INTRINSIC TOPOLOGIES IN A TOPOLOGICAL LATTICE

TAE Ho CHOE

It is shown that if (L, T') is a compact connected modular
topological lattice of finite dimension under a topology T,
then the topology T, the interval topology of L, the complete
topology of L, and the order topology of L are all the same.

There are a variety of known ways in which a lattice may be
given a topology, e.g., Frink’s interval topology [8], Birkhoff’s order
topology [4], and Insel’s complete topology [9].

A lattice L is a topological lattice if and only if L is a Hausdorft
space in which the two lattice operations are continuous.

In this paper we give some of the relationships between topological
lattice and its intrinsic topologies and extend a theorem of Dyer and
Shields [7] and a result of Anderson [2]. We shall finally prove the
main theorem stated above.

We shall use A A B and A \V B for a pair of subsets A and B of
a lattice L to denote the sets {a A b|ac A and beB} and {a Vb|lac A
and b e B}, respectively. For a subset A of L, A* is the closure of
A. The empty set is written as [].

By the interval topology of a lattice L, denoted by I(L), we
mean the topology defined by taking the closed intervals {a A L,
aV L|laeL} as a sub-base for the closed sets. It is easy to see
that if (L, T) is a topological lattice and if I(L) is Hausdorff, then
(L, T) is compact if and only if 7 = I(L) and L is complete.

For a net {x,| @ € D} in a complete lattice L, if limsup {x, |« € D} =
lim inf {z, | 2, € D} = ©, we say that the net {x,} order converges to x.
We define a subset M of a complete lattice L to be closed in the
order topology of L, denoted by O(L), if and only if no net in M
converges to a point outside of M.

The following two lemmas are immediate:

Lemma 1. If (L, T) s a compact topological lattice, and if
{x.| @ e D} is @ monotone decreasing met in L with inf{x,|a e D} = a,
then the met converges to a tn T. The dual argument is also true.

Lemma 2. If (L, T) is a compact topological lattice, then
T c O(L). Moreover, if O(L) ts also compact, then T = O(L).

By a complete subset C of a lattice L we shall mean a nonempty
subset C of L such that for each nonempty subset S of C, S possesses
both a sup S and an inf S in L, and furthermore, both sup S and
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inf S are in C. The smallest topology for L in which the complete
subsets of L are closed is called the complete topology for L, and
denoted by C(L). It is known [9] that C(L)c O(L), and if L is
complete, then I(L) < C(L).

The following lemma follows at once either from Lemmas 1 and
2 or from [11].

LEMMA 3. If (L, T) is a compact topological lattice, then I(L)
1s Hausdorff, if and only if I(L) = C(L) = T = O(L).

The breadth of a lattice L is the smallest integer » such that
any finite subset F' of L has a subset F” of at most n elements such
that inf F = inf F’. It is known [4] that the breadth of L is equal
to the breadth of the dual of L.

A subset M of a topological lattice L is conwvex if and only if
MANLNMV L)y=M [1]. A topological lattice is locally convex
if and only if the convex open sets form a basis for the topology.
It is well known that a compact (or locally compact and connected)
topological lattice is locally convex.

We shall extend a theorem of Dyer and Shields in [7] as follows:

THEOREM 1. If L s a locally compact, locally convex topological
lattice of finite breadth and U is a neighborhood of a point x in L,
then there exist two elements y and z in L and a meighborhood V
of x such that VCly,z]c U.

Proof. Choose neighborhoods U,, U, and U, of z such that U,
and U, are convex, U} compact, and U,c U cU,cU. Again we can
choose two neighborhood U, and U, of « such that U, A --- A U,
(n times)c U, and U,V +-- VV U, (n times) c U,, where n is the
breadth of L. Setting V = U, N U, we consider the sublattice W of
L generated by V. Since every element w of W can be expressed as a
lattice-polynomial of finitely many elements z,, x,, «--, %, of V, we have
infx; < w < supx;. Suppose m > n. By definition of breadth we can
choose at most n elements «} from those x;’s such that inf x; = inf «!.
Thus inf x; € U,. Similarly, sup z;€ U,. Clearly Wc U, and W* c U}.
Since W* is a compact sublattice, W* has a maximal element z and
a minimal element y. Now consider the smallest convex subset
C(W*) = (W* A L)Nn(W* v L) containing W* in L (see [1]). It is
easy to see that C(W*) =[y,2]. And Vc|[y,z2]c U,cU. The proof
is complete.

Since compactness implies local convexity in a topological lattice,
the distributivity hypothesis in Theorem 3 in [7] is not necessary.
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It is remarked that the hypothesis of finite breadth in Theorem 1
can be replaced by finite dimension. The author, however, does not
know how to obtain this result without using connectedness. For
example, the space 2*(X is an infinite set) has infinite breadth, but
has zero dimension. And we note that the 2* is Hausdorff in its
interval topology [10]. (See [4], Problem 81).

A topological lattice is chain-wise connected if and only if for
each pair of elements x and y with x < y there is a closed connected
chain from x to y. It is well known [12] that a locally compact
connected topological lattice is chain-wise connected.

We shall show that the hypothesis of distributivity in Anderson’s
result ([2], Corollary 1) can be replaced by modularity. The proof is
essentially the same as in [2].

LEMMA 4. If L s a locally compact connected modular topological
lattice, then the breadth of L is less than or equal to the codimension

of L.

Proof. Suppose the codimension of L is n. If the breadth of
L is £n, then L contains an 7 + 1 element subset A4, say A =
{x,, ++-, %,..}, such that inf A  inf B for any proper subset B of A.
Let b; = inf (A\x,), 1 =1,2,-++-,n + 1, and let @ = inf A, Then b; = a,
t=1,---,n+ 1, and b; # b; (¢ = j). Let I, be the closed interval
[a,b],2=1,2,---,n + 1. Now consider two mappings

f: IIX cee X In+1-_)Ilv M VIn+1CL

defined by fla, «++, @) =,V «++ Va,uyy, and gt LV oo V [, —
I, X «++ X Iy, defined by g(a,V =+ V @,1) = (b, A (@, V *++ V,4,),

oy by A,V oo+ V a,yy)). Then clearly f and g are well defined
and continuous. Furthermore, f—! = g, because by modularity we have

G Sb AV - Va,)=a Vb A@V - Va,))
.S_aq\/(bx/\(bz\/ "'Vbn+1))§a1\/(b1/\x1)=al\/a=a1,

and hence b, A (&, V +++ V @,.,) = a,, and similarly for ¢ =2, -.-, n + 1,

On the other hand, since such I; is locally compact and connected
in its relative topology, I; contains a nondegenerate compact connected
chainC;,1=1,2,.--,n + 1. ThesubsetC, x «++ x Cppyof I, X «+ X
I,., has codimension % + 1 [6]. Hence, the codimension of the closed
subset f(C; X --+ X C,4,) of Lis n + 1. We thus have a contradiction.

LemMA 5. If (L, T) is a compact topological lattice of finite
breadth, then I(L) ts Hausdorff.

Proof. For two distinct elements  and y of L, choose T-neigh-
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borhoods U and V of « and y, respectively, such that UNnV = [].
For each element z of L\{x, y}, choose ¢ T-neighborhood W of z such
that WnN{z,y} = []. By Theorem 1, we can find T-neighborhoods
U, V' and W’ of &,y and z, respectively, and closed intervals [x,, x,],
[y, v.] and [2,2,] such that U’ clx,x]c U, V' Cly,¥.]cV and
W' c [z, 2] W. Clearly the family 97~ = {U’, V', W’ |z e L\{z, y}} is
an open covering of L. So there is a finite sub-family of 9%~ which
covers L. Therefore, there is a finite family of closed intervals whose
union is L such that no interval contains both 2 and y. It follows.
by Proposition 1 in [10] that I(L) is Hausdorft.

Summarizing Lemmas 4, 5 and 3, we have the following main
theorem:

THEOREM 2. If (L, T) is a compact, connected, modular topologi-
cal lattice of finite codimension, then I(L) = C(L) = T =0(L).

COrROLLARY 1. If (L, T) is a compact topological lattice of finite
breadth, then I(L) = C(L) = T = O(L).
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