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CONVERGENCE IN SPACES OF SUBSETS

R. J. GAZIK

Under certain conditions on a class ^ of subsets of
either a uniform convergence space, uniform space, or bounded
metric space, a natural convergence structure for i f is defined
which is, respectively, %-uniformizable, uniformizable, metri-
zable. Conditions which are sufficient for the convergence
structure to be separated, topological, regular, are given. In
the uniform space case some convergence properties of &
are investigated and a fixed point theorem is proved for
certain ^-multifunctions.

!• Introduction* In order to establish notation and provide
some motivation we will, in this section, review a few basic results
which deal with uniform convergence structures. The reader is
assumed to be familiar with the very basic theorems from the theory
of convergence spaces [5].

In order to obtain concepts like Cauchy filter, uniform convergence,
total boundedness, which were previously defined only in uniform
spaces, Fischer and Cook began the study of uniform convergence
spaces in [4]. A uniform convergence structure Σ on a set E is an
intersection ideal in the collection of filters on E x E which satisfies
the following axioms:

(£7i) The filter of supersets of the diagonal in E x E is a member
of Σ.

(£72) If ί ^ G ί , so its inverse,
(Σ73) If ^ J^" eΣ and the composition filter ^o^r exists, then

it belongs to Σ.
A uniform convergence space (E, Σ) is a set E along with a con-

vergence structure Σ on E. A convergence structure σ(Σ) is induced
on E in a natural way: define J^~ e σ(Σ) (x) if and only if j^~ x x e
Σ. If P is a property which can be defined by convergence (for
instance compactness, regularity, Hausdorίfness, etc.) then, by defini-
tion, (E, Σ) has property P if and only if σ(Σ) has it. Also, most
definitions of uniform properties are available in uniform convergence
spaces and are generalizations of the uniform topology case. For
example, a filter J^ on E is a Gauchy filter if ^ x ^ eΣ; (E, Σ)
is complete if each Cauchy filter converges with respect to σ(Σ); {E,
Σ) is totally bounded if each filter on E is coarser than a Cauchy
filter; a map / between uniform convergence spaces (E, Σ), (F, ψ) is
uniformly continuous on E if (/ x f)Σ c ψ.

With these definitions one obtains results which, for the most
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part, parallel the uniform space case. For example, it is true that
each uniform convergence space has a completion [8], and that a
uniform convergence space is compact if and only if it is complete and
totally bounded [4] The following result is due, independently, to
Keller [6] and Cochran [3].

THEOREM 1.1. Each Hausdorff convergence space (E, d) is u-
uniformizable. That is, there exists a uniform convergence structure
Σ on E such that d = σ(Σ).

If (E, Σ) is a uniform convergence space, a subset ψ of Σ is a
base for Σ if each member of Σ is finer than a member of ψ. The
following result (see [4]) shows the relationship between uniform
convergence spaces and uniform spaces.

THEOREM 1.2. 1/ a uniform convergence structure Σ for E has a
base consisting of exactly one filter ^ then ^ is a uniform structure
for E; each uniform structure ^f for E is a base of exactly one
element for a uniform convergence structure [%S] for E; Ήf and \%f\
have exactly the same set of Cauchy filters and exactly the same set
of convergent filters.

Now consider the following well known construction: If {E,
is a uniform space and <& is the class of nonempty, closed subsets
of E, then a uniform structure for ^ is generated by sets of the
form {(A, B): A,Be<έ?,Acz U{B), Ba U(A)}, Ue <%f. It follows that a
filter ^~ on <& converges to A e ^ with respect to the completely
regular topology on ^ induced by ^ , if and only if for each Ue ^ ,
there exists &~ e JΓ such that F c V(A) and A c V(F) for each
F e ^ . The topology induced on ^ is called the uniform topology
on 9f ]7].

The remarks above motivate the consideration of convergence
of sets of a class ^ (of not necessarily closed sets) in any space
where "closeness of sets" is meaningful. We will begin the dis-
cussion with uniform convergence spaces. According to Theorem 1.1,
these include Hausdorff topological spaces and many others which
are not topological spaces.

2* Convergence classes* For the remainder of this section a
uniform convergence space (E, Σ) will be a set E along with a base
Σ for a uniform convergence structure on E.

DEFINITION 2.1. Let (E, Σ) be a uniform convergence space. A
nonempty class <g* of nonempty subsets of E is called a convergence
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class for (E, Σ) if and only if AcF(A) for each 4 G ^ , Ve

DEFINITION 2.2. Let (E, Σ) be a uniform convergence space and
let ^ be a nonempty collection of nonempty subsets of E. The
function τ(c^) from & into the power set of the filters on ^ is
defined by &* e τ{^){A) if and only if for each 7 6 / , / e I , there
exists j r e j r- such that FaV(A) and AaV(F) for each

THEOREM 2.1. TΛβ function τ{^) of Definition 2.2 is α convergence
structure on ΐf £/ and only if ^ is a convergence class for (E, Σ).

Proof. It is clear that if ^~ e r(<gT)(A) and gf is finer than
then & e r(<if )(A). If &~ gf e r(<gf)(A) then, since {j^" U S :̂ ^ e
j r , & e gf} is a base for gf Λ ^ , j r Λ gf e τ(^)(A). Hence, r ( ^ )
is a convergence structure for ^ if and only if the ultrafilter gen-
erated by A is in τ{^)(A) for each A 6 ̂ . But this is equivalent
to the statement that A a V{A) for each A e 9f, Ve ^ , ^f e Σ.

Some additional properties which may sometimes be required of
a convergence class ^ for a uniform convergence space (E, Σ) are:

(A,) If A , 5 e ^ and AaV(B) for each 7 G / , / e l , then

(A,) I f i , ΰ e ^ a n d i c F ( £ ) , BaV(A) for each
Σ, then A = 5.

(A3) For each / e ί and F G / , there exists Ue ^ such that
c F(A) for all 4 e ^ .

For each / e ί , F e ^ i e ^ , there exists Ue^f such
that ί/2(A)cF(A).

If A, 5 e ^ , then A

THEOREM 2.2. Let ^ be a convergence class for the uniform
convergence space (E, Σ). Then

(1) If either (A^ and (A4) or (A2) and (A*) hold, then τ(^) is
separated and u-uniformizable.

(2) If (A5) holds and τ(^) is separated, then (Ax) and (A2) hold.
(3) (AO implies (A2) α^d, i/ (A5) holds, (A2) implies (Ax).

Proo/. (1) Suppose ^ e τ(^)(A) Πr(^)(B) and let F e / / e I7.
By (A4) there exist C7, We^ such that Z72(JB)C F(S), TF2(A)cF(A).
Then S= UΠWeJ^ so FcS(4) , A c S ^ , BaS(F), FaS(B) for
all F e ^ ^ and some ^ e &~. From these relations, Ac C/2(β) c V(B)
and £cTF2(A)cF(A) so, if either (A,) or (A2) hold, A = B; that is,
τ(^) is separated. It follows from Theorem 1.1 that r ( ^ ) is
formizable.
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(2) Suppose A c F(£) for all F e ^ / e ί . Then A{J BaV(B)
and Ba V(A U B) so, since (Aδ) holds, the ultraίilter generated by B
converges to A{J B. Since τ ( ^ ) is separated B = A{J B so Ad B.
A similar argument shows that (A2) holds.

(3) If (A,) holds, (A2) holds. If AcF(J5) for all Ve J?, J" e
Σ, then, since Al) Be<ϊf,A{J BczV(B) and BaV(A UB); it follows
that A U δ = 5 and A c β.

THEOREM 2.3. Lei ^ be a convergence class for a uniform con-
vergence space (E, Σ). If {Az) holds then r ( ^ ) is a topological space;
that is, there is a topology σ(^) on ^ such that a filter <^~ con-
verges to A e ^ with respect to σ{W) if and only if ^~ e

Proof. It suffices to show that if ^ <g τ(c^)(A), then there exists
a subset of ^ , such that i G ^ . T ί / ' and if BeJέf^&e

then JT'Ggf.
Now suppose &" $τ{$f)(A). Then for some Ve ^F, ̂  e Σ, no
6 &* satisfies
(1) F G ^ implies Fc V(A) and Ac V(F).
Define a subset ^ of ^ as follows: ĉ 5" consists of all JBeg7

such that
(2) 5c7(J5), and A C F ( J S ) , and
(3) there exists Ue ^ such that iϊ He^ and HaU(B) and

BaU(H), then Ec7(A) and AcF(ί f ) .
Now A G <£f for A c F(A) and we may take the U required by

(3) to be V. J T g ^ by (1) and (2).
Suppose now that gf eτ(<£f)(J5), J5G ^ We show JT G ^ by

proving that <^ contains a member of ^ .
Since B e ̂  condition (2) holds for some Ue^. By (A9) there

exists We^ such that TF2(D) c U(D) for all i ) G ^ . Since gf G
τ(^)(β), there exists gf G gf such that GcTF(β) and BaW{G) for
all G G <£?.

Let G G ̂ . Since ΰ e ^ a n d G c T7(5), 5 c TΓ(G), then G c
and AcF(G) so G satisfies (2).

Suppose He <& and H e TΓ(G), G c TΓ(£Γ). Then H e W\B) c
and 5 c W(G) c TF2(£Γ)c I7(H) so, since Be JT, H e F(A) and A c
This shows that each Ge^ satisfies (3).

In summary, gf c ^ g^ e ̂ , so

THEOREM 2.4. TFΛ& ί/̂ β same assumptions as in Theorem 2.3,
the topological space (^, fl^^)) is regular.

Proof. Recall first that a net in a topological space converges
to a point if and only if its filter of final sections converges to the
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same point. In the present context it follows from the previous
theorem that a net (An: n e D) in <& σ (^-converges t o i e ^ (written
(An: neD)-+A) if and only if for each V e ^ J" e Σ, An c V(A) and
A c V(An) for w sufficiently large.

Now let (AijiieliJeJi) be a simply convergent double net in
^ with (Ai3 : j e JJ-+Pi e &* for each ί e / . Let A be the diagonal
net on T = I x /7(J<: ί e l ) defined by h(i, g) = Ai>gii) and suppose the
diagonal net converges to J G ^ 7 . We prove ( ^ , o{<%?)) is regular by
showing that (Pi. iel)—* X.

Let 7 6 ^f, ^ e 21. By (A,) there exists ί7e ^ such that U\B)a
V{B) for all Be^. Since the diagonal net converges to X,

(1) Aif,(i) c t T O , Xci7(A,,,(ί)) for (i, fir) ̂  (iOJ flr0). Since each
{Ao : iGj,) — P , ,

(2) Atf c U(Pi), Pi c ϋ ^ ) for each i ^ i0 and j ^ i(ΐ, F). Define
w e Π(Ji: iel) by requiring w(i) to be greater than or equal to both
9o{i)> 3(h V) it ί^ ί0 and w{i) = gQ(ΐ) otherwise. Then, for ί^i, (ί, w) ^
(ίo, g0) so by (1), At,wWcz U(X) and I c C7(^,w(ί)). By (2) A, w ( ί ) c C/(P,)
and P,c t^(ii4fW(4)). Hence, for i ^ i0, P,c ί / 2 ( I ) c 7 ( I ) and X c U\Pi)cz
V{Pi). It follows that (P,: i e I) -> X and ( ^ , σ{^)) is regular.

It should be pointed out that a number of other natural conver-
gences on a convergence class ^ might be studied. The following
are a few such examples.

(1) &* e ψ(^)(A) if and only if there exists / G ! 7 such that:
for each Ve J" there is an ^ e &* such that FczV(A) and A c V(F)
for each F e ^ .

(2) ^ ^ € λ(^)(A) if and only if for each Ve ^ , J" e Σ, a e A,
there exists ^ e ^~ such that F c V(A) and F Π F(α) ̂  ^ for each

( 3) ^ " € α(ΐT)(A) if and only if there exists J" e Σ such that:
for each F G ^ / , aeA, there exists ^ " e^"" such that FaV(A) and
ir n F(α) ̂  ^ for each F e

EXAMPLE 1. Let Σ consist of just one uniform structure
for E and let ^ be any nonempty class of nonempty subsets of E.
By Theorem 1.2 Σ is a base for a uniform convergence structure on
E. Clearly Ad V(A) for each Ve ^ , A e ^ , so ^ is a convergence
class for (£7,17). In particular, if ^ is the class of nonempty
closed subsets of E, then, by the discussion at the end of §1, τ
convergence is precisely the convergence of closed sets in the uniform
topology on <g=\ (See [7].)

EXAMPLE 2. Let E be a Hausdorff topological space and, for each
finite subset S of E, define ^(S) to be the filter Λ {^V{x) x ^V(x)\
x e S) A &, where &ί is the filter of supersets of the diagonal in
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E x E and Λ~(x) is the neighborhood filter at x. The collection
Σ — {^(S): S is a finite subset of E} is a base for a uniform con-
vergence structure on E. It is not hard to see that the convergence
induced by Σ is precisely convergence in the topological space E.
Each member of each ^{S) contains the diagonal so any ^ is a
convergence class for (E, Σ).

If E is a closed interval of real numbers, ^ the class of nonempty
closed subsets of E and ^ the usual uniform structure on E, then,
by Example 1 and results from [7], (^, τ^)) is compact with respect
to the base {^}. Now the base Σ of Example 2 induces the same
convergence on E as does {^}, but (^, τ(^)) is not compact with
respect to Σ.

Question. If & is the class of nonempty, closed subsets of a
compact uniform convergence space (E, Σ), is there a base Φ for a
uniform convergence structure on E such that Σ and Φ induce the
same convergence on E, and (^ , r ( ^ ) ) is compact with respect to Φl

EXAMPLE 3. Let E be a Hausdorff topological space and ^ any
collection of nonempty subsets of E. Define ^ to be the filter
generated by sets of the form (J (Gi x G> ie I) where / is finite, each
Gi is open and U (G<: ieI) = E. The collection J = {^, ^ 2 , ^ 3 , }
is a base for a convergence structure on E and ^ is a convergence
class for (£7, Σ). The topological convergence on E is generally not
the same as that induced by Σ. In this case &* e τ(r^)(A) if and
only if for each F 6 ^f and each natural number n, there exists

such that F c F%(A) and A c F^(F) for each F e J ^ .

EXAMPLE 4. Let E be a regular, Hausdorff topological space, ^
the class of nonempty, closed subsets of E and Σ the base of the
previous example. Then λ(^) convergence is precisely the conver-
gence of closed sets defined by Choquet on p. 90 of [2].

Question. If E is a topological space, ^ its convergence class
of closed sets, is there a base Σ for a uniform convergence structure
on E such that one of the natural convergences r(C), λ(^) , etc.
induces the convergence defined by Choquet on p. 87 of [2]?

Of course, the meaning of τ ( ^ ) , ψi^), \{c^) or a(^) convergence
is known as soon as a base for a uniform convergence structure is given.
In this regard, see [3] for an explicit construction of a uniform con-
vergence structure for an arbitrary Hausdorff convergence space, and
see [4] for construction of natural uniform convergence structures on
function spaces.
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3* Convergence classes for uniform spaces* Let (E, ^f) be a
uniform space and let i f be any nonempty class of nonempty subsets
of E. Since AaV(A) for Ve ^ and (A3) of §2 holds, i f is a con-
vergence class for (E, cJ?) and r(if) induces a regular topology σ(^)
on if. A net (An: neD) in ^ <7(if)-con verges to A e ^ if and only
if for each Ve ^ , AnaV(A) and A c F(iln) for w sufficiently large.
In fact, we have the following:

THEOREM 3.1. If (E, (J?) is a uniform space and ^ is a non-
empty collection of nonempty subsets of E, then the topological space

is uniformizable.

Proof. For each Ve ^ , define JΠT) = {{A, B): A,Be<tf,Aa
V(B), BaV(A)}. Then each ^~(V) contains the diagonal in £f x i f
and the inverse of ^(V) is itself. Also ^~(V) =) ̂ ~(U)o^~(U) if
UoUdV. Thus μ(^)y the filter generated by the j^~(F)'s, is a
uniform structure for ^ . But, from the definitions and the remarks
preceding the theorem, a net 0 (^)-converges to i e ^ if and only
if it converges to A with respect to the topology generated by μ{^).

Some additional axioms which may sometimes be required of a
convergence class c^ for a uniform space (E, ^) are:

(Bλ) If A, B e if, then A{J Be^f.
(B2) If Ac clos £, then A c 5 .
(#3) If A c clos 5 and B c clos A, then A = B.
(B4) If S is linearly ordered and (An: ne S) is a decreasing net

in & (n >̂ m implies Aw c Aw) such that Π An ^ φ, then any net (a?n:
ne R) with ϋί cofinal in S and a?n e Aw for ne R, which converges,
converges to a point in clos (Π An).

THEOREM 3.2. If & is a convergence class for a uniform space
(E, ^), then

(1) If (B2) or {Bz) is satisfied, (if, μ(if)) is Hausdorjf.
(2) If (if, μ(ίf)) is Hausdorff and (B,) holds, then (B2) and

(B3) hold.
(3) (B2) implies (J53) and, if (Bx) holds, (B3) implies (B2).

Proof. This follows from Theorem 2.2.

EXAMPLE 5. A simple example of a convergence class ^ for a
uniform space (E, ^f) for which (^, μ{r^)) is Hausdorff and ^ does
not consist of closed sets is obtained by taking i f to be the class of
all nonempty, regular open subsets of E. Recall that an open set
G is regular open if G = Int (clos G). It is clear, then, that c^ satisfies
(B3) so (if, μ{^)) is Hausdorff.
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D E F I N I T I O N 3.1. A net (An: neD) in ^ is increasing (decreasing)

if D is totally ordered and n^m implies An z> Am(Am z> An).

THEOREM 3.3 Let (E, ̂ f) be a compact uniform space and cώp

a convergence class for (E, ̂ ) Then
(1) An increasing net (An: neD) in ctf converges if and only

if there exists i e ^ 7 such that U Anaclos A and A ados (I) An).
(2) If (An: neD) is a decreasing net in c^, Π An Φ φ and (B4)

is satisfied, then (An: neD) converges if and only if there exists A e
^ such that A c clos (Γ) An) and Π An c clos A,

Proof. A proof of (1) is given. The proof of (2) is similar. If (An:
neD)-^A then, if Ve ^f, An c V(A) and A c V(An) for n sufficiently
large. But since (An: n e D) is increasing, U Ana V(A) and Ad F( U An).
Since V was arbitrary, U 4 c clos A and A c clos (U An).

Now suppose Aecέ? exists which satisfies U A , c clos A and A c
clos (U An). Then, for Ve J", n eD,Ancz V(A). Thus, to show (An:
ne D) —> A it suffices to show that A c V(An) for some neD.

Suppose this is not so. Then there are points yn e A — V(An). The
net (yn: ne D) has a convergent subnet by the compactness of (E, J?)
Clearly, the subnet converges to a point x e clos A c clos (U An). If
U2 c F, then ?7(a?) n i κ ^ ^ for n sufficiently large. But (yn: ne D)
is frequently in U(x) so there is an index neD such that yn e U{x),
tneU(x),tneAn. Then yne U2(tn) aV(tn) aV(An) which is a contra-
diction.

DEFINITION 3.2. If ^ is a convergence class for (E, ̂ ) then
μ(fέ?)) is said to be monotone complete if and only if each increas-

ing net in (^, μ{^)) converges and each decreasing net (An: n e D)
for which C\ AnΦ φ converges.

THEOREM 3.4. Let (E, ̂ ) be a uniform space. Then
(1) // / : (E, cJ?) —> (E, ^f) is uniformly continuous and & is

any convergence class for (E, J?) such that Aecέ? implies f(A) e &
then g: (rέf, μ^))-+(rέf, μ{c^)) defined by g(A) = f(A) is uniformly
continuous.

(2 ) / / ( ^ , μ{c^)) is separated and monotone complete, then either,
(a) g(A) = A for some Ae^, or
(b) there exists A e ^ such that g(A) c A and Π {gn(A): n = 1, 2,

. . . ) = <* or
(c) g(A), A are not comparable for each Ae^.

Proof. (1) If / is uniformly continuous then (/ x
Then, if ^~{V) is a generator of μ(^)9 there exists UeJ such that
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x /)(U). It is an easy computation to show that (g x g)J7r~{U)c
so (g x g)μ{c^) ^ M ^ ) a n d 0 *s uniformly continuous.

( 2) If A c #(A) for some A e 9f, then A c #{A) c g\A) . . . is a
monotone net in ^ and hence converges to B G ̂ , By (1) g(A) c g2

(A) c converges to #(5). Since (^, μ(^)) is separated, I? = ^(J5).
If A Z) #(A) for some 4 e ^ , A =) #(A) z) #2(A) is a decreasing

net in (<if, μ{1f)). If it is true that (>"(A): w = 1, 2, . . .) Φ φy then
ίT(A) — B, gn{A) -> #(£) and B = g(B). Hence, if neither (a) nor (b)
holds, it must be that A ζz! g(A) and #(A) ζz! A for all Aec^. That
is, (c) holds.

Recall that if / : (E, ^) —> S is a bijection, then there is a
finest uniform structure for S which makes / uniformly continuous,
namely (/ x /)

DEFINITION 3.3. If ^ , ^ are convergence classes for (El9

(E2, ^ ) respectively, the natural uniformity μ[^l9 ^2] on \c^u ^
{Ax B: A e ^ , B e ^2} is the finest uniform structure on [%?l9

which makes the bijection / : (9^ x %?2, μi^) x
defined by /(A, B) = A x B uniformly continuous.

THEOREM 3.5. (1) Let Wly ^ 2 be convergence classes for (E,
Then (An x Bn\ neD) converges to A x B in ( [ ^ , <if2], /^[^, ̂ 2]) if
and only if (An: ne D), (Bn: ne D) converge to A, B in ( ^ , μ(^Ί)),
(^2, μi^)) respectively.

(2) If (An: neD), (Bn: neD) are nets in (&>, μ(^)) which con-
verge to A, B respectively and An c Bn for n sufficiently large, then
A c clos B.

Proof. (1) If (An: n e D) -»A and (Bn:neD)-+ B, then (AΛ x £%:
w e ΰ ) - > A χ β b y the continuity of the map / : (A, B) -> A x JB. If
(A, x 5U: ^ G β ) ^ i x ΰ a n d Ve Jf, then, when ^"(F) = {(S, M): Sa
V(M), Mc F(S)}, ^ ( F ) - {((#, Γ), (F, X)): (ϋί, F) e jΓ(V), (Y, X) e
^~(V)} is in μ{^) x / / ( ^ Thus, by definition, (/ x f)^{V)(A xB) =
{R x Y: (R, A) e ^(V), (Y, B) e ^"(F)} is a neighborhood of A x 5.
It follows that (An,A)e^~(V) and (Bn,B)e^~{V) for % sufficiently
large so (An: neD) -^ A and (Bn: n e D) —> B.

(2) We have for Ve ^f, an index neD such that An czBn, Aa
V{An),Bnc:V{B) so A c F 2 ( ΰ ) and the result follows from this fact.

The result above, as well as the theorem below will be used in
the next section.

THEOREM 3.6. Let ^ be a convergence class for the the uniform
space (E, ^). Then

(1) // (An: neD) —> A and x e A, then there exists a directed set
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H and functions p: H-+D, m: H—+E, such that p(H) is cofinal in
D, the net m converges to x and m(h) e Apih) for all he H.

(2) If (An: ne D) —>A and a net m: H-+ E converges to x with
m(h) e Ap{h), p(H) cofinal in D, p: H—> D, then x e clos A.

Proof. (1) Order D x J" by (n, V) ^ (m, U) if n ^ mand 7 c
U. By convergence, if (n, V) e D x J? there exists p(n, V)eD and
m(n, V) e Av{%,v) such that p{n, V) ^ (x, m(n, V)) e V. The result fol-
lows from this.

(2) If Ve ^ , m(h) e V(x) Γ) Ap{h) for h sufficiently large. But,
by convergence, there is an index h such that APih) c V(A) also- It
follows that for some ae A, some heH, (m(/z), x) e V, {m{h), a) e V.
Thus a e V2(x) and the result follows.

4* Fixed point theorem for ^-multifunctions* Let ^ be a
convergence class for the uniform space (E, ^). If F:(E, ̂ f) —+0^,
μ{^)) is a function, then JP%, % = 2, 3, is defined inductively as
follows. (Notice that Fn{x) need not be in <ίf if n > 1.) If # e £7,
F2(α;) = U F(y): y e F{x)) and Fn+1(x) = U F(y): y e Fn{x)) for n > 2. If
i*7^) G ^ for each π and each xe E, then ί7 is called a ^-multi-
function.

DEFINITION 4.1. A ^-multifunction F: {E, J") -> (^, ^(^)) is
condensing if ί7 is continuous and V e ^ F , x Φ y,x,y e E implies there
exists n = ?φ, y, F) such that Fn{x) x ί7*^) c F.

EXAMPLE 6. With respect to the hypotheses of the next theorem,
we remark that ( ^ μ{^)) can be compact without ^ consisting only
of closed sets. Let E be the closed unit interval and let ^ consist
of all subintervals (open, closed, or half open, half closed) of E along
with all singleton subsets of E. Then ( ^ μ{^)) is compact.

THEOREM 4.1. If (E, ^F) is compact and Hausdorjf, (<£*, μi^)) is
compact and F: {E, J?) —> ( ^ , μ{^)) is condensing, then there exists
xoeE such that x0eclos F(x0).

Proof. Suppose x £ F(x). Then for some y e F(x), y Φ x. lίVe
^f, there exists n(V) such that

( 1 ) Fn<v)(x) x Fn{V)(y)czV.
Since ( ^ , μ{c^)) is compact so is [^, ^ , ^ ] by Definition 3.3. Hence,
with ^ directed by reverse inclusion, the net p defined by p — {Fn{V){x) x
Fn{V){y) x Fn{V)+1(x): Ve J") has a convergent subnet t: D-+[^, 9f, <if\.
lί t-+Ax B x T, then by (1) and Theorem 3.5, A x Ba V for each
Ve JF. Since (E, ^f) is Hausdorff, A x B is contained in the



CONVERGENCE IN SPACES OF SUBSETS 91

d i a g o n a l oί ExE so A — B = {x0} f o r s o m e x0 e E.
Now yeF(x) so Fn{V)(y) c Fn{V)+1(x). It follows from Theorem 3.5

that #o £ clos T.
Consider z e T. By Theorem 3.6 and the fact that t is a subnet

of p, there is a net m:H—+E and a function fiH—*^, such that
/(if) is cofinal in J", m — z, m(λ) e ̂ - ^ " ( α ? ) ) , A e H. So,

( 2 ) m(h) e F(u(h)), u(h) e Fn{f)h)){x).
By compactness of (E, ^f), (u(h):heH) has a convergent subnet w.
By (2) w —>x0 and since .F is continuous, F(w)—+ F(x0). By (2), the
fact that m —»z, and Theorem 3.5, 2eclosF(£0).

In summary we have Γ c clos F(xQ) and #0 6 clos T so xQe clos F(xQ)

COROLLARY 4.1. Let ^ be thet set of all non-empty closed subsets
of a compact, Hausdorff uniform space (E, ^f) and let a continuous
function F: (E, ^J?) —• (^, μ{^)) satisfy the following condition: Ve
^f, x Φ y implies Fn(x) x Fn(y) c V for some n = n(x, y, V). Then
there is a unique xoeE such that xoeF(xo).

Proof. By results of [7], Fn maps E into ^ for each n = 1, 2,
3, and (^, μ{^)) is compact. Hence, by the previous theorem
x0 e clos F(x0) = F(x0) for some xoeE. If also xeF(x), then given
F e ^ , it is true that (̂ , a;0) e ί7"^) x ί™^) c 7 for some n. It
follows that (x, x0) e Π {V: Ve ^}, x Φ xOy which contradicts the fact
that (E, ^/) is Hausdorff.

COROLLARY 4.2. {Bailey [1]). Let (E, d) be a compact metric space
and f: (E, d) —> (E, d) a continuous function such that if x Φ y, there
exists n — n{x, y) such that d(fn(x), fn{y)) < d{x, y). Then f has a
unique fixed point.

Proof. Under the hypothesis of the theorem it is easy to see
that if δ > 0 is given and x Φ y, there exists n = n(x9 y, 3) such that
d(fn(x), fn(y)) < d. Then, with ^ the natural uniform structure
induced by d, the hypotheses of Corollary 4.1 are satisfied for / and
{E, ^f) so the result follows.

Now let (E, d) be a bounded metric space and & any class of
nonempty subsets of E. The well-known Hausdorff function h on ^
is defined by h(a, b) = max {m(A, B), m(B, A)} where m(A, B) = sup {d(x,
B):xeA} and d(x, B) = inf {d(x, y):ye B}.

THEOREM 4.2. Let (E, d) be a bounded metric space and let cέ? be
any nonempty class of nonempty subsets of E. Let & satisfy (B3) of
§ 3 with respect to the natural uniform structure on E generated by the
Vδ's, Vδ = {(x, y): d(x, y) < δ}. Then (<£", μ(^)) is uniformly metrizable
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and one metric for (^, μ{c^)) is the Hausdorff function on cέ?.

Proof. If h(A, B) = 0, then m(A, B) = m(B, A) = 0. Given δ > 0,
it follows that AaVδ(B) and BaVδ(A). Since (Bz) holds, A = B.
Clearly h(A, B) = λ(B, A) and, if A = B, Λ(A, J5) - 0.

To prove the triangle inequality it suffices to show that m(A, B) <g
m(A, X) + m(X, B) for each A,B,Xe <έf. Let δ > 0 be given.

(1) m(A, 2?) < d(α0, α) + <Z(α, a?0) + ^(#, &) + S for some aQeA and
all α G A, x e X, b e B.

Also m{A, X) ^ d(a, X) for all a e A so given a0 e A,
( 2 ) there exists xLe X such that m(A, X) > d(α0, xγ) — δ; similarly
( 3 ) m{X, B) > d{xu b,) - 3 for some b, e B. Combining (3), (2),

and (1) we have m(A, X) + m(X, B) > m(A, B) ~ Sδ and it follows
that m(A, B) ^ m(A, X) + m(X, B).

We have shown that h is a metric on ^ . Now let Uδ e ^{h),
^{h) the structure on ^ generated by h. A computation shows that
if (A, B) e Uδ then A c V2δ{B) and δ c 7 , ( i ) , V2δ - {(α?, ί/): d(x, y) < 2δ},
hence Uδ(z^{V2δ) so ^ ( A ) ^ MC). Similarly ^{Vδ)aU2δ so then
^ ( A ) ^ μ(C).

The author wishes to thank the referee for several helpful sug-
gestions.
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