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ON THE DECOMPOSITION OF INFINITELY DIVISIBLE
PROBABILITY LAWS WITHOUT NORMAL FACTOR

ROGER CUPPENS

In the theory of the decomposition of probability laws,
the fundamental problem stated by D. A, Raikov of the
characterization of the class I, of the infinitely divisible laws
without indecomposable factors has been studied in the case
of univariate laws by Yu. V. Linnik and I, V, Ostrovskiy.
Lately, we have shown that nearly all these results can be
extended to the case of multivariate laws, In this paper, we
give a result which can be considered as an extension of a
theorem of Raikov and P, Lévy and of a particular case of
theorems of Linnik, and the extension of this result to the
case of several variables,

If we consider the finite products of Poisson laws, i.e., the
characteristic functions of the variable ¢ of the form

f(t) = exp {ict + % Nlexp (Gat) — 1]}

(¢ real, »; > 0, a; > 0), three general results are known, the first being
owed to D. A. Raikov [9] and P. Lévy [4] and the third to Yu. V.
Linnik [5, Chapter 9]:

(a) if a, .-+, @, are rationally independent, f has no indecomposable
factor;

(b) if a, -+, , are such that 0<e=a;<2a (=1, ---,D), f
has no indecomposable factor;

(¢) if a;,,/a; is an integer greater than 1 (j=1,---,p—1), f
has no indecomposable factor.

Lately, I. V. Ostrovskiy [8] has extended the two results (a) and
(b) of Raikov and Lévy to the case of a continuous spectrum, the base
of his study being the

THEOREM 1. (see also [1] chapter 8). Let f, be the infinitely
divisible characteristic function of the variable t defined by

£(8) = exp {ivt + S:[exp (izt) — 1dp(a)}

where v is a real constant and p s a monmegative measure defined
on the segment [a,d] (0 < a < b < o). If f, is a factor of f,, then

fi(t) = exp {'éct + Sb[exp(ixt) - l]dm(x)} ,
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where ¢ is a real constant and m is a measure defined on the segment
[a, b] which is nonnegative on [a,2a[. Moreover,

S(m) C [a, b] N (= S(1) ,
where S(N) means the support of a measure N and (cA) is defined by

WA=4; @A=(@-DA+4; (=4H=U®mA
(the symbol + indicates the vectorial sum of two subsets of R).

He gives also a more general result which can be stated in the
following manner:

THEOREM 2. Let f, be the infinitely divisible characteristic
Junction of the variable t defined by

fo(t) = exp {ivt +Sb[exp (zat) — 1]dp(x) + ki;l Mi[exp (Tat) — 1]} s

where YeR, A, =0, a, >0 (k=1,2,---) and where the following
conditions are satisfied:
(1) the measure [ is a mnonnegative measure defined on the

segment [a,b] (0 < a < b < oo);
(2) there exists a positive constant K such that
M= Olexp (—Kai)] (k— +o0);

(3) a,>band ;. /o, is an integer greater than 1 (k = 1,2, .. +).
If f, is a factor of f,, then

fi(t) = exp {ict + Sb[exp (twt) — 1]dm(x) + 2‘1 li]exp (ta,t) — 1]} s

where ¢ is a real constant and the following conditions are satisfied:
(2) 01, =N\ (k=1,2,--);
(b) the measure m is a measure defined on the segment [a, b]
which is monnegative on [a, 2a] and such that

m{ph) =0,  S(m)[a, )] N (=S(2)) .

Using the Theorems 1 and 2, we give in § 2, two theorems which
can be considered as extensions of the results (a) and (c) stated above,
Using the auxiliary results stated in § 3, we extend these results to
the case of several variables in the §4.

2. The case of one variable.

THEOREM 3. Let f, be the infinitely divisible characteristic
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Junction of the variable t defined by

£ty = exp it + 3 5 nlexp (iatyut) — 11}

J=1k=1

where v is a real constant, the \; , are nonnegative constants and the
;. are positive numbers satisfying the two conditions
(@) a;,./%,, ts an integer greater thanl (k=1,--+,7r; —1; 5 =

1,.--,2);
b a,, .-, a,, are rationally independent. If f, is a factor of

JSo, them
£it) = exp fict + 35 3% U alexp GGasut) — 11} ,

J=1 k=1
where ¢ is a real constant and the l;, satisfy

Proof. Let f, and f, be the two characteristic functions such that
for any real ¢

2.1) So(®) = fi®)f:(2) .

Since f, is an entire characteristic function, from Raikov’s theorem
([6], theorem 8.1.1), f; (§ = 1,2) is also entire and the equation (2.1)
is also valid for any complex ¢. Moreover, we have the ridge property
([6], Theorem 7.1.2) which can be written, since f; is evidently without
Zeros,

(2.2) (0, y) —u;(x, ) =20 (4 =1,2)
for any real x and y where u; is defined by
%;(z, ¥) = Relog fi(x + 1y) .

From the Theorem 1 of the introduction, it follows that for any
complex ¢

. p J .
(2.3) fi(t) = exp {wt + Zz, ,,z;‘ Llexp (tka;, t) — 1]} ,
where ¢ and the [}, are real constants and where s; is defined by
@jy = SUP &, < (85 + D),y

From (2.3), it follows by an elementary computation that

85

@) u0,9) — wz,y) =23 3, I, sin® (3ka;,, ) exp (ke; ) .

i=1 k=1

We show now by induction that all the 1}, for kea;,¢{«;.} are
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equal to zero and that all the 1}, for kea;,c{«;,,} are nonnegative.
(It is sufficient to show that all the [}, are nonnegative since if [},
for ka;,¢{a;,} is nonnegative, the corresponding term in f, is also
nonnegative and their sum is zero).

First of all, we show that

(2.5) l;,=20.

Ji8g =

Indeed, from Kronecker’s theorem ([3], Theorem 444), it is possible to
find x = x(y) such that

sin (3ka;. ,x) = o(exp [—3s;.a; ,y])

(2.6) .

(Yy—o) 3 #4,k=1---,3;
and
2.7 sin (§s;a;,,2) =21 — €.

We have then from (2.4)
u,(0, y) — w\(w, y) = O[l},,, exp (s;a;,y)]

when y-— o and (2.2) implies (2.5).

Let now k& < s; and let v be the smallest integer greater than %
such that 1}, > 0 (if such a v does not exist, the preceding proof is
still valid). From the hypothesis of induction, we can suppose that
' w 1s zero if k' (>k) is not a multiple of v. From Kronecker’s
theorem, it is possible to find # = x(y) and an integer p, such that
(2.6) and

2
(2.8) oy, = 27 — - =olexp[—dsiau0) (W= o)

are satisfied. We have then from (2.4)
u’l(Oy Y) — ui(x, y) = O[l;,k sin® (%kaj,lx) €xp (kaj,ly)]

and
sin® (3ka;, @) = ¢ > 0.

It follows from (2.2) that
,’7',Ic g O

and the theorem is demonstrated.
We can generalize the Theorem 3 in the following manner:

THEOREM 4. Let f, be the infinitely divisible characteristic
Sunction of the variable t defined by

Fit) = exp {ivt L3S

=1 k=)

Naalexp (ia;ut) — 11 + 3] pulexp (i6,8) — 11}
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where the following conditions are satisfied

(1) v is a real constant;

(2) the \;, and the p, are nmonnegative constants and there
exists a positive constant K such that

U, = Olexp (—KB)]  (g— ).

(8) the a;, and the B, are positive constants such that
@ A/ (B=1,00,7r;, —1;5=1,--+,0) and B,./B,
(@=1,2,--+) are integers greater than 1;
b ay, .-, a,, and B, are rationally independent. If f, is
a factor of f,, then

r

S S 1, lexp (i i) — 1] + z:', m, [exp (iB,t) — 1]} ,

i=1 k=1

fi(t) = exp {ict + Zp‘.

where ¢ is a real constant and the l;, and the m, satisfy

0=ln=Ns; 0=m = p,.

Proof. The proof is essentially the same as the preceding. Using
the Theorem 2 of the introduction, we obtain the representation

53

£Lt) = exp {ict + S 1 Jexp (ke t) — 1]

J=1 k=1

+ g mglexp (tgBit) — 1] + qf:‘_, m,[exp (iB,t) — 1]} ,

where ¢, the 1}, and the m; are real constants, the m, satisfy
0= m, < p,

and where s;, 0 and 7 are defined by (d = sup«;,,)
7

s; ;= d < (s; + ey
0B, =d < (o + 1B,
182'—-1 é d < 181 .

The proof of the nonnegativity of all the I, and of all the m!(¢ < o)
(which implies that all the 1}, for ka;,¢{a;,.} and all the m/ for
gB,¢{B,} are zero) is the same except that we use instead of the
Theorem 444 of [3]) the other form of Kronecker’s theorem (Theorem
443 of [3]) which asserts that the values of » satisfying (2.6) and (2.7)
(or (2.6) and (2.8)) can be taken in the form 2«7/B, (£ integer).

3. Some auxiliary results. We enumerate now some results
which are useful in the following section.
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LemmA 1. ([7], Corollary of the Theorem 1), Let f be a function
of the complex variable z, analytic in the half-plane Rez =0 and
satisfying the conditions

(1) |[f®l=M|z+1) for Rez=0,

(2) |f(®)] = My(z + 1)°exp (b2) Sfor Imz=0,

(3) |fR)| = M|z + 1|°exp[d(Re?)’] for Re z=0,
where M,, M,, M, are positive constants and a,b,c (= a) and d are
nonnegative constants. Then in all the half-plane Re z = 0

|f@)| < M,|z + 1|°exp (bRez).

LEMMA 2. Let f be a function of the m complex variables z =
(7, =+, 2,) admitting the representation

f(z) = i iodm ..... ,nexp(ZWf]%zj") ,

21=0 Pp= j=1

where T; >0 (j=1,.--,m). In order that the constants d,,..,,,
satisfy for some K > 0 the relation

b= Ofero (K E) ().
1t 1s mecessary that f be an entire function satisfying
In|f@)| = O(% [Rez; ) (2] — o)
and sufficient that f be an entire function satisfying

In| f(5)] = O(3 Rez|* + In|2])

(zl—e)  (laF=31%F).

j=1

In the case » = 1, this lemma is a particular case of the Theorem 2
of [7]. The proof in the general case is the same as in [7] and is
therefore omitted.

LEMMA 3. If the entire function f of the variable z satisfies for
some real K the condition

| f(z)] < exp[KRez + O(ln | z])] Rez = 0)

when |z|— o and admits an expansion of the form

fr= 3 ajexp (@npz/T),
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where T > 0 and the series converges uniformly in every bounded set,
then
a,=0

for
p > [KT@2r)™] .

This lemma is a particular case of the Theorem 3 of [7].

LeMMA 4. If ¢ is an entire function of the m wvariables z =
Ry, +++, 2,) such that for any z,yec R" and any € > 0

u(x, y) = Re p(x + iy) = Olexp (v + &)(| 2| + [y ])]
(o] +lyl— o),

then @ is a function of exponential type T with respect to the hermitian
norm.

This lemma is a particular case of the Lemma 2 of the theorem

2.5 of [1].
For the following lemma, we recall the

DEFINITION. Let {f,} be a sequence of functions belonging to a
Banach space of functions. The f, are said topologically independent
if the relation

lim =0

e—0

S a@f

implies
limea,(e) =0 n=12 ..,

=0

We have then the

LEMMA 5. (Lemma 1 of the Theorem 6.1 of [1]). Let {A\;} a
sequence of real numbers such that

by

=

G

-

[ ]

Then the functions 1,2z, exp(A;z) (7 =1,2,+--) are topologically
independent in the space C(a, b) of continuous functions f on [a, b]
(=00 <a<b< +0o0) with the norm || f|| = suP,<.<s | f(2) [

Recall ([1], Chapter 4) that a function ¢ of the % complex variables
2= (2, +++,2,) is said a ridge function if it is an entire function
satisfying for any z e C™ the relation

] @(Z) ] = @(Re z) (Re z= (Re Zy vty Re zn)) .
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We have the

LEmMA 6. Let ¢, be a ridge function of the n wvariables z =
(24, *++, 2,) without zeros and ¢, and @, be two ridge functions such
that

Po = P1Ps
There exists a positive constant C such that
M(r;log p;) < 6rM(r + 1;log @) + Cr(r +1) (7 =1,2),

where
M(r; f) = sup [ f()] .

Proof. Let
¥ i(2) = log [p;()] , Re v i(x + 1) = uy(x, )

for any z,yeR" (j =0,1,2). Since ¢, and ¢,/p, are ridge functions
without zeros, we have

(3.1) 0= ux, 0) — u(w, ¥) = uo(w, 0) — uo(x, y) < 2M(r; o)

for e +wy|=7r.
We estimate now |u,(x,0)|. For that, we use the existence for
any ridge function ¢ of a positive constant C, such that

3.2) log p(2) = —C, ||

for any x e R". Indeed, since log p(\§) is for any direction 6 of R" a
convex function of A, we have

(8.8) log (\0) = log »(0) + Ma-0) ,

where a = (@, -+, @,), a;p(0) = {0p(0)/0z; and where («-0) indicates.
the scalar product of the vectors « and 6. The relation (3.2) is an
immediate consequence of (3.3).

From (3.2), we have

(3.4) (@, 0) = Py(@) =2 —Ci 2],
(3.5) (@, 0) = Po(@) — V(@) = Yo(@) + Co | @] .
From (3.4) and (3.5), it follows
lu, 0) | = M(r; ) + Cr (=] =7)
for some positive constant C and from (3.1)
L@, ¥) | = 3M(r; 9) + Cr(lz+ iy| = 7).

Let now g, the function of the complex variable A defined by
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gs(N) = ¥,(\0)
for some direction 8 of R*. Then
vs(tt, v) = Re go(pt + i) = u,(pt6 + iv0)
for any real ¢ and v. We have then (A = ¢ + i)

2T
gs(\) = %S vy(¢t + cos &, v + sin a)e " *da ;
0

so that
[gs(M) | = 2 sup |ve(¢t + cosa, v + sina) |
0sas2r

< 6M(r + 1;log @) + C(r + 1)

(3.6)

(In] < ») for some positive constant C. Since
I N4 .
0:0) = gy + il oy + iv)ay
and since @ is arbitrary, the lemma is a consequence of (3.6).

LEMMA 7. (Lemma of the Theorem 5 of [2]). If f is an entire
characteristic function of the two wvariables t, and t, and t; a real
constant, the function ftg defined by

= Sy i)
T4 =0,

is an entire characteristic function.

4. The case of several variables. First of all, we consider the
case of functions of two variables.

THEOREM 5. Let f, be the infinitely divisible characteristic
function of the two variables t = (t,t,) defined by

£4®) = exp {in(t) + 3} (vlex (it —11
+ /*‘j[eXp ('ilejtz) - 1] + lJ,-[eXp (iaa‘t1 + iIBjtz) - 1])} ’

where the following conditions are satisfied

(1) 7 is an homogeneous polynomial of degree ome with real
coefficients;

(2) N\;, 45, v; are nonnegative constants and there exists a positive
constant K such that
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A; = Olexp (—Ka3)];  p; = Olexp (—KBj)],
v; = Olexp (—K(a} + B)] (1— +<0);
(3) the a; are positive constants satisfying the three conditions
(@) there exists q, such that a;ija; is an integer greater
than 1 for j = q;
(b) the set {a;;j < q} can be decomposed in p sets {a;.}
(=100, 05 k=1, e, v 2,7, =q — 1) such that
O /Oy (BR=1,+c,7; —1; =1, -+, p) 15 an integer
greater than land a, ,, - - -, @, , are rationally independent;
(c) either a, is a multiple of one of the a; . or @, =+, &y,
and «, are rationally independent;
(4) the B; are positive constants having the same property.
If f, 1s a factor of f,, then

£it) = exp {iP(t) + 3% (lexp (Gt — 1]
=
+ mlexp (i8,t.) — 1] + m,lexp (ta;t, + 18;t,) — 1])}
where P is an homogeneous polynomial of degree one with real
coefficients and where l;, m;, n; are constants satisfying the conditions
010, =N 0=m; = p;, 0=n;=v;.
Proof. Let f, and f, be the two characteristic functions such that
for any real ¢, and ¢,
(4-1) fo(tu t,) = fl(tu t)fa(ts, ts) .

Since f, is an entire characteristic function, from Raikov’s theorem
([1], Theorem 2.3), f; is also entire (7 = 1, 2) and the equation (4.1)
is also valid for any complex ¢, and ¢,, Letting

Pi() = fi(—12),
u;(x, y) = Relog ¢;(x + 1y) ,

(4 =0,1,2) for any x, y € R?, since @, is a ridge function ([1], Corollary
1 of the Theorem 2.1), we have

4.2) 0 =< ui(z, 0) — i, ¥) = uo(w, 0) — w(x, y)

for any x,y ¢ R2.
If we fix z, real, using the Lemma 7 and the Theorem 4, we have

(43) log .() = a + bz, + 3} ¢; exp (@2, ,

where a, b, ¢; are functions of z,, real for z, real and satisfying
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(4.4) 0 = ci(z) = N; + v exp (B;2) .

If we fix 2, real, we have
(4.5) log p.(9) = 7 + 82, + 3. t; exp (B52) ,

where 7, s, t; are functions of z, real for z, real and satisfying
(4'6) 0= tj(zl) = Y + v;exp (ajzl) .

From (4.3) and (4.5), we obtain the equation for any real z, and z,
a + bz, + ﬁ‘,l c; exp (a;z) = r + sz, + kf‘, t, exp (Br?s)
i= =)

which can be solved by using the Lemma 5 (for the details, see the
proof of the Theorem 6.1 of [1]). We obtain for any z, and z, complex
the representation

log p,(2) = ¢ + P(2) + dz:z, + i [02. €xp (@;2,) + 0,2, €xp (8;2,)]
4.7) o . =
+ > g% N;,, €Xp (&2, + Bizs)

Jj=

=)

where all the constants and the coefficients of the homogeneous poly-
nomial P of degree one are real (with the convention a, = B, = n,, = 0).
By an elementary computation, we obtain
u(x, 0) — w(x, y) = dy,y, + 'Zx [20,x, exp (a;x,) sin® (3c,y,)
yos

+ 20;%, exp (B;,) sin® (38,Y,)
(4.8) + 05y, exp (@;2,) sin (a;9,)
+ 0,9, exp (B;,) sin (8;¥,)]

+2 i i ;. €XP (ajx1 + Bsz) sin? (..___ajyl _; Bky2> .
=0 k=0

Letting |¥,| — o, we obtain from (4.2) and (4.8)
dy. + 21 g, exp (B;2°) sin (B;y,) = 0 .
=
Since the expression in the left member is the imaginary part of

dzz + le 0; €Xp (szz) ’

we deduce from the Lemmas 4 and 3 that

d=0'j:0.
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In the same manner, letting |y,| — -, we obtain

p;=0.

From the Lemma 5 and (4.4), it follows that for any real a,

Ms

4.9) 0 <> m;,,exp (Bix:) = \; + v; exp (B;2,) .

b
I

o
On the other hand, log ¢, satisfies

log 9y(2) = O[|2|(1 + exp (N |Rez[))] (2] —o0)
for some N > 0. It follows from the lemma 6 that

log p,(2) = O[|2*(1 + exp (N |Rez[*))] (2] — °°)
and from the sufficient part of the Lemma 2 applied to

> 3 My XD (2, + Biz,)
i=qy k=qy

(the constant ¢, is defined in the statement of the theorem and the
constant ¢, is the analogous for the B,), we have for some £ > 0

1 = Olexp (—£'(5* + K)] (5] + [k|— ),
that implies from the necessary part of the Lemma 2
3. n;.exp (B,2) = Olexp (V' [Rez )] (a|— =)

for any complex 2, and some N’ > 0. Using the Lemma 1, we obtain

3. myexD (Biz) = Olexp (B;2)] (2] — =)
in {Rez, = 0}, that implies from the Lemma 3
W =0
for all the & such that B8, > B; and from (4.9)
n;,; =0, Nio=0.
In the same manner, from (4.6), we obtain
N =0
for all the 5 such that a; > «, and

Mo,; = 0.

In particular, we have (¢ = sup (q,, 9.))
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’n,-,,, = 0
it (4, k) €{(4,9),0,7), (4, 0)} and either j = ¢ or k = q.
(4.7) becomes (with I; = n;,, m; = n,,;, n; = n;,; if 7 = q).

log p,(2) = ¢ + P(2)

+ 3 [1; exp (@;z,) + m; exp (8;2,) + m; exp (a2, + B,2)]
(4.10)
q—1 g—1

>, DMy exXp (a2, + Bz,)

2=0 k=0
and (4.8) becomes
%[ul(wy 0) - u’l(xy y)]
= i::,] [l,- exp (a;,) sin® (3a;y,) + m; exp (B,%,) sin® (38,4.)
(4.11) + , exp (@2, + B11) Sin2<a,~y1 -2% Bjyzﬂ

+ :2_]: :Zi Ny, €Xp (@, + Bx,) sin (W) .
We show now by induction that allthen;, (1 <q¢— 1,k <q —1)
are nonnegative (that implies =n;, =0 if (7, k) ¢{(J,7), (4, 0), (0, H)}.
We show that this result is true for j = j, such that «; = sup;-,...,,. «;.
We put y, = 27/, and choose y, from Kronecker’s theorem (Theorem
443 of [3]) such that

@) 2k’

T T8

2
(¢’ integer) where B3, is the smallest number greater than B8, such
that B,/8, is integer;

)  sin (M) = ofexp (38y)]  (2,— o)
2
for all the £’ such that 8, = £;;
s Y + Bl <
(c) sin <—0_§——> =C>0.
Then if x, is chosen great enough, we obtain from (4.11)

uy(, 0) — u (@, y) = 0[%jo,k exp (a;@; + B4,) sin® <______“a'°?/1 ;f By )J

(2, — o), that implies with (4.2)

N = 0.
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Let now (7, k) arbitrary. We can suppose that
np 20 i (5, ) e{(5", 5, (57, 0), (0, 5")}
and
nie =0 if (57, k) e{(s’, 7, (4", 0), (0, 5")}
if either a;, > a; or j'=j, B, > pB.. Then we choose y, from
Kronecker’s theorem such that
() vh=—
(¢ integer) where «; is the smallest integer greater than «; such that
a,/a, is integer;
(b) sin (3a;y,) = ofexp (—3a; )] (@, — o)
for all j/ such that a; > a;
© |sin (Geyy) |2 ¢ > 0.
We choose now y, such that, from Kronecker’s theorem
2k'w
By

(£' integer) where B, is the smallest integer greater than 8, such that
B./B, is integer;

(a) Y, =

(8  sin (ZLELA) = ofexp (—jaym)] (@)
for all j/ such that «; > «;;

@ sin (GLLEEB) - olexp (—iam)] (5 )
if B; > B, (otherwise, this condition is superfluous);

) Fm(ﬁﬂgﬁﬁﬂ\gcugm

We have then, from (4.11), if z, is chosen great enough,

M%m‘WW%=OVM“M%%+&wm%%%;&%H

(x, — <o), that implies

nj,kgo ’
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and the theorem is demonstrated, the value of ¢ in (4.10) being de-
termined by the condition log ¢,(0) = 0.

From this theorem, we deduce easily by the method of the Chapters
5 and 6 of [1] the

THEOREM 6. Let f, be the infinitely divisible characteristic
function of the n variables t = (¢, +--,t,) defined by

Fo(t) = exp {m(t) + gl g xj,s[exp (zé skaj,ktk> - 1]

where the following conditions are satisfied:

(1) 7w is an homogeneous polynomial of degree one with real
coeffictents;

(2) & =0o0r1and 3, indicates the summation on the 2 — 1
values of € = (&, ++-, &,) different from (0, .--,0);

(3) N, are nonnegative constants and there exists a positive
constant K such that

Nje = O[exp <— KkZZ‘,1 skai,k>] (j— +c0);

(4) {a;.} is, for k=1, ---,m, a sequence of positive numbers
satisfying the condition (3) of the Theorem 5.
If f. is a factor of f,, then

fi(t) = exp {iP(t) + gl g l;,| exp (Zé e,,aj,,ctk> — 1]} ,

where P is an homogeneous polynomial of degree ome with real
coefficients and l; . are constants satisfying the conditions

0 é lj,e é )’j,e .
With the same method, we can deduce from the Theorem 1’ of
Ostrovskiy [8] the

THEOREM 7. Let f, be the infinitely divisible characteristic
Sunction of the n variables t = (¢, -+-,t,) defined by

fo(t) = exp {in(t) + gl 55_‘, )»j,e[exp (zkz; eka,-,ktk) - 1]

where, beyond the conditions (1), (2), (3) of the preceding theorem,
the following condition ts satisfied:

@) {a; s for k=1, .-+, m a sequence of increasing positive
numbers such that

(@) there exists q, such that ;.. .jo;, (J=q.) s an integer
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greater than 1;
(b) there exists a positive constant a, such that a, < \;, < 2a,

(7 < aqw.
If f, is a factor of f,, then

fi(t) = exp {iP(t) + ,2‘1 Z lj,s[exp (sz:‘{ eka,.,ktk> — 1]} ,

where P 1is am homogeneous polynomial of degree one with real
coefficients and ;. are constants satisfying the conditions

01, < N
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