5 the smallest closed extension does not depend on
g.

DEFINITION 2.1. The fractional power A* for Re > 0 is the
smallest closed extension of A% for a ¢ = Rea.

ProposiTION 2.2. If a is an integer m > 0, A* coincides with
the power A™,
To prove the proposition we prepare a lemma.

LEMMA 2.3. If m is an integer m > 0,

(2.3) A™y = slim mSNN”‘l(A(x A mrdy
0

N-oe

Proof. By (1.6) we have
mSNM"*l(A(x + Ayt = Nm(AN + Az .

If xe D(A™), NMA(N + A)™)"x = (N(N + A)™)"A™x tends to A"z as
N — o by (1.2). Conversely if N"(A(N + A)y™)"x = A(N(N + A)™)"x
converges to an element y, € D(A™) and y = A™x. For A™ is closed
(see Taylor [5]) and (N(N + A)™)™x converges to x.

Proof of Proposition 2.2. If xeDf, o > m, integral (2.3) con-
verges absolutely. Therefore it follows from Lemma 2.3 that z € D(A™)
and A%z = Am™x, Thus A™ is an extension of A*. Conversely if
xe D(A™), then p(p + A)'ve D(A™")c D2t and we have

Ax(p(pe + Ay e = (p(pe + Ay)A
— A™x as p— oo,

Since f(yt + A)y~"'w — x, it follows that z e D(A%) and A*x = A™a.

The fractional power A* defined above coincides with A% defined
in [2]. In fact, if m = 1, integeral (2.1) is the same as integral (4.2)
of [2] for » = 0. Thus

(2.4) Aw = A%g

holds for 0 < Re < 1 if xe D(4). If xeD(A™), m = 1, both sides of
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(2.4) are analytic for 0 < Rea < m, so that (2.4) holds there. Since
Drc D(A™)c D». by Lemma 2.3 and (1.2), both A* and A% are the
smallest closed extension of their restrictions to D(A™), m > Rea.
Thus we have A% = A% for all Rea > 0.

Consequently we may employ all results of [2]. In particular,
fractional powers satisfy additivity

(2.5) AP = A=AF Rea >0,Res >0
in the sense of product of operators and multiplicativity
(2.6) (A=A, 0<a<mwRe >0,

where @ is the minimum number such that the resolvent set of —A
contains the sector

larg | <7 — .
Such an operator is said to be of type (w, M(6)) if
sup [|Mh + A7 = M) .
largAl=0
Any operator with a dense domain which satisfies (1.1) is of type
(w, M(0)) with 0 = 0w < 7.

Some properties of fractional powers, however, are derived more
easily through definition (2.1).

ProprosiTION 2.4, If 0 < Rea < o, there is a constant C(a, o, p)
such that

(2.7 A || = Cla, o, p)gz(@)* || ||~ el 2 e DT .

Proof. Holder’s inequality gives

14 )|l iAo+ 4y an

il = ’ IMNa)y'm — «
+ [ et + e avn

F(?’n) L™ N Rea N Rea—o .
= I I'a)[(m — «) [ Rea teli+ ((6 — Re a)p’)"'?’ q,,(x):, .

Taking the minimum of the right-hand side when N varies 0 < N < oo,
we obtain (2.7).

ProrosiTiON 2.5, If g2 >0, then
(2.8) D7(A) = Dy (¢ + A)
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with equivalent norms,

Proof. Let xeD?,.(A) with m > ¢. Since

| A*n + ¢+ Ay mz|| = C | A™(\ + ¢+ Ay "m|[4™ -
O+ g+ Ay m|moim o f=1,2,+--,m —1,
N+ AYh A+ g+ Ay
=\ + mpm A 4 e 2 AN+ o+ A

belongs to L?(X). The converse is proved in the same way.

THEOREM 2.6. Let 0 < Rea < 0. Then xcDf if and only if
xe D(A*%) and A*x e DZFee,

Proof. Let weDf and m > . Clearly v e D(A”). To estimate
the integral
)\Io—Rea(A()’ + A)-—l)mAax

l—'(m)xa.—Rea - ox—1 —1\m —1\m
- I(@I(m — a) So” (AN + A)7)"(A(pe + A)™)"adye

we split it into two parts. First,

nme [ A+ A AGe + Ay radp|

= v [P peciduLe || (AG + )|
— L™Re a)~\° || (AOv + A)y "z |le L7 .

a4 A (A A)7)mad
= Lo " | oA + Ay || dpsp

also belongs to L? because Rea — o < 0.
Conversely, let A*x e D7~%=, If » is an integer greater than Re«,
we have

1A™e(n + A" || S G A7(n + A || o8| (v + Ay |[eie
é Cl)\l—-Rea

Thus it follows from (2.5) that

MIAN + A7)z = (A0 + A7 [ (A + A)T)mAsz ||
= O [ (A(h + A )mAe || e L7 .

This completes the proof.
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As a corollary we see that if ¢ is not an integer, DZ and DZ_
coincide with D° and DZ of [2], respectively.

THEOREM 2.7. If the domain D(A®) contains (is contained in)
D> for an Rea >0, then D(A*) contains (is contained in) DX= for
all Rea > 0.

Proof. By virtue of Theorem 6.4 of [2] and Proposition 2.5 we
have D(A*) = D((¢t + A)*) and DF**(A) = DF*(pr + A), 1> 0, Reax > 0,
so that we may assume that A has a bounded inverse without loss
of generality. The theorem is obvious if we show that AP, —oo <
Res < Rea, is a one-to-one mapping from D(A*) and DF* onto
D(A*P) and D}ee—RF  respectively.

Since D(4*) = R(A=*), Rea >0 ([2], Theorem 6.4), and since
APF~* = APA—= ([2], Theorem 7.3), the statemant concerning D(A%) is
immediate,

Let ReB8 < 0. Then ze DFe%f if and only if xe D(AP) and
APz e DF=, Since AP is a bounded inverse of A~#, we have x € D}
if and only if « is in the image of Df by AP. If ReB =0, choose
a number v so that Res < v <Rea. If xzeD}*%F g belongs to
D(A~®). Thus there is an element y such that z = APy. By the
former part we have A~z = AP Yye Dfee—%F+y, Thus y belongs to
Dfe=, On the other hand, if ye D}*, then ye D(AP) and we have
A~y = APty e DRe*—Ff+y where © = APy, Then it follows from the
former part that « belongs to DJeaRef,

Theorem 6.5 of [2] is obtained as a corollary.

ProposiTiON 2.8, For every Rea > 0

(2.9) D= = D(A%) D=,

Proof. It is enough to prove it only in the case « = 1. The
former inclusion is clear from Lemma 2.3. The latter follows from
(1.2), for

MAN 4+ A = a0 + A7 A — ML+ A HAr — 0

for xe D(A) as A — oo,

ProprosiTION 2.9. If there is a complex number Re« > 0 such
that D(4*) = D;**, then D(AP) = D} for all Re 8 > 0. In particular,
D(A%) coinsides with D(Af) if Rea = Re . Furthermore, if A has
a bounded inverse, A" is bounded for all real ¢, where A* is defined
in [2].
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Proof. We need to prove only the last statement. Because of
[2], Corollary 7.4 we have

At = A+itg-r

Since D(A*+) = D(A) = R(A™"), A* is defined everywhere and closed,
so that it is bounded.

We proved in [2] that the operator A of § 14, Example 6 has
unbounded purely imaginary powers A*. The above proposition shows
that D(A*) cannot be the same as DF* for any p.

However, there are also operators A for which D(A*) coincides
with DJfe,

Let X be L*(S, B, m), where B is a Borel field over a set S and
m a measure on B, and let A(s) be a measurable function on S such
that

larg A(s)| = o, a.e.s
for an 0 < w < . Define
Aax(s) = A(s)x(s)
for all x(s)e X such that A(s)x(s)e X. Then it is easy to see that A
is an operator of type (w, M(6)) if p < o« —, where L=~ denotes the
closure of D(A) in L*. For this operator A we have D(A) = D}, so

that D(A4*) = DF for all Rea > 0.
In fact, we have

Ay + A)™Ya(s) = A(s)x(s)/(n + A(s)).

Therefore,
[IMAO + Ay as) [ran

—_— “ p—1 A(8)2 ?
= SO N dxgs o AG) x(s)‘ dm(s)
_ » =]  A(s) I
= |, 126 pam)| T ae| ?

~ [ Az|*.

Any normal operator A of type (w, M(0)) can be represented as
an operator of the above type. Therefore, it satisfies D(A%) = Dfee
for Rea > 0. T. Kato [1] proved that this holds also for any maximal
accretive operator A (see J.-L. Lions [3]).

Now let us complete the definition of fractional powers.

THEOREM 2.10. Let 0 < Rea < m. If there is a sequence N;— oo
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such that

— i _L(’m/_)____ akl a—1 —1\m
v =wlim o a)go ATA + A))rad

exists, then x € D(A®) and y = A%z,
Conversely, if xe D(A%), then

ap — o 11 F(m) al a—1 —1\m
(210) Ao = slim L) a)go AT (A + A))medn

possibly except for the case in which Im a0 and Re a is an

integer.

Proof. The former statement is obtained by modifying the proof
of [2], Proposition 4.6, Since (u(¢ + A)™)™x e DF*, we have

Ay + A7 = 05:’”"_1(‘4(7* + A + A adn
= (ﬂ(# + A)—l)m ’lzl)"ll_l}lt:l° CSONj),““l(A()} + A)—-l)mxd)\'

= (e + A7)y .

By virtue of (1, 2), it follows that x e D(A*) and y = A*x.

The proof of the latter statement may be reduced to the case in
which 0 < Rea < 1land m = 1. Suppose that x ¢ D(A*) and an integer
m > Re a. Substituting (1.6), we have

SNx“—l(A(x + A))madn,
A
0

= mSN)h"“’”‘lde LAy + Ay Paedp
0

J— m L . #m—a ot -
om— aSo (1 Nm—a)# (A + Ay H"Hadye .

Since x e D(A*) < D&, it follows that

HS:V Jp\c,";—j; Lo (A + A)‘l)”‘“xdﬂu —0 as N— .

Thus the limit (2.10), if it exists, does not depend on m > Re a.
Next, let Rea > 1 and m = 2, Since x € D(A*) belongs to D(A),
integration by parts yields

Sjv—l(A(x + A) Yy adx,

Na—l

(A(N + A7) 'Ax .
m—1

o — 1 N a—2 —1\m—1
= ATHAN + Ayt Axdn —
m — 1Jo
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The second term tends to zero as N — oo because Ax e D(A*!) C DR,
Therefore, we obtain (2.10) if we can prove it when both « and m
are reduced by one.

To prove (2.10) in the case 0 < Rea < 1 and m = 1 we assume
for a moment that A has a bounded inverse. Then D(A4*) is identical
with the range of A~%, which may be represented by the absolulely
convergent integral:

A-ap— sin S'” A0+ A)wdy
T 0

{[2], Proposition 5.1). Employing the resolvent equation and (1.6), we
get

L) SNM—lA(x + Ay A-wd

T(@I(1 — @) ¥
_fsinma \ (¥ a0 (™, 0 MM+ A — plpe 4 A
_< T >So)\) d/\So# N— U wft
— Sin T 0 a—1 ~ —a _ —1 A —2
- <“—n_> S x dxgoy O — 1) d)uSMA(v + A)ady .

It is enough to show that this converges strongly to the identity,
or more weakly that it simply converges, because if it converges, the
limit must be A*A—*x = z.
First of all, we have
N A A
I = go v"ld,\go o (n — ‘u)*‘dpSHA(v + A cwdy

v
0

= SNA(IJ + A)yzdy SNdexS 2Oy — pw)Tidpe .
0 v

Changing variables by » = vI, ¢ = vm and integrating by parts with
respect to v, we obtain

I = rl““dlglm““(l — m)~dma
1 0
— SNA()) + Ay 'wdy Ny~ Slm*“(N vl — m) ' dm
0 0

= ¢ — SIA(Nn + A)‘lam"“‘lolngim“"(n‘1 —m)"'dm .

1
Since »=** | m~*(n~* — m)"'dm is absolutely integrable in % and since

Q
A(Nn + Ay 7'z = — Nn(Nn + A)~'2 tends to zero as N — co, the
second term converges to zero as N — oo,
Next we write
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SNx“‘ldx S“;r“(x — p)“ldpShA(v + A)y*xdy
0 A ©
_ gNA(v + A)yzdy S”v—ldxry-a(p — Ny
0 0 v
= N =)
+ S AW + A)*%cdvg x“—ldxg e — N
N 0 v
—I+1.

Changing variables as above, we have
N 1 o
I, = S AW + A)—zxdug r—w& m=(m — )~'dm
0 0 1
= N(N+ A "'v—ecx as N— oo,

Finally,

I, = rm*“clmgl le=(m, — Z)—lsz"‘NA(u + A)ywdy
1 0 N
tends to zero as N — oo because SMNA(D + A)y2xdy = mN(mN + A)~'w —
N
N(N + A)™'z tends to zero and m—* Sl 1*=*(m — l)~'dl is absolutely in-
0

tegrable,

Next suppose that A has not necessarily a bounded inverse. We
have, for ¢ > 0,
(A% — (¢ + Ay (¢ + A)

= Sir;”“(g:v—lA + S:(v—lA — (v — ) (e A))(N + A) (e + A)~wd)

because the integral is absolutely convergent and the equality holds
for all x € D(A) which is dense in X. This shows together with the
above that

A(pt + A = (1 + Ay (p + A)a

i ST (B i (T Caia et

+ s-lim ST (Sx ATL(N A— (0= p) (p+A)>
(M A (e + A)yradN

— g-lim — £ SNM—lA(x = A+ A)ycwdn

voe [(a)[(1 — )

3. Interpolation spaces. Let X and Y be Banach spaces con-
tained in a Hausdorff vector space Z. Lions and Peetre [4] defined
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the mean space S{p, 0, X;p,0 —1,Y), 1=p=<0,0<0<1, of X
and Y as the space of the means

3.1) v = S:u(x)dx/x ,

where u()\) is a Z-valued function such that
(3.2) Mu(n) e LX) and NM~'u(h)e LA(Y) .
S(p, 0, X;p,0 —1,Y) is a Banach space with the norm

B.3) {2 llsme.xp0-1m)

= inf { max (| V() [2ee, 2000 [ @ = | w0/}

Theorem 3.1. S(p, 8, X;p,0 —1, D{A™)),0< 0 <1, 1= p= oo,
coincides with DEm(A).

Proof. By virtue of Proposition 2,5, we may assume that A has
a bounded inverse without loss of generality. In particular, D(A4A™)
is normed by || A™x||. Further, if we change the variable by \ =
AU condition (3.2) becomes

(3.4) A™u(n) € L2(X) and M"Y A™u(\) € L(X) .
Suppose € D? and define
u(N) = eN"A™M\ + Ay,
where ¢ = I"(2m)/(I"(m))’. Then
Vu(n) = eOvn + A" V(AN + Ay Hmw e LA(X)
and
AVmAmu(N) = e (AN + A)7)yme e LX) .

Thus u(\) satisfies (3.4) with ¢ = md. Moreover, it follows from
Lemma 2.3 that

IANHAR + A)TmA

0

S:u(x)dx/x — L'@m) S

(L(m)y*

=X .

Therefore, x belongs to S(p, o/m, X; p, o/m — 1, D(A™)) .
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Conversely, let zeS(p, o/m, X; p,0/m — 1, D(A™)) so that z is
represented by integral (3.1) with an integrand satisfying (3.4). Then

N (A + A" = (AG + A prepudp
+ O+ Ao e Aru i

Since both (A(\ + A)™)™ and (MM + A)™)™ are uniformly bounded,
M (AN + A)™)™x belongs to L?(X), that is, xe Dy.

THEOREM 3.2. Let A be an operator of type (w, M(0)). Then
Dg(A%) = Dg*(4) , O0<a<rm/w,g>0.

Proof. It is sufficient to prove it in the case 0 < a < 1, because
otherwise we have 4 = (A*)"* with 0 < 1/a < 1 (see (2.6)). In view
of Theorem 2.6 we may also assume that ¢ is sufficiently small.

By [2] Proposition 10.2 we have

: o o+l -a—ao
NAS( + A7) = SR A e A(r + Ay wde/c .
T JonP 4 2\T* cos ma + T

Since the kernel

()\l—lz.a)l—c

’ 0 o 1 ,
1 + z(k—'lf“) cos T + (k_lfa)g < <

defines a bounded integral operator in L?(X), D*(A) is contained in
Dg(A%).
If @« = 1/m with an odd integer m, we have conversely
Dg(AY™y c Dg™(A) .

In fact, let x e DZ(AY™). Since
NAN® 4+ Ay =\ TT (AT + AV,
=1

where ¢; are roots of (—¢&)™ = —1 with ¢, = 1, and since
Al + AY™)T T =2, -, m,

are uniformly bounded, A"A(A™ + A)~'x € L?(X). Changing the variable
by A =A™, we get A"A(\ + A)~'w e L*(X).

In a general case choose an odd number m such that 0 < 1/m < a.
Since AY™ = (A%)Y“™  we have

Di*(A) © Dg(A%) C Deom(A"™) < Do(A) .
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Another less computational proof will be obtained from the Lions-
Peetre theory and Proposition 2.8,

4. Infinitesimal generators of bounded semi-groups. Through-
out this section we assume that T,,¢=0, is a bounded strongly
continuous semi-group of operators in X and — A is its infinitesimal
generator:

(4.1) T,=exp(—t4), [Tl=M.
A is an operator of type (7/2, M(9)).
DerFINITION 4.1, Let 0 < 0 < m, where ¢ is a real number and

m an integer, and let 1'< p < . We denote by Cg, = CZ,.(4) the
set of all elements 2 € X such that

(4.2) t~°(I — Ty)mce LX) .
As is easily seen, C7, is a Banach space with the norm
Hellog ,, =@l +[[t7°I = T)"@ |l

Since (I — T,)™ is uniformly bounded, condition (4.2) is equivalent to
that ¢=°(I — T,)™x belongs to L?(X) near the origin. In particular,
we have

(4.3) Crn(4) = Clu(t + A), > 0.

Cs,, and CZ_,, coincide with C° and Cg of [2], respectively, and
CZ,, consists of all elements x such that T,x is (weakly) uniformly
Holder continuous with exponent o.

ProposiTION 4.2. If 2eC?,, then x belongs to D(A*) for all
0 <Rea < g, and

(4.4) Avgy =

1 ~Smt““*1(1 — T)medt, O0<Rea<a,
0

asm

where

Kow = |0 = omat
[

Proof. If 0 < Rea < o, the right-hand side of (4.4) converges
absolutely and represents an analytic function of «.
If xe D(A), then we have by [2] Proposition 11.4

S“t-a—l(z _ T)madt
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Il

kz,: (— 1)"*1(;")g:t""1(I — T, )edt

i

I'(— @) kz: (— 1 (p)kA*s, 0<Rea<1.

The coefficient of A%z does not depend on A. Taking A = 1, we see
that it is equal to K,,,.

Next let 0 <Re @ <min (g, 1) and € Cy,,.. Then integral (4.4) with
x replaced by p(p + A)~'w, n > 0, exists and converges to the integral
(4.4) as pt— oo. Thus A*u(p + A)~'& converges to the integral (4.4).
Since A* is closed and (¢ + A)7'w— 2 as p— oo, it follows that
x e D(A%) and (4.4) holds.

In the general case the assertion is obtained by [2], Proposition
8.4 or by repeating an argument as above,.

Lions and Peetre [4] gave another proof when « is an integer.

THEOREM 4.3. C¢, coincides with DI with equivalent norms,

Proof. First we note that

(4.5) (I—-T)yx=Alx, wxeX,
where
(4.6) Iz :Sthxds ,

0

Obviously we have
4.7) L = M,, t>0.
Let x¢C?,. Then (M + A)y™x,x > 0, belongs to C;i» since

| = T™(n + A" ||
st I AN + A" [T — T) x| .

Hence we have by Proposition 4.2
(A + A7) = o Em T — T0v+ A) "
- cS:’A (A(n + A)ymt=— (I — T,y adt
+ CS:)\(X Ay — T)vwdt
where ¢ = K%,. Therefore,
N AR + A))mz || = cL"‘M”‘MS:Mt"t“’ W = Ty || dt)t

+ cM”‘(ZM)"‘N’“’"SO;At"“"‘t“” (I = Ty || dt/t .
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This shows that e DS ,.
Conversely, let € Dy ,. Since

(A(x + A Ire = (v + A)™I — TY)™(AN + 4™,
it follows that Iz e DZix. Thus by Proposition 2.2 we get

(I— Ty = A"[r g = cS“ AR 4+ AL
0
_ cglltlg”x’”—l(A(x + Ay,
0
+ "S;,(I Ty 4+ AmA + A))mad

where ¢ =1"(2m)/(I"(m))*. By the same computation as above we con-
clude that xeCy,.

In particular, C¢, does not depend on m. We denote C7Z, with
the least m > ¢ by CZ. Because of Theorem 2.6, CZ coincides with
C° of [2] if ¢ is not an integer.

THEOREM 4.4, Let 0 < Rea < m. If there is a sequence ¢;— 0
such that

(4.8) y = w-lim 1 rt‘““l(l—— T, "wdt
Joeo Kaym €3

exists, then xe D(A*) and y = A°x.
Conversely, if xe D(A%), then

£-0 €

(4.9) A = s-lim Kl rt~a~1(1 — Tymedt .

arm

Proof. The former part is proved in the same way as Theorem
2.10.

To prove the latter part, let us assume for a moment that T,
satisfies

Tl = Me™, ¢t>0,

for a > 0. Then A* is the inverse of A~* which can be represented
by the absolutely convergent integral

(4.10) Aoy = 1 S”sa—lTsxds
I'(a) Jo

(2], Theorem 7.3 and Proposition 11.1).
Now it is enough to prove that

1 S“’ —amt( ] _ ym S” at
K I st I — TyH™dt .S T,xds
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converges strongly as &— 0, because the limit must coincide with
A*A—x = 2.
We have

I = rra*l(I — )”‘dtS T, xds

&

Il

3 (—1)"+1(z)k"Sk eI — T,)dt rs“‘lTsxds.
B 0

k=1
Now
j t““‘letS 55T, s
- Sk t“"ldtr(s — )T xds
_ S: T,xdsss tei(s — )iy
~_1 S (s — key* T,ads/s .
a(ke)=
Furthermore,

i(—l)kﬂ(;:)kag t-a—ldtg T s
k=1

= 1 S s*'T.xds ,
0

oe”

so that we obtain

m

) g: (s — ke)*T,ads/s .

Since T,x — x as s— 0, it follows that

=5 0|6 - ko Tadsss

e i=
= % i (—=1*) S (s — k)= T.,xds/s
- = Z (— 1)"(2”)Sm(s — k)ds/sx as e— 0,
= k
On the other hand, the Taylor expansion up to order m gives

Fde) = 3 (= DHENs — ko)
=S (e Do @om D) o peypn— ke,
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where 0 < k' < k. Hence we have

_LS‘” fu(s) T,wds/s
(84 me

ew

_(la-1)---(a—m+1) z”“ (— 1)kt (m)lem S&(S — kY™ T, wds/s .
m! k=0 "

Since (s — k’)*™s~' is absolutely integrable, this converges to a con-
stant times x as € — 0.

To prove (4.9) in the general case, it is sufficient to show that
(4.11) (A" — (¢ + A))(p + A~

= | = Ty — A = e T e+ Ayt
Kopm J0

u>0,reX,

and that the integral converges absolutely.
By Theorem 2.6, (4.5) and a similar decomposition of I — e *T,

we have
I — TY"I — e T)x = O0(t°),xecCI, m +n>o0.
Since (¢ + A)—*x € D(A*)c CZ=, it follows that

(I = Ty — (I — =T
= (e — DTYT — T 4 -oe + ([ — e =T

— O(tmin(l{ea,m-—l) +1)

This shows that integral (4.11) is absolutely convergent. (4.11) is valid
for all @ € D(A) which is dense in X. Therefore, (4.11) holds for all
xe X,

5. Infinitesimal generators of bounded analytic semi-groups.
Let T, be a semi-group of operators analytic in a sector |argt| <
/2 — ®,0 < w < 7/2, and uniformly bounded in each smaller sector
largt| = 7/2 — w — ¢, > 0. We call such a semi-group a bounded
analytic semi-group. ,

It is known that the negative of an operator A generates a
bounded analytic semi-group if and only if A is of type (w, M(6)) for
some 0 < w < 7/2. A bounded strongly continuous semi-group T, has
a bounded analytic extension if there is a complex number Rea > 0
such that

(56.1) [| AT, || = Ct="= ¢ > 0,

with a constant C independent of ¢, Conversely, if 7, is bounded analytic,
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(5.1) holds for all Rea > 0 ([2], Theorems 12.1 and 12.2),
We assume throughout this section that — A is the infinitesimal
generator of a bounded analytic semi-group T,.

DEFINITION 5.1. Let 0 <o <ReB and 1= p = . We denote
by BZs = B;s(A) the set of all € X such that

(5.2) t*P—APT x ¢ L?(X).
B, is a Banach space with the norm

l@llsg , = l[@]] + [P APT 2 ||yox,

PrOPOSITION 5.2. Let 0 < Rea < 0. Then every ¢ By, belongs
to D(A®) and

(5.3) Arg = -1—S“tﬂ—«—1ABT,xdt ,
T —a)

where the integral converges absolutely.

Proof. Since APT,x is of order ¢°~"f as t—0 and of order
tReB+s ag t — oo in the sense of L?(X), the integral converges absolutely

for 0 < Rea < 0.
To prove (5.3), first let xze D(AF). Then it follows from [2],

Proposition 11.1 and Theorem 7.3 that

-———L——rtﬁ"“"lAﬁTtxdt
I'(B— a)l

— s-lim _L_S“tﬁ-a-le—ftT,Aﬂxdt
g0 F(B — a) 0
= s-lim(e + A)*FAPx

€0
= s-lsinol AF*(e + A)*FA%x .
Because of [2], Propositions 6.2 and 6.3, Af (¢ + A)**# converges
strongly to the identity on R(A) as ¢— 0. Since A*X is contained
in R(A) ([2], Proposition 4.3), (5.3) holds for all xeD(Af). In the
general case (5.3) is proved by approximating x € BZ, by (p(pt + A)=")"x,
m > Re B, which belongs to D(AF).

THEOREM 5.3. B cotncides with DZ. In particular, By, does
not depend on B.

Proof. Let zeBfs. If m is an integer greater than Rep, x
belongs to B, for
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t" A" Tx = t™FPA™PT,, - tF°APT, &
and t"fA™*T,, is uniformly bounded. Since
= AT\ + A"z = (AL + A) )™t AT,

(» + A) ™z belongs to BgZir. Hence it follows from Proposition 5.2
that

A0 + Ay = ¢ S:thﬁmTt(x + A)-madtft
= o(A(n + A)_l)mng*mm T wdt/t
+ el + A)“"‘Slt”‘AmTtxdt/t ,
where ¢ = I'(m)~'. The rest of the proof is the same as that of
Theorem 4.3.

Conversely, assume that x € DZ,, = DZ,,. Since Tz, t > 0, belongs
to any D;g,, we have by (2.1)

APTo = cS:V‘“l(A(x + AT wdn
— T, S:/th—I(A(x + A))mady,
+ cA"‘TtS:tNB—I(x + A)"(AMN + A
where ¢ = I'(2m)/(l"(B)"(2m — B)). Arguing as before, we get x € BZ,.
THEOREM 5.4 Let 0 < Rea < ReB. If

. 1 o
A4 = w-1 ——-——————S tB—2—1 ABT et
(65.4) VE W TE —a) ey &

exists, then xe D(A®) and y = A%x, If xe D(A*), then

(5.5) A%p = s-lim — L S”tﬁ—a—lAﬂT,xdt :
] F(B — a) €

Proof. The former part is proved in the same way as Theorem 2,10,
Let us prove the latter assuming that ¢ — A generates a bounded
analytic semi-group for a ¢t >0. D(A%) is the same as the range E(A~%)
in this case, and we have APT,A—*x = AP =T« by the additivity of
fractional powers. So it is sufficient to prove the following:

(5.6) o = s-lim_(%)g”tﬂ~lAﬂT,xdt, veX,

§-0
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when Re 8 > 0.
First we note that if Rea > 0, then

(5.7) t*A“T,wx—0 as t—0 or as t — o

for each x ¢ X, because (5.7) holds for v € D(A) and t*A*T, is uniformly

bounded.
Let B be equal to an integer m. Since d/dtAPT,x = —AF*'T,x,

we have, by integrating by parts,
S”t”‘“lA"‘Ttxdt
= A T o (m — D) et An - Tt

(5.7) shows that the first term tends to zero as e— 0 if m > 1. When
m =1, we have

SNAT,xdt =T —2xas e—0,.

Thus (5.6) holds if B is an integer.
If B is not an integer, take an integer m > Re 8. We have

APTx = AF™A" T

L .
_ AR T ads, £ 0,
Tm =53 " 7Y v =0

by [2], Proposition 11.1. Therefore,

_L.S”tﬂ—lAB T wdt

I'B)Je
— 1 “ m ¢ B—1 _ m—pB—1
ST EEA Tswdsget (s — ty"P-idt
=1 S“s"“lA"‘ T, xds
I’'(m) Je
_ e” “ Am . ! Bl _ ~\m—p—1
T B (m — B) |, 4" Lo | 740 — 0)2-a

The first term tends to x as ¢— 0. The second term converges to
zero, because

ra—mda Slz'ﬁ—l(o — T)mB-idr
1 0
is absolutely convergent and (¢o)"A™T.,« tends to zero as ¢ — 0.

The proof in the general case is obtained from the absolutely
convergent integral representation:
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(A" — (¢ + AN + Ay

_ 1 © tai( AB __ ppt 8 —a
_—““F(B—a)got (AP — e=t(u + AT, (st + A)y-<adt .

The absolute convergence follows from [2], Propositions 6.2 and 6.3.
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