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MONODROMY AND INVARIANTS OF
ELLIPTIC SURFACES

PETER F. STILLER

The purpose of this research is to analyze and compute
the monodromy representation of the Gauss Manin connection
associated with an elliptic surface and to relate properties of
the monodromy to geometric properties of the surface. The
results utilize the general theory of elliptic surfaces due to
Kodaira.

Let E be an elliptic surface having a global section over its base
curve X. We assume throughout that the functional invariant _#
is nonconstant and that E has no exceptional curves of the first kind
in the fibres. We denote by G the homological invariant of E/X.
On a Zariski open subset X,C X, G can be viewed as either a locally
constant Z&@ Z sheaf or as a representation 7,(X;) — SL,(Z). This
representation corresponds to an algebraic vector bundle of rank two
on X together with an integrable algebraic connection having regular
singular points (Deligne [1], Griffiths [2]), which is known as the
Gauss-Manin connection (Katz and Oda [4]). It can be expressed as
a second order algebraic differential equation on X having regular
singular points. The explicit form of this equation that we shall
make use of appears in Stiller [12].

We begin with a brief section of preliminaries, recalling some
previous results which relate the geometry of the elliptic surfaces
over X to properties of the corresponding differential equations (K-
equations, see Stiller [12]).

The first section describes a period mapping from the base curve
X to the modular curve M, where I"CSL,(Z) is the global monodromy
group of both E/X and the differential equation. Also we give a
number of conditions under which I = SL,(Z) (see also §3). When
I' = SL,(Z) the group of K(X)-rational division points on the generic
fibre (which is an elliptic curve over K(X) the function field of the
base curve X) is zero.

In section two we examine a number of invariants of E/X such
as the Picard number, the valence of the functional invariant _#,
the index of the monodromy group I” in SL,(Z), and other numerical
invariants to determine their behavior when we pass to a generi-
cally isogeneous surface over X. The main results are that all of
these invariants remain unchanged under generic isogeny! We will
utilize the fact that in this case the differential equation does not
change (Stiller [12]).
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We finish by giving a method for determining the monodromy
representation and computing several examples which illustrate the
results.

0. Preliminaries. Let X be a complete smooth connected curve
over C with funection field denoted by K(X). After fixing a parameter
x ¢ K(X), consider an algebraic differential equation on X

Af=%+ P%+Qf’:o

with P and @ in K(X) and f an unknown function.

DEFINITION 0.1. Af = 0 is called a K-equation if it possesses two
solutions, @, and w,, which are holomorphic nonvanishing multivalued
functions on some Zariski open subset X, of X, satisfying:

(i) o, and @, form a basis of solutions,

(ii) for every closed path ven (X, the analytic continuation of

@1) around v is M, 1) with M, € SL,(Z) (the monodromy represen-
w, o

2
tation),

(iii) Im (®,/w,) > 0 on X, (positivity).
Such 2 pair of solutions is called a K-basis. In addition, since the
monodromy is in SL,(Z), the Wronskian W = exp <—S de) is single-
valued. We assume as part of our definition:

(iv) We KX).

Let Af = 0 be a K-equation with K-basis w, and ®,. Consider
the function = = Jow /v,

»1/wy

X2 ', c

where J is the elliptic modular function on the upper half plane §.
This _# is a single-valued holomorphic function on X, ¢ X.

ProprosITION 0.2. _7 € K(X).

We now determine all K-equations. Fix a K-equation 4f = 0 on
X with K-basis @,, @, such that _* = J(w,/w,). Say

Af:%+ P%+Qf=0.

THEOREM 0.3. There exists an algebraic function n on X with
N e K(X) such that
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This is known as the K-equation 4 . ;.

It is shown in Stiller [12] that K-equations are precisely those
differential equations which arise naturally as the Gauss-Manin con-
nexions associated to elliptic surfaces.

One can directly compute the local behavior of the solutions at
the singularities of the differential equation (Ince [3], Picard [7]).
The local monodromy matrix corresponds with the marix associated
to the particular type of singular fibre of the elliptic surface; see
Kodaira’s list in Kodaira [5]. The reader unfamiliar with the relation
between representations and differential equations, and the local prop-
erties of differential equations with regular singularities can consult
Poincaré [8], Deligne [1], or Griffiths [2]. The only terminology that
we employ which is not standard is that we refer to a singular point
as cosingular if the solutions are single-valued meromorphic functions
in a neighborhood of the point.

Given a K-equation 4 on X with K-basis w,, @, one can construct
a basic elliptic surface E over X with functional invariant _# =
J(®,/w,) and homological invariant corresponding to the monodromy
representation of A4 using the basis w,, ®,. There is no unique K-
equation associated to a given elliptic surface E/X and conversely a
given K-equation may produce several surfaces for different choices
of K-bases. However any other surface E’'/X produced from the
same K-equation 4 via a different K-basis will be generically iso-
geneous to F, i.e., there will exist a rational map ¢: £ — E’ over X
which over a Zariski open set X, < X will be a fibre by fibre isogeny.
The converse also holds:

THEOREM 0.4. (Stiller [12].) Let E, E’ be basic elliptic surfaces
over X which are generically isogeneous, then there is one K-equation
A with two K-bases w,, @, and w;, w, such that E can be constructed
from A, ®,, ®,, and E’ can be constructed from A, ., ). Moreover
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since both ®,, w, and ®;, @, form bases of solutions for A they are
related by a constant matrix which is forced to be in GLF(Q) as both
are K-bases.

Thus if F, E’ are generically isogeneous we have
MIM—t=1"

where M e GL;(Q) and I', I"" € SL,(Z) are the global monodromy groups
of E, E' respectively. Of course if M e SL,(Z) or scalar then E = E'.

In this way information about the entire isogeny class (of the
generic fibre) is fixed in one differential equation. Any invariants
which depend only on the differential equation are then the same for
members of a given isogeny class. It is this idea that we shall
pursue.

1. The monodromy. Let X be a complete smooth curve over
the field of complex numbers C, and let 4f = 0 be a K-equation on
X with a K-basis of solutions ®,, w,. By definition @,, w, are holo-
morphic nonvanishing multivalued functions on a Zariski open subset
X, € X with Im (w,/w,) > 0 on X, and SL,(Z) monodromy. From w,, @,
we obtain a commutative diagram:

> o/wp

XOR@—/ )

X $Ir

97/PSL(Z)

where

(i) X, is the universal cover of X,.

(ii) 9~ is the upper-half-plane minus the PSL,Z) orbits of a
finite set of points.

(iii) J is the elliptic modular function.

(iv) _F =Jeow/w, (see §0, Proposition 0.2).

(v) I cPSL,(Z) is the projective monodromy of 4, w,, w,. Note
that I’ has finite index in PSL,(Z) (Stiller [12]).

(vi) 9 /PSL,(Z) is P{ minus a finite set of points.
Two remarks are in order. TFirst, we will take X, small enough to
insure that 4 will be holomorphic on X,. Then neither @, nor w,
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vanish on X, and also the Wronskian W = 0,0, — 0,0, =
exp(—Sde) will be nonvanishing. Thus the map

& 01wy

(1.1 Xo— 9

will be locally biholomorphic. Moreover it will be onto 9~ where we
have removed the PSL,(Z) orbits of a finite set of points (Stiller [12]).
In fact it will be enough to remove the points where _# =10, 1, oo,
A =0, c0, or ordd_# # 0. From the explicit form of the equation
(see §0, Theorem 0.3) one sees that choice of derivation d/dx does
not effect the map (1.1). Our second remark is that the triple 4, w,, w,
corresponds to a unique basie elliptic surface F over X with funec-
tional invariant _# and homological invariant G given by the mono-
dromy representation of 4 for the basis w,, ®,. Moreover, if 4', 0], ®,
also gives rise to E over X then there is a g € K(X) such that 4" =
A, = A, ,, where 4 =4, (see §0, Theorem 0.3) and ®; = gw, up
to the action of SL,(Z) changing bases. Thus the map (1.1) depends
only on E/X.

DEFINITION 1.1. The map X, — 9 /' will be called the period
map.

THEOREM 2.1. The period map X,— /I is algebraic and ex-
tends to a regular map X — M7 where M7 is the modular curve $*/I
and where $* = H U {Q}.

Proof. Let x e X — X,. Choose a disc about z in X with local
parameter ¢ and select branches of w,, @, single-valued in a fixed
sector of the disc. Now because 4 has regular singular points there
is an integer N such that t"®,/w, remains bounded as ¢ — 0 in the
sector. It follows easily from this pole-like behavior that the map
is algebraic and it must extend as both X and M7y are complete
smooth curves.

Note that if the corresponding elliptic surface E/X has a singular
fibre at t€ X — X, of type I, or I b = 1 then the local monodromy
of 4 will be parabolic and « will map to a cusp, and for types II,
IT*, I1I, I11*, IV, IV* ¢ will map to an elliptic point. The only other

possibility is local monodromy i<(1) (1)> which yields some noncusp.

(See Kodaira [5] for a description of these fibre types.)
From the commutative diagram above we can obtain immediate
results:
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PROPOSITION 1.3. [PSLy(Z): I']| valence _#, that is, the index of
the projective monodromy group divides the valence of _Z.

Proof. Obvious.

REMARK. Using the formulas for the numerical invariants of a
basic surface (Kodaira [6]), one can show, for example, that if E/P}
is a K, surface then valence _# < 24. It follows that the monodromy
has index < 48. This in turn limits the nature of the K(X)-rational
torsion on E®™ as an elliptic curve over K(X).

THEOREM 1.4. Suppose X, $~/PSL(Z) (or X5 PY) is abelian
Galois with no 2 or 8 torsion. Then I’ = PSL,(Z).

Proof. Under the hypotheses of the theorem, a standard fact in
the theory of modular functions gives I” normal in PSL,(Z). We have

o~

PSL.(Z)/T Abelian group with no

PSL(Z)/F-A /

where 4 is the commutator subgroup of PSL,(Z). But PSL,(Z)/4
surjects on PSL,(Z)/[-4 and H,(PSL,(Z), Z) = PSL,(Z)/4 is Z, X Z,.
Thus * is the zero map and I = PSL,(Z).

2 or 3 torsion

Now suppose we have a basic surface E/X. Assume the projec-
tive monodromy group of E/X is all of PSL,(Z).

THEOREM 1.5. Let X — X be any abelian Galois extension o f X
with mo 2 or 3 torsiom. Then the projective monodromy of E =
E x X (minimal smooth model/X) is also PSL,(Z).

Proof. After removing a suitable set of points from both X and
X we have
Eo — K,

|

XAQ —_— Xo
with X, — X, étale Galois (thereby a covering may). Then
71'1()20) — 7, (X) —» PSLz(Z) ’

with 7,(X,) normal in 7,(X,) and the image of x,(X,) = I, the monodromy
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of E,, also normal in PSL.,(Z). So
7,(Xo)/m(X,) — PSLy(Z)/T .

On the other hand, 7,(X,)/7,(X,) = Gal (X,/X,). ThusPSL,(Z)/I is abelian
with no 2 or 3 torsion and as above we conclude I = PSL,(Z).

THEOREM 1.6. Let E/X be an elliptic surface over X with func-

tional imvariant . Suppose X 4 P} exhibits X as a solvable Galois
extension which admits a tower having no 2 or 3 torsion. Then the
projective monodromy of E/X is all of PSL(Z).

Proof. Clear.

REMARK. Clearly I = PSL,(Z) if and only if the monodromy
I' = SL,(Z). Thus I' = SL,(Z) in all the above results.

COROLLARY 1.7. If the monodromy is all of SL,Z), as it is in
the above cases, the generic fibre E**/K(X) as an elliptic curve over
K(X) has no nonzero K(X)-rational division points.

Proof. See Stiller [12].

Let E/X be a basic surface. The homological invariant is a locally
constant Z@ Z sheaf on some X,— X Zariski open. Let z,e€ X, be
a base point. We can interpret the homological invariant as an ac-
tion of G = n,(X,, %) on H'(E,, Z) = A(= ZD Z) where E, is the
fibre over z,. Thus there is a map

G -2 Aut, (HY(E,, Z)) ,

and A is naturally a ZG-module.

THEOREM 1.8. Let A®,C = H'(E,,C) = V. Now G2 Aut.(V),
so V is a CG-module. We claim V is a simple CG-module, i.e., the
representation is irreducible.

Proof. Say H c V is a one dimensional invariant subspace. Thus
V has a basis where the representation takes the form

ol

Now V also has an underlying Z-structure so that the representation
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may be taken into SL,(Z). Hence there is an M e GL,(C) conjugating
one form to the other. An easy computation shows that in SL,(Z)
we could get only parabolic elements fixing 7* (assuming we normalize

80 j:[é 7;}, n >0 is in the monodromy group [I' C SL,(Z). This
contradiets I” < SL,(Z) of finite index.

We now consider when A4 is simple as a ZG-module. It is easy
to see that A has no G-invariant subgroups of rank 1. However
suppose we have H & A a G-invariant subgroup of rank 2. Obviously
upon tensoring with @ we have H®,Q = AR, Q. If we view A as
Zw, + Zw,, ®,, w, a lattice for F,, then H corresponds to an invariant
sublattice and clearly gives rise to another K-basis for our K-equa-
tion A which is not Z-equivalent to w,, w, i.e., the new basis !, w}
is not a scalar or SL,(Z) combination of ®,, ®,. This new basis for
A determines another elliptic surface E'/X whose generic fibre will
be isogeneous to that of E/X. Conversely every elliptic surface £’/ X
which is generically isogeneous to E/X over K(X) arise out of another
K-basis for 4. (See Stiller [12] and the remarks in §0.)

2. Invariants. Let E and E’ be two elliptic surfaces over a
common base curve X with function field denoted K(X). We shall
assume as before that both £ and E’ have nonconstant functional
invariant, admit a section over X, and that they are free of excep-
tional curves of the first kind in the fibres. The section corresponds
to a K(X)-rational point on the generic fibre K¢, E’'¢. In this way
E=", E'=" can be viewed as elliptic curves/K(X).

DEFINITION 2.1. K and E’ are said to be generically isogeneous
over X if the genetic fibres of £ and £’ are isogeneous over K(X).

One should note that this definition is equivalent to the existence
of a rational map

E——¢————>E’

N4

=\ 7
X

which over a Zariski open subset of X is a regular fibre isogeny.
Such a map need not extend to all of E as examples show (see §3).
Assume E and E’ are generically isogeneous and let ¢ be the above
rational map. Choose X, Zariski-open in X so that E, = z~(X,) and
E; = n’%(X,) contain no degenerate fibre and so that
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’1;/' “ E(): EO — Eo,
AN /
NS
X,

is a regular fibre by fibre isogeny. Let D, and D; be the Gauss-
Manin connexion (Katz and Oda [4]):

Dy Hjjp(Eof X)) — -Q%\'O/c &. x,/€ Hi»(Ey Xo)

ete. for D], where H}, is the first hyperderived functor of direct
image applied to 2, ., the relative algebraic DeRham complex. Note

Hj(E/X,) = R'7,(C)
Hx(E/|X,) = R'7%(C) .

Thus we have two flat vector bundles of rank two on X,.

THEOREM 2.2. E and E’; are generically isogeneous if and only
if the resulting flat vector bundles are isomorphic.

Proof. See Stiller [12].

This flat bundle can be represented by a second order algebraic
differential equation X
a’f af _
o + de +Qf=0
where P, Q€ K(X) and z € K(X) nonconstant. The resulting differ-
ential equation will be a K-equation 4. However, it will possess two
K-bases w,, w, and ®], w; such that £ will be the surface associated
to w,,w, and E’ to ], w;. Thus the functional invariant _# of E will
be J(w,/®w,) and 7' of E will be J(wi/w;), J the elliptic modular
funetion. Moreover the homological invariants of K, E’ will cor-
respond to the monodromy representations given by w,, w, and ], ,
respectively. Since both w,, ®, and ®;, ®; are bases of solutions of
the same differential equation the representations are complex equiva-
lent. However they will not be equivalent over SL,(Z). It ecan be
shown (Stiller [12]) that there exists M e GL,*(Q) such that

Mw,/w,) = (0;/®;) .
Of course if M is in SL,(Z) or scalar then we will have £ = E’.
THEOREM 2.3. If E and E' are generally isogeneous over X then

the period maps commute, that is there exists a regular map ¥ such
that the diagram
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oI

S

©+/PSL{(Z)
§*/PSL(Z)

commutes. I-Iez*e 9t is the upper-half-plane union the appropriate
cusps and ', I'" are the projective monodromy groups in PSL,(Z) of
E and E' respectively.

Proof. Let p:7(X,) — SLy(Z) and p": 7(X,) — SLy(Z) be the
monodromy representations (homological invariants) of E and E’
respectively. For ver,(X,) we have

Mo(v)M~" = 0'(7)
for some MeGL;(Q). We have

y@
M

9

X,

where - is the upper-half-plane minus a finite number of SL,(Z)
orbits, map = to $ by 7 — Mr. It is easy to check that this
descends to a well-defined map

O~ — /I
since MIT M~ = I''. It then follows that the diagram commutes.

Note that ¥ is an isomorphism of Riemann surfaces M7 and M7..
Thus:

COROLLARY 2.4. The global projective monodromy groups must
have the same indexr if E and E’' are generically isogeneous i.e.,
[PSL,(Z): I'] = [PSL,(Z): I'"].

COROLLARY 2.5. If E and E’' are generically isogeneous then the
Sunctional invariants _Z and _Z' have the same valence, that is
the same number of poles.
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THEOREM 2.6. If E and E’' are generically isogemeous then all
the betti numbers b, i =0, ---, 4, the geometric genus p, and the ir-
regularity q of E and E' are the same.

Proof. We appeal to the formulas of Kodaira [6] and general
relationships among the numerical invariants. Let g be the genus
of X then b, = b, =29 = 2¢ and b, =b, = 1. So only », and b, are
of interest; and quality between one of these for £ and E’ implies
equality for the other. Recall Kodaira’s formula (Kodaira [6]):

12(p, + 1) =+ 6 bZ v(I;*) + 2v(IT) + 10v(II*) + 3wv(III)
20
+ 9v(IIT*) + 4v(IV) + 8v(IV*),

where p, is the arithmetic genus of the surface, v(T') is the number
of singular fibres of type T (for types see Kodaira’s list in Kodaira
[5]), and g is the valence of the functional invariant. As p, =
p, — q it will be enough to show that the sum on the right hand
side is invariant under genetic isogeny. By Corollary 2.5 above g
is invariant. Now each fibre type has an associated matrix in SL,(Z)
which represents the local monodromy up to conjugation in SL,(Z).

For example,
I (1 ") b>0
’ 0 1

po (7 s
0 -1

o )

Since E and E’ are generically isogeneous, the local monodromy at
x € X of either £ or E’ is GL,(C)-equivalent to the local monodromy
for A. Thus trace is preserved and it follows that >),., v(I¥) is pre-
served as is >}, v(l;). Note that the actual fibre type may not be
preserved (see examples §3 where type I, becomes I, etc.). Of course
type I7 is preserved. In all of the remaining cases the type will be
preserved. For example trace considerations show that a fibre of
type II on E must correspond to one of type II or II* on E’. In
order for the type to change there would have to be a matrix N =

(g g) in GL#(Q) with

11 0 —1
v Y-R
-1 0 1 1

/

o

&5
*

But thisforcesa = —dand b —a =¢. Thusdet N = —a®>— b* + ab =
—(a®* —ab +b) = —((a — 1/2b)* + 8/4b>) <0 a contradiction. The
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same sort of calculation shows II*, III, III*, IV, IV* are preserved.
Thus the entire sum is preserved as we desired to show.

Lastly we wish to investigate the Picard numbers o and p’ of
E and E’. Recall that p is the rank of the Néron-Severi group which
is the group of divisors modulo algebraic equivalence.

THEOREM 2.7. If E and E’ are generically isogeneous then their
Picard numbers p, o' are equal.

Proof. We make use of a formula appearing in Shioda [11]
o=r+2+>0m,—1).

Here p is the Picard number, 7 is rank of the group of K(X)-rational
points of the generic fibre E&, E’**® which is an elliptic curve over
K(X), and m, is the number of irreducible components of the fibres
where v runs over the singular fibres. Since K and E’ are generically
isogeneous 7 is preserved. As we observed in Theorem 2.6 all fibre
types are preserved except possibly I, I b = 1. Now a fibre of type
I, b =1 has b components and a fibre of type I;b =1 has b + 4. Let
b, be the indices of the type I, that occur as v runs over the singular
fibres and b} the indices of the type I*. Now >.,b, + >, b) is ¢ the
valence of the functional invariant which is preserved. Also the
number of type I, and the number of type I} are fixed by trace
considerations. :

We are interested in the invariance of the sum 3, m, — 1 where
v runs only over singular fibres of types I,, I} b = 1. This becomes

Sm,— 14+ > mf—1

where v runs over types I, b =1 and »* runs over types I7. By
our remarks above this is

zu"b” -1+ Z,((b:i +4)-1) = ;bv + %}b:& — %v(Ib) + 3%’0(1;*)
= — S 0I) + 35 uIy) .
b1 b1
Now p is the valence of the functional invariant and so invariant by

Corollary 2.5 and the sums are invariant by trace considerations.
Thus the Picard number is invariant.

Again, we remark that under generic isogeny fibre types need
not be preserved—see example in §3.

3. Computing monodromy and examples. Let X be a com-
plete smooth curve/C with function field C(z, w). Here w is given as
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an algebraic function of z by an irreducible polynomial
3.1) W + @, R)W" + - Fa,2) =0, a(z)eC(z).

Our purpose will be to give a method for computing the monodromy
of a basic surface E/X with functional invariant _# = z. We begin
with the SK-case, i.e., » = 1.

Let T={2 = ,2,=0,2,=1,2, ---, 2,} be the branch points
of (3.1) on the z-sphere including <, 0, 1. Pick a base point z, and
another point z*; letting 7% = T U {#*}. We suppose given slits L,
from z* toz;,, 1 =1, ---, m. Each slit has “two sides” A4,, B, oriented
to run from z* to z, with B, being the side which maintains the
sphere to the left. So B,A;'B,A;'--- B,A;! is positively oriented
closed curve about z, on the sphere.

Let w, ---, w, be n distinct function elements at 2z, of w. Assume
given permutations =, ---, 7, of {1, ---, n} where analytic continua-
tion of w, across L; from B; to A; leads to w.,,. Consider the
free group I/ on x,, ---, @,, and fix a function element say w, at z,.
Let X, = X — {all points over T*}.

Now we look at the z-sphere less T*.

(3.3) X mmmmmm e = -‘I X \L——-x ________ @
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We can slit the z-sphere from 0 to «~ and 0 to 1 so that the differ-
ential equation

df . 1df  ((31/144)z —1/36) » _
dz’ * 2 dz N 2z — 1) ;=0

has single-valued solutions on the remaining part of the z-sphere.
Further we can select a branch so that the monodromy across the

slits is ((1) i‘) or (_(1) %)) as indicated:
X t x

G (2o 7

The above choices for L,, A;, B;, %, z* and the slits above can
all be made so that the picture becomes:

o

Let /1, < II be all words v such that 1y =1, i.e., the isotropy of 1

under the action of 77 on {1, ---, n}. (Note z, - --- -, acts like the
identity.) Now let z, - - - x, be the points of X over T* i.e., X — X, =
{z, -+, 2,}. Choose words v, ---,7, and C, ---,C,, D, ---, D, in

the x;’s which lie in I7,, and represent a basis for z,(X, w./z,).
Thus v, represents a simple loop about x;; C,, D,’s are various cycles
and as permutations

=

f[ C.D,.C.'D;* 11 v, = identity .

7

1

THEOREM 3.1. We can select a K = basis of solutions w,, @, of
our SK-equation on X at w,/z, so that _F = J(®,/®,) and if v,, C;, D,
is wh,, - n}“(q), e = =*1, f,e{l, ---, m}, as a word, then the mono-
dromy matrix for , , 1is:

e M

fo

where M, = (% i): M, = <—i (1)> - <%) —D(—

= o
O =
_
IS
Il
N
|

-
(=N
~
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Proof. Obvious. Essentially we have pulled our single-valued
branch of the solutions back to a single-valued branch on X minus

<=7

We are also able to keep track of how these solutions of our SK-
equation change as we cross a slit.

Now adding ) to get the general K-equation amounts to changing
sign around a path if )\ changes sign.

We now apply this and/or similar techniques to calculate certain
global monodromy representations. Let us work on the z-sphere,
taking _# =1/1 — 2**). We take the SK-case so that the only
singular fibres are of type I, at the 12k-roots of 1. Note & =0
at 2 = c and _# =1 at z = 0 but the fibres are good. On P — {0}
the family is

27T 27

2 3_____ et
y' =4z 212 x 2%

Note this appears to be bad at z = 0 but taking

k
g=%—— then g‘27 =3 and gsﬂ: ok

z12k zm %

So
Y? = 42° — 3x — 2%

also describes the family (Sasai [10]). As usual we take a single-
valued branch on the _# -sphere and lift:

N =)

As _Z =1/1 — z*), the path from 0 to « in the _Z-plane lifts to
the radial lines from o to a 12k-root of unity, and the path from
1 to oo lifts to the radial lines from 0 to a 12k-root of unity. The
picture is shown on the following page.

e
o
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Pick a base point 2 as marked above. Let v, ---7v,. be the loops
pictured. Then the representation is given by

= ol 4=l ol

/

A B

o 1
- —
e 01

( 1 0)
on'—') .
7 11

/

(The reader will observe that this agrees with Sasai who obtains the
result in a different manner (Sasai [10]).)

We now consider the case of 4, ;, where # is unramified over
0,1, -, i.e., X5 P is unramified over 0, 1, «. This is in some
sense the general case. The reader should have no trouble seeing:

THEOREM 3.2. Let X be any curve and E/X any elliptic surface
with functional invariant 5 unramified over 0, 1, . Then the
global monodromy group I' C SLy(Z) is in fact SL,(Z).

The reader should refer to Corollary 1.7 which shows that such
an E/X then has no K(X)-rational division point on the generic fibre.
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Further, as is obvious, one can choose cycles on X so that the mono-
dromy is <(1) (1)> around all cycles.

We present an example which will give us a case where the
isogeny phenomenon occurs. (See Ince [3] for details on differential

equations with regular singular points, local monodromy, exponents,
ete.) Let

_ 4 A—z+ey
& 2T 21 — 2)

on the z-sphere. _Z has a double pole at 0, 1, <, a triple zero at
e”® and e *"°, and a double one at —1, 2, 1/2. An easy calculation
vields that the SK-equation for this _# has exponents +1/2 at =",
e gand 1/2, 8/2 at —1, 2, 1/2. At 0,1, - the exponents are 0, 0.
Let \* have divisor:

1(e0) + 1(e™) + L(e™") — 1(—1) — 1(2) — 1L(1/2) .

The differential equation 4, ., with X\, _# as above is holomorphic
at %, ¢~*/% —1, 2, 1/2 with exponents 0, 0 at 0 and 1 and exponents
1/2, 1/2 at «». The equation is therefore the hypergeometric equation:

+(%+zil)% * <z(z1/—41))f:0

which is that for ,F.(1/2, 1/2;1;z). The group is easily seen to be
I'(2) in either case (with or without A). Reecall I'2) = {M e SL,(Z )I

M= G) ‘1’) mod 2}. Let I'y4) = «{MeSLZ(Z)‘M = (0 I) mod 4}.

Both I'(2) and I'(4) are of index 6 in SL,(Z) and (1 ‘l’)r(z) ((2) ‘f) -
I'(4). As above take

&f
L.1) =

/_i(l—z—l—z?)a

27T 21— 2)
but instead take
z — e2z1/6
A

The K-equation 4 = 4, ; has global group I'(2). The fibres are:

at <« type I, at —1 type If
at 0 type I, at 2 type If
at 1 type I, at 1/2 type I3

also the valence of _# is 6. Applying the well-known formulas
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(Kodaira [12]) yields p, =1, p, = 1, ¢ = 0, that is, the surface E/X
(functional invariant _#) is K3. We need to compute the global

representation. We first compute the monodromy of Equation (1.1).
We consider the usual fundamental domain for I'(2);

"ico

N 7 N

|
1
I
1
1
A
1
I
]
1
1
1
1
1
i
N
1

T e
N

The Legendre function A maps this region to the z-sphere with
Mioo) — 0, A1) — o, M0) — 1 sending the imaginary axis 7o to 0 to
the slit 0 to 1 on the real axis, the arc 0 to 1 to the slit 1 to « on
the real axis, and finally the line Rez = 1 from 1 to ¢ to the imagi-
nary axis c to 0 (Robert [9]). Thus if we slit the z-sphere along
the negative real axis and from 1 to -, we will be able to find a
branch of the quotient of solutions with values in this fundamental
domain. Continuation across the slit is obviously

L] ’ L] L] ’ 1]
© (1 -2 0O 1 10y <
6D (=21
The trace is 2 (not —2) in both cases as the exponents at 0 and 1

are 0, 0. Choosing basis:

0 1
o e
Ve
yields the representation
v (1 2>
’ 01



MONODROMY AND INVARIANTS OF ELLIPTIC SURFACES 451

and ((1) i‘)(_é g)(% :g) = <(1) (1)> This is the monodromy of Equa-
tion (1.1). Note at « the exponents are 1/2, 1/2 which corresponds
to trace —2 for (é :g) Finally putting in » (not to be confused

with Legendre’s ) above) gives

1 2
”"_’<0 1>
1 O)
71-——)<—2 l/
-1 2
7‘"’“’(—2 3)
-1 0
Y 1y Vo 71,2———>< 0 _1>

which is the desired representation where the basis is:

[ el

Now if w,, w, is the K-basis of 4 = 4, , giving this representation

(F = J(w,/w,)), then because <1(42 (1))1“(2)(3 (1)) c SL,(Z) we have

<g;> = <1(42 g)( > also a K-basis. This new basis gives another basic

elliptic surface E/X with representation:
11
“/0——*< 1) fibre type I,
0
1) fibre type I,

1
3> fibre type I,

th}—‘»hl—‘

'7_1, 72, 71/2

,W(
0
( 1) fibre type I .

Note valencNe j = J(®,/®,) is 6. Thus E/X is also K3. We have a
map E — E of degree 2 which is a fibre by fibre isogeny almost
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everywhere. Further the map does not extend since the number of
irreducible components in the singular fibres do not agree. We remark
that this also proves that E** (as well as £®") as an elliptic curve
over K(X) has a division point of order 2 rational over K(X).

The reader should note that when the monodromy is all of SL,(Z)
this isogeny phenomenon does not occur and we can conclude that
there are no K(X)-rational division points on E*" and the isogeny
class of E*" over K(X) contains only E&™,
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