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ROBIN FUNCTIONS AND ENERGY FUNCTIONALS
OF MULTIPLY CONNECTED DOMAINS

P. L. DUREN AND M . M . SCHIFFER

The Robin function of a planar domain is a generalization of
Green's function. It can be used to represent the solutions of mixed
boundary-value problems for harmonic functions. Here it is combined
with a variational method to solve certain extremal problems for the
energy functional of a multiply connected domain. Some deeper prop-
erties of the Robin function are then explored. An allied system of
conformal invariants called the Robin matrix is introduced and is
compared with the classical Riemann matrix of a finitely connected
domain.

In potential theory one considers three important boundary-value
problems: to determine a harmonic function u in a given domain
from its values on the boundary, from the values of its normal deriva-
tive on the boundary, and from the values of du/dn + h{s)u on the
boundary, where h(s) is a given positive function of the arclength.
The problems are solved by means of Green's function, Neumann's
function, and Green's function of the third kind, which is sometimes
called the Robin function.

In the two-dimensional case, Green's function plays an important
role in the theory of conformal mapping because it is conformally
invariant. There is now a special type of Robin function which is
likewise conformally invariant and leads to additional invariants and
interesting applications. We shall define it as the function R(z, ζ)
harmonic in the domain except for a logarithmic pole at ζ, and van-
ishing on a specified part of the boundary while its normal derivative
vanishes on the rest of the boundary.

We begin the paper by recording some of the basic properties of
the Robin function. We then establish its existence by displaying it as
a solution to a certain extremal problem involving transfinite diame-
ter. Next we use it to solve an extremal problem which arose in our
previous study [5] of the energy functional of a multiply connected
domain. We also apply it to find the sharp bounds of a quadratic
form associated with the Riemann matrix. Finally, we discuss some
further properties of the Robin function; for instance, we show that it
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always majorizes Green's function. We conclude by pointing out the
role of the Robin function as a reproducing kernel

The Robin function can be defined similarly in higher-dimensional
regions, where it plays a basic role in the solution of boundary-value
problems for more general elliptic partial differential equations [1],
Here we shall discuss only harmonic functions in the plane, but some
of the theory extends readily to more general situations.

1. Definition and basic properties. Let Ω be a finitely connected
domain in the extended complex plane C, containing the point at in-
finity and bounded by smooth Jordan curves Γi, Γ2, . . . , Γ m , where
m>2. Choose an integer n with 1 < n < m, and divide the bound-
ary dΩ into the two subsets

A = Π U U Γn B = Γ n + 1 U U Γm.

Then for each ζ e Ω, the Robin function is defined by the properties:
(i) R(z, C) is harmonic in Ω and continuous in Ω together with

its first partial derivatives, except at z = ζ, where R(z, ζ) -f-log \z - ζ\
is harmonic;

(ii) Λ(z, ί) = 0 for all zeA;
(iii) | f (2, ζ) = 0 for all z e B, where d/dn denotes the inner

normal derivative. For ζ = 00, the property (i) is modified to require
that R(z, ζ) - log \z\ be harmonic in Ω.

The definition of the Robin function and most of the resulting prop-
erties are easily generalized to more general complementary subsets A
and B of the boundary. The domain may then be simply connected.
We have chosen our special definition mainly to focus on certain pe-
riods around the boundary components, analogous to the Riemann
matrix for harmonic measures, which are important in our applica-
tions.

It may also be remarked that the Robin function can be defined
(by conformal invariance) even for domains with irregular boundaries
where no normal direction exists. Such a finitely connected domain
can be mapped conformally onto a domain bounded by analytic Jor-
dan curves, where the Robin function is uniquely determined. The
mapping then induces a well-defined Robin function in the original
domain.

It is not obvious a priori that the Robin function exists. Deferring
a proof to §2, we shall first develop some of its basic properties.

We begin with the symmetry relation

(1) R ( z , ζ ) = R ( ζ , z ) , z,ζeΩ.
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For a proof, fix distinct finite points ζ, η e Ω and consider the inte-
gral

By properties (ii) and (iii), it is clear that I(ζ, η) = 0. On the other
hand, deforming the path of integration to two small circles around ζ
and η and using the property (i), one finds that

/(C, if) = Λ ( I I , C)-Λ(C, if);

hence R(η, ζ) = R(ζ 9η). An obvious modification of the argument
handles the case ζ = oo. Alternatively, one can deduce it from the
finite case by the mapping z H-» 1/(Z - ζ), since the Robin function is
conformally invariant.

The most important property of the Robin function is the formula

(2) " ω = h S M { z - C ) u ( z ) m - T* L *<z «^<
which represents a function u harmonic in Ω in terms of its boundary
values on A and its normal derivative on B. In view of (ii) and (iii),
the formula (2) is equivalent to

which is derived in the same way that the symmetry relation (1) is
proved.

Conversely, by standard techniques (cf. Nehari [10], pp. 357-360)
it can be shown more generally that the formula (2) represents the
harmonic function u with prescribed continuous boundary values on
A and with prescribed continuous normal derivative on B.

The Robin function also allows the representation of a harmonic
function in terms of its values on one part of the boundary and the
values of its conjugate on the rest of the boundary. Let u(z) + iv(z)
be a single-valued analytic function in Ω. Start with the formula (2),
introduce the general Cauchy-Riemann equation du/dn = dv/ds,
and integrate the second term by parts to obtain

"<« - s L a<£(z • °"(z) ίdzl+Tn I ϋ < 2 {>»<
where d/ds indicates the tangential derivative.
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We now define the functions

(3) ^ ^fΓ

which we call the generalized harmonic measures. It is clear from (2)
that Gj is the harmonic function uniquely determined by the proper-
ties

(4) σj(z) = 1 on Γ, ; σ, (z) = 0 on Γk, \<k<n,kφ j \

and

(5) ! i ( z ) = 0 ™Γk,n<k<m.

The period of the harmonic conjugate of σ7 around Γk is

Observe that the symmetry relation Qkj = Qjk follows from (1) and
(3). Note also that Qjk = 0 for n < k < m. The n x n matrix
((Qjk)) wiU b e called the Robin matrix of Ω. It is analogous to the
classical Riemann matrix of periods of the harmonic conjugates, to
which it reduces in the degenerate case n = m.

It will now be shown that the (n - 1) x (n - 1) submatrix {{Qjk))
with 1 < j , k < n - 1 is negative definite. Consider for this purpose
the harmonic function

k=\

where the xk are arbitrary real parameters. Invoking (4), (5), and (6),
we find

0< ί \VH\2{z)dxdy = - ί
JΩ JΘΩ

j=lk=l
n n

7=1 k=\

Thus the quadratic form

j=\ k=\
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with equality only if H{z) is constant in Ω. But it follows from
(4) that H{z) = Xjc on Γ^ for 1 < k < n thus the quadratic form
vanishes only if X\ = xι = = xn (In fact, it actually vanishes in
this case; it is easily shown that

n n

In particular, we infer that

(8) ΣtΣt
7=1 k=\

unless X\ = xι = = xn_\ = 0.
We summarize our findings in the following theorem.

THEOREM 1. Let Ω be a multiply connected domain with boundary
components T\,... , Γ m , and let R{z, ζ) be the Robin function which
vanishes on Γ\ u L)ΓW, where 1 < n < m. Then the associated Robin
matrix {{Qjk)) is symmetric. Furthermore, the quadratic forms (7) and
(8) which it generates are negative semidefinite and negative definite,
respectively. In particular, the {n-l)x{n- 1) matrix {{Qjk)) of{&)
is nonsingular. The Qjk are moduli of Ω since they are conformally
invariant.

2. Existence of the Robin function. We shall now prove the existence
of the Robin function of the domain Ω. Our strategy is to pose a
suitable extremal problem and to show by a variational method that
the solution is the Robin function. Another existence proof can be
based on the theory of integral equations (cf. [6], p. 622).

First consider the equivalence class ^ ( Ω ) of domains D obtained
from Ω by conformal mappings φ of the form

(9) φ{z) = z +
n=0

near infinity. These mappings will be called admissible. Let Q. =
φ{Tk) for k = 1, 2, . . . , m. For 1 < n < m, let R be the transfinite
diameter of the set A = C\ U U Cn . (See, for instance, Goluzin
[7] or Hille [8] for the definition and principal facts about transfinite
diameter, or logarithmic capacity.) We pose the extremal problem of
minimizing R in the class



256 P. L. DUREN AND M. M. SCHIFFER

Because the admissible mappings φ with bo = 0 constitute a com-
pact normal family, it is clear that a minimizing domain D e y ( Ω )
exists. Choose WQ € Q for some k with n < k < m, and introduce
the boundary variation

(10) w* = Kp(u;) = w + ^ ^

which for small p is analytic and univalent in C minus a small sub-
continuum of Q near WQ. (See [3], Ch. 10.) Thus φ* = Vpoφ is
admissible, and D* — VP(D) belongs to the equivalence class ̂ ( Ω ) .
Let q = K,(Q).

Observe now that on the domain D D D bounded only by C\, . . . ,
Cn , the variation (10) acts as an interior variation. Thus by a known
variational formula [12], the transfinite diameter of the perturbed
boundary subset A* = C{ U U C* is

R* = R[l - Re{ap2pf(w0)
2}] + O(p3),

where p(w) is the analytic completion of Green's function g(w) =
g(w, oo) of D. Since ^* > R by the minimum property of D, it
follows that

(11) Re{ap2pf(w0)
2} + O(p3) < 0.

Appealing now to the fundamental lemma of the method of boundary
variation ([11]; see also [3], p. 297), we conclude from (11) that
the boundary components Cn+\, . . . , Cm lie on trajectories of the
quadratic differential

p'{w)2dw2 >0.

Parametrizing each of these curves Q by w = w(s), we conclude in
particular that

jjP{w(s))=β'{w(s))w'{s)

is real. In other words, the tangential derivative

(12) ?L

By the general form of the Cauchy-Riemann equations, it follows from
(12) that

(13) | f (w) = A Re{p(w)} = 0 on Ck, n < k < m.

On the other hand, since g(w) = g(w, CXD) is Green's function of
D, it is clear that g(w) = 0 on Q for 1 < k < n. From this and
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(13) we see that g(w, oc) is none other than the Robin function of
D, defined with respect to the boundary subsets A and B, with pole
at infinity. Thus by conformal invariance, R(z, oo) = g(φ(z), oo)
is the Robin function of Ω. This proves the existence of the Robin
function with pole at infinity for each smoothly bounded domain Ω.
The Robin function R(z, ζ) is produced through the linear fractional
mapping z ι-> l/(z — ζ).

In particular, we have obtained the following result.

THEOREM 2. Let Ω be a domain containing infinity, with boundary
components Γ\, ... ,Γm. Choose an integer n < m and let Ω D Ω
be the domain with boundary A = Γ\ U U Γn . Suppose that Ω is
chosen in a given conformal equivalence class such that the transfinite
diameter R of A is a minimum. Then Green's function g(z, oo) of
Ω is Robin's function R(z, oo) ofίl with respect to A.

3. An extremal problem for the energy functional. Suppose again
that Ω c C is a multiply connected domain containing infinity and
bounded by smooth Jordan curves Γi , Γ 2 , . . . , Γ m . The harmonic
measure ω^ is the bounded harmonic function such that co^z)
= 1 on Γfc and ωk(z) = 0 elsewhere on <9Ω. Note that

where g(z) = g(z, oo) is Green's function of Ω with pole at infinity.
The period of the harmonic conjugate of ω 7 around I \ is

(15) Pik = λ

The matrix {{Pjk)) is called the Riemann matrix. It is known that
Pkj = Pjk> and that the (m - 1) x (m - 1) submatrix ((Pjk)) for
j , k = 1, 2, . . . , m - 1 is nonsingular; in fact, it generates a negative-
definite quadratic form. (See Nehari [10], Ch. 1.) Thus its inverse
matrix ((pjk)) has the same properties.

In our previous studies [4, 5] of extremal problems for conformal
mappings onto nonoverlapping regions, there arose the functional

m-\ m-\

(16) ψ = ψ(Ω) = logi? + J ] ; 5Z Pjk(o)j(oo) - Xj)(ωk(oo) - xk),
7=1 k=\

where R is the transfinite diameter of the complement Ω and X\, . . . ,
xm-\ are nonzero real numbers. Because of its physical significance
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(see [5]), ψ is called the energy functional It is conformally invariant
under all admissible mappings.

The following extremal problem generalizes the one in §2 which led
to the Robin function. Consider again a domain Ω containing infinity
and bounded by Γi , . . . , Tm. Choose an integer n with 1 <n < ra,
and let Ω be the larger domain bounded only by T\ , . . . , Tn . Among
all domains Ω in a given equivalence class, we ask for the minimum
of the corresponding energy functional

^ ^ n-ln-l

ψ{U) = XogR + Σ ΣPjk(ώj(°o) - */)(<M°°) - xk),
7=1 k=\

where R is the transfinite diameter of the complement of Ω, the

harmonic measures ώj(z) and the Riemann matrix ((Pjk)) are those

of Ω, and ((pjk)) is the inverse of the canonical (n - 1) x (n - 1)

submatrix of ((Pjk))
The existence of an extremal domain is clear. In view of the transla-

tion-invariance of ψ, it is sufficient to consider only admissible map-
pings (9) with bo = 0, and these constitute a normal family. We again
denote a minimizing domain by Ω and its boundary components by
Γi , . . . , Γ m . We may assume that Ω is chosen so that Γi , . . . , Γn

are analytic Jordan curves, because ψ is invariant under all admissible
mappings of Ω.

In order to describe the extremal domain Ω, we choose a point
zoedΩ and construct a boundary variation

(17) z* = F / ? ( 2 ) = z + ^ i . + O ( y 9 3 ) ?
Z - ZQ

which for small p is analytic and univalent in the entire plane except

for a small subcontinuum of <9Ω around ZQ. Let Ω* = ^ ( Ω ) and

Ω* = Vp(ίϊ) be the corresponding perturbations, and let ψ* =

be the induced perturbation of the energy functional ψ = ψ(Ω).
Observe that Vp is an admissible mapping, so that Ω* e

and ψ* > ψ. If ZQ e <9Ω, then Ω* e ^ ( Ω ) and so ψ* = ψ, by the
conformal invariance of the energy functional. However, if ZQ φ dΩ^
but instead ZQ G Γ^ for some k > n, then the variation (17) acts as
an interior on Ω. The variational formula for ψ, as developed at the
end of our previous paper [5], now takes the form

(18) ψ* = ψ - Rc{ap2h'(z0)
2} + O(p3),
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where

n-\

(19) h(z)=β{z) - J > 7 (r)(ώ, (oo) -Xj)
7=1

and

(20) ϋj(z) = Σpjlwι(z).

Here p(z) is the analytic completion of Green's function g(z) =

g(z, oo) of Ω, and Wj(z) is the analytic completion of ώj(z).
Since ψ* > ψ, we may again invoke the fundamental lemma of

the method of boundary variation to conclude from (18) that each
Tk(n <k <m) lies on a trajectory of the quadratic differential

(21) h'(z)2dz2>0.

Taking the square root in (21) and integrating along Γ^, we arrive at
the conditions

(22) lm{h(z)} = βk, zeΓk, n<k<m,

where the βk 's are constants.
On the other hand, Re{h(z)} is obviously constant on each Γ*. for

1 < k < n. Indeed, Re{/?(z)} = 0 and Re{Ό7(z)} = Pjk on Γ^, so
that u(z) = Re{h(z)} has the boundary values

n-\

(23) u{z) = ak = -Σβjk(ώj{oo)-Xj), zeΓk, 1 < k < n.

Thus the harmonic function

n-ln-l

(24) u(z) = g(z) - Σ ΣPjk(ώj(°°) -
7=1 k=\

is constant on each of the boundary components Γ i , . . . , Γn and
has a vanishing normal derivative on Γ r t + i, . . . , Γ m , by (22) and
the generalized Cauchy-Riemann equations. It is clear from (24) that
u(z) = 0 on Γw; hence an = 0. Now introduce the Robin function
R(z, ζ) of Ω with respect to the boundary sets A = Π U UΓW and
B = Γ w + 1 U u Γ m . Thus R(z, C) = 0 on A and dR(z, ζ)/dn = 0
on B. Consider the harmonic function

φ{z) = u(z)-R(z, oo),
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and represent it by the basic formula (2):

(25) " o = έ L f n ( z • ί M z ) | r f z | - s / R ( z ' ° § ? (

But we have already observed that §^(z) = 0 on ΰ , while u(z) = α^
on I \ for 1 < k < n, where an = 0. Thus #> has the same properties,
and (25) reduces to

n-\

(26) u(z) = R(z, oo) + Σ<*j°Az)>
7=1

where σ ; are the generalized harmonic measures of Ω, defined by (3).
Integrating the normal derivative du/dn and recalling the definition
(6) of the periods Qjk, we find by (3) and (26)

(27) - L I | £ ( z ) \dz\ = σ (̂oo) + Σ ajQJk , 1 < fc < n.

Similarly, we deduce from (24), (14), and (15) after a short calculation
that

( 2 8 ) j

where xn = 1 - x\ xn-\. Comparing (27) and (28), we arrive
at

n-\

(29) σ^(oo) + Σ ajQjk = χk, 1 < k < n - 1.

7=1

This allows us to determine the constants α,-. By Theorem 1, the
(Λ - 1) x (Λ - 1) matrix ((Qjk)) is nonsingular. Let ((<?/&)) denote
its inverse matrix. Then it follows from (29) that

n-\

(30) c*£ = Σ(χj - σj(°°))<ljk, 1 < k < n - 1.
7=1

On the other hand, if we equate the two formulas (24) and (26) for
u(z) and let z tend to infinity, we find after introducing (30) that

n-ln-l

(31) log£ + Σ ΣPMώΛ°°) ~~ */)<M°°)
7=1 k=\

n-ln-l

= lθgRA +
7=1 k=l
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where
-logRA = lim[i?(z,oo)-log|z|].

z—+00

The conformal invariant RA will be called the Robin capacity of the
set A c <9Ω with respect to which the Robin function is defined.
Our derivation of (31) used the fact that the transfinite diameter (or
logarithmic capacity) R of <9Ω is determined by

- logiί = lim [g(z, oo) - log \z\].
z—>oo

We can now compute the energy functional ^(Ω) for the extremal
domain Ω. A short calculation based on (16) and (31), together with
the two expressions for a^ given by (23) and (30), leads finally to the
formula ψ(Ω) = Φ(Ω), where

n-ln-l

(32) Φ(Ω) = lo$RA + £ £ QjkWoo) - Xj)(σk(oo) - xk).
7=1 k=\

Observe that the functional Φ is conformally invariant and therefore
depends only on the equivalence class SF(Ω). Since Ω is an extremal
domain, we have proved that Φ(Ω) is the minimum value of the en-
ergy functional ^(Ω) among all domains Ω in the given equivalence
class. For this reason, we shall call Φ the subenergy functional of
Ω with respect to A. In summary, we have proved the following
theorem.

THEOREM 3. Let Ω be a domain containing infinity and bounded by
disjoint continua T\, . . . , Tm. Given an integer n with 1 < n < m,
and given arbitrary nonzero real parameters X\, . . . , xn-\, let Φ(Ω)
be the subenergy functional of Ω with respect to the boundary subset
A = Γi U U Γn. Let Ω D Ω be the domain with boundary <9Ω = A,
and let ψ(£ϊ) be its energy functional with respect to the parameters
X\, . . . , xn-\. Then ψ{£l) > Φ(Ω), and equality is attained for some
domain Ω in each conformal equivalence class.

4. Maximum of the energy functional. Having found the minimum
of the energy functional ψ(Ω), we now ask for the maximum value
of ψ(Ω) among all domains Ω in a given equivalence class. Again
let Ω be an extremal domain, and let Γi , . . . , Γ m be its boundary
components. The variational method of §3 may again be applied, and
we find in a similar way that for n < k < m each Γ\ lies on an
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orthogonal trajectory of the quadratic differential (21). Thus

(33) h'(z)2dz2<0

where h(z) is defined by (19) and (20). Taking the square root in

(33) and integrating along Γ^, we now find that

(34) u(z) = Rc{h(z)} = ak, zeΩk, n<k<m,

where the ak 's are constants. But it is again obvious from the defining
formula (24) that

(35) u(z) = ak9 zeΓk, \<k<n,

where the constants ak are now given by (23), and an = 0. Since
(24) shows that the harmonic function u has a logarithmic singularity
at infinity, it follows from (34) and (35) that

m

(36) u(z) = g(z) -

where g(z) = g(z, oo) and cθj(z) are Green's function and the har-
monic measures of Ω. From (36) we obtain the expressions

(37) i . f ?ϋ(z)\dz\ = ω (
k 7=1

in view of (14) and (15). Now (37) and (28) give the equations

m

(38) ΣaJpJk= Xk -ωk(°°)> l<k<m,

where xk = 0 for n < k < m. Since Σ>=i Pjk = 0, the equations
(38) imply

m-l

(39) Σ ( α ^ - <*j)pjk = <»k(<x>) ~χk, \<k<m.
7=1

The equations (39) are solved by means of the inverse matrix ((pkι))
which yields

m-l

(40) am - ak = Y pik(ωj(oc) - xΛ, 1 < A: < m - 1.



ROBIN FUNCTIONS AND ENERGY FUNCTIONALS 263

On the other hand, if we equate the two forms (24) and (36) of
u(z) and let z tend to infinity, we find

^ n-ln-l

(41) logR + Σ ΣPjk{&j(<x>) - Xj)&k(°°)
7=1 k=\

m-\

= lθgi? + ] P (a™ " ak)ωk(°°) - <*m-
k=l

Recalling the definition (16) of the energy functional, we deduce from
(41), (40), and (23) that

m— 1 m—\

(42) ^(Ω) = logi? +ΣΣ Pjk(Mj(°o) - xj)ωk(oo) - am

7=1 k=\

n-\n-\

7=1 A:=l

m-1 m~\

7=1 A:=l

k=l

1

A:=l

m-1 m-1

m-1

However, because an = 0, Σ / L i ^ = 1 > a n d xjc^O for n < k < m,
it follows from (40) that

(43)

7 = 1 Λ r = l

Introducing (43) into (42), we conclude that ^(Ω) = ^(Ω), where
xk = 0 for n < k < m in the definition of ψ(Ω). Since Ω was an
extremal domain, we have therefore established the sharp inequality
ψ(Ω) < ψ(Ω) for all domains Ω in the given equivalence class. This
result may be summarized as follows.

THEOREM 4. Let Ω be a domain containing infinity, with boundary
components Γ\, ... ,Γm. For fixed n with l<n<m,letΩDΩ be
the domain with boundary <9Ω = Γi U U Γn. Given a set of nonzero
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real parameters X\, ... , xn with sum 1, let ψ{O) be the corresponding
energy functional9, and let ψ(Ω) be the energy functional of Ω with
parameters X\, ... ,xm-\, where xk = 0 for n < k < m. Then
ψ(Ω) < ψ(Ω), and equality is attained for some domain Ω in each
equivalence class.

As a corollary to the proof of Theorems 3 and 4, we can now make
a surprising observation concerning the relation between the domains
Ω and Ω in the extremal situations. Given an arbitrary domain Ω
containing infinity and bounded by smooth curves T\ , . . . , Tn , con-
sider the harmonic function u(z) defined by (24) with arbitrary real
parameters X\, . . . , xn-\. Draw (m-n) disjoint arcs Γ^ along level
sets u(z) = ak, k = n + l, ... , m. Suppose that none of the new slits
Γk meets any of the given curves Γ i , . . . , Tn, so that the continua
Γi, . . . , Γ m bound an m-tuply connected domain Ω containing in-
finity. Then Ω maximizes the energy functional ψ in the equiva-
lence class ^"(Ω) with the prescribed xk. If instead we draw the arcs
Γ π + 1 , . . . , Γ m along level sets ύ(z) = βk of the harmonic conjugate,
so that du/dn = 0 there, then Ω minimizes ψ in ^ ( Ω ) .

Indeed, if Yn+χ, . . . , Tm lie on level sets of u, the calculation given
in the proof of Theorem 4 shows that ^(Ω) = ̂ (Ω), where X\ + — h
xn = 1 and xk = 0 for n < k < m and by Theorem 4 this is
the maximum value of ψ in ^"(Ω). Similarly, if du/dn = 0 on
Γw+i, . . . , Γ m , it follows from the proof of Theorem 3 that ^(Ω) =
Φ(Ω), the minimum value in ^"(Ω).

5. Sharp bounds for a quadratic form. Theorems 3 and 4 provide
the sharp inequalities Φ(Ω) < ^(Ω) < ^(Ω) . There is an interesting
consequence. Let xk = tξk, k = 1, . . . , n - 1 then xn = 1 - tσ,
where σ = ξ\ + h ξn-\. Making these substitutions in the above
inequalities, dividing by t2, and letting t tend to infinity, one finds
after a simple calculation that

(44) £ Σ qjkξjξk < Σ Σ hύfo
7=1 k=\ 7=1 k=l

and

(45) £ ΣPjkξjξjc < E ^Pjkξjξk - 2<7 ΣPj»tj + 2

7=1 k=\ 7=1 k=\ j=\

for arbitrary real parameters ξ\, . . . , ξn-\.
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The inequalities (44) and (45) suggest the reverse inequalities for
the original matrices ((Qjk)), ((Pjk)) > and ((Pjk)) Indeed, we shall
prove the following theorem.

THEOREM 5. Let Ω c C be a multiply connected domain containing
infinity, with smooth boundary curves T\, . . . , Tm. For fixed n with
1 <n <m, let Ω be the larger domain with boundary A = Γi U UΓW.
Let {{Pjk)) and {{Pjk)) be the Riemann matrices of Ω and Ω, and
let {{Qjk)) be the Robin matrix of Ω with respect to A. Then for each
choice of real parameters x\, ... , xn, the inequalities

n n n n n n

(46) Σ Σ pjkXjXk < Σ Σ PjkXjXk < Σ Σ G Λ **
7 = 1 Λr=l 7 = 1 fc=l 7 = 1 fc=l

At?/έ/. Among all domains Ω /Λ each given conformal equivalence class,
the right-hand inequality in (46) is sharp.

REMARKS. For xn = 0, the right-hand inequality in (46) can be
deduced algebraically from the inequality (44) for the inverse matrices,
using the fact (see [2], p. 37) that two symmetric nonsingular matrices
can be simultaneously diagonalized. Conversely, Theorem 4 implies
both (44) and (45) with the last two terms excised. We shall give
a variational proof of (46) which actually identifies the sharp lower
bound and thus leads to a stronger result than we stated in the theorem.

Proof of Theorem. Note that the matrices ((Pjk)) and ((Qjk)) are
conformally invariant under all admissible mappings of Ω, but ((Pjk))
is not. Holding xγ, . . . , xn fixed, we ask first for the maximum value
of the functional

Φ = φ{Λ) = YΣfJkXjXk
7=1 k=\

among all domains Ω in the given equivalence class. As in the proofs
of Theorems 3 and 4, the existence of an extremal domain is clear from
the translation-invariance of φ. Again denote the extremal domain
by Ω and its boundary components by Γ\, . . . , Γ m .

Choose ZQ G Γfc for some k > n and consider again the boundary
variation z* = Vp(z) given by (17). This is an admissible mapping of
Ω, sending it to Ω* = VP(Ω), and it acts as an interior variation of
Ω. The variational formula for the period Pjk is known [12] to be

(47) ηk = Pjk + Re{ap2wfj(zo)wfk(zo)} + O(p3),
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where Wj(z) is the analytic completion of the harmonic measure
ώj(z) of Γ7 with respect to Ω. Applying the formula (47), we see
that the maximum value φ = φ(Ω) of the functional is perturbed to
φ* = φ(Ω*) given by

(48) φ* = φ + Rc{ap2Ff(z0)
2} + O(p3),

where

(49) F(z) =
7=1

Since φ* < φ, we may again invoke the fundamental lemma of the
method of boundary variation to conclude from (48) that each Γ^
with n < k < m lies on a trajectory of the quadratic differential

(50) Ff(z)2dz2>0.

Taking the square root of (50) and integrating, we therefore find that
F(z) has constant imaginary part on each curve Γ^ :

(51) Im{F(z)} = βk9 zeΓk, n < k < m.

On the other hand, it is clear from (49) that F(z) has constant real
part on each Γ^ with 1 < k < n :

(52) U(z)

By the general form of the Cauchy-Riemann equations, we may infer
from (51) that dll/dn(z) = 0 on each curve I \ , n < k < m. Thus
we see that

(53) U(z) = Σxjώjiz) = £>*)•(*),

7=1 7=1

where Oj are the generalized harmonic measures of Ω with respect
to A, defined by (3). Now integrate the normal derivative dU/dn
around Γ^ to conclude from (53) that

n n

(54) J2 XjPjk = Σ XjQjk, \<k<n.

7=1 7=1

Multiplying (54) by xk and summing over k, we arrive finally at the
formula

n n

7=1 k=l
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for the extremal domain. Since this is the maximum value, we have
established the upper bound (46) and we have proved that equality is
attained for some domain Ω in each prescribed equivalence class.

Next let Ω be a domain which minimizes the functional φ in a
given equivalence class. The variational method then leads to the
information that

(55) Re{F(z)} = ak, z e Γ b n<k<m.

The conditions (53) and (55) now lead to the equation

(56) U(z) =
7=1 7=1 7 = Λ + 1

where ω 7 is the harmonic measure of Γ, with respect to Ω. From

(56) we conclude as before by comparing periods of U around Γ\
that

n n m

(57) Σ X j P J k = J2XjPjk + Σ <*JPJk' l < k < m ,
7=1 7=1 7 = Λ + 1

where P^ = 0 for n < k < m.
The linear equations (57) may be solved for otj in terms of the

[m - n) x (m - n) matrix ((Π^)) which is the inverse of {{Pjk)) for
n+l<j,k<m. The solution is

n m

(58) aj = •

Now insert (58) into (57), multiply by x^, and sum over k to arrive
at the formula

n n mm

(59) φ = 2_j 2-j *jkxjxk ~~ 2s Δs **jkζjζk ?
7=1 k=l 7=n+l k=n+l

where

(60) ξj =
ι=\

Since (59) is the value of φ for the extremal domain, it is the sharp
lower bound for φ(Ω) as Ω ranges over the given equivalence class.
But ((Πyfc)) generates a negative-definite quadratic form, so (59) is
actually larger than the lower bound asserted in the theorem unless
all ξj• = 0. This can happen nontrivially only if m < 2n, so that the
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number of variables Xι exceeds the number of equations in (60), and
the xι are chosen to make all of the sums in (60) vanish.

6. Monotonidty properties of the Robin function. A closer study of
the Robin function reveals some remarkable properties. We begin by
showing that it always majorizes Green's function.

THEOREM 6. Let Ω c C be a multiply connected domain bounded
by smooth curves T\, ... , Γm. Let R(z, ζ) be the Robin function
of Ω, defined with respect to the boundary subsets A = Γi u U Tn

and B = Γn+i U u Γ m ; and let g(z, ζ) be Green's function of Ω.
Then R(z, ζ) > g(z, ζ) for every point z e Ω, z Φ ζ. Furthermore,
R(z, Q>0forall zeB and §f(z, f) > 0 for all zeA.

Proof. In view of the conformal invariance of both Green's function
and Robin's function, we may assume without loss of generality that
the boundary curves are analytic. Observe first that by the maximum
principle the harmonic function

H(z9ζ) = R(z9Q-g(z9ζ)

takes its minimum value on the boundary of Ω. We claim that it
attains its minimum on A and not on B. Suppose, on the contrary,
that H(z, ζ) assumes its minimum at some point ZQ e B. Then
the inner normal derivative §f (z0, ζ) > 0. But | f (z, ζ) = 0 for
all z e B, so this implies that §f(z0, ζ) < 0. However, since Ω
has a C2 boundary, it is a well-known consequence of Hopf s lemma
[9] that §f (z, ζ) > 0 for all z e dΩ. This contradiction shows
that H(z, ζ) attains its minimum on A, and not on B. But by def-
inition, R(z, C) ΞΞ g(z9 C) = 0 on A. Thus H(z, ζ) > 0 in Ω,
and strict inequality occurs everywhere unless H(z, ζ) = 0. How-
ever, it is clear that H(z9 ζ) φ 0, since | f (z, ζ) = 0 on B, while
| f (z, ζ) > 0 everywhere on <9Ω, again by Hopf s lemma. This proves
that R(z, ζ) > g(z, ζ) everywhere in Ω and on B. In particular,
R(z, 0 > 0 on 5 , while | f ( z , ζ) > | f ( z , 0 > 0 on A. This
completes the proof.

In fact, the Robin function exhibits a monotonicity property with
respect to the boundary subset A on which it vanishes. This principle
is expressed by the following theorem.

THEOREM 7. Let Ω c C be a multiply connected domain bounded
by smooth Jordan curves T\, . . . , Γ m . For 1 < n < m, let Rn(z, ζ)



ROBIN FUNCTIONS AND ENERGY FUNCTIONALS 269

be the Robin function of Ω which vanishes on An = Γi u U Tn

and has vanishing normal derivative on Bn = Tn+\ U u Γ m . Then
Rn+\{z, ζ) < Rn(z, C) for every point z e Ω, z Φ ζ, and for every
z e Bn. Furthermore, dRn+ι/dn(z, ζ) < dRn/dn(z, ζ) for every
zeAn.

Proof. Again we may assume, by conformal invariance, that the
boundary curves are analytic. We may also assume that n < m -
2 (hence that m > 3), since Rm(z > 0 is Green's function and
so the case n = m - 1 is covered by Theorem 6. By definition,
Rn(z, 0 = Rn+i(z, 0 = 0 for all z e An and dRn/dn(z, ζ) =
dRn+ι/dn{z, C) = 0 for all z e Bn+ι while Rn+\{z, 0 = 0 and
dRn/dn(z , 0 = 0 for all z e Γ n + 1 . Thus for fixed ζ, the harmonic
function

H(z) = Rn(z,ζ)-Rn+ι(z,ζ)

vanishes on An and has vanishing normal derivative on Bn+χ while
H(z) > 0 on Γ r t + 1, by Theorem 6. Note in particular that H(z) is
not constant in Ω.

Let us ask for the minimum of H(z) in the closure of Ω. We
claim that the minimum cannot be attained on Bn+ι. If it were, then
because dH/dn = 0 there it would follow from the general form of
Hopf s lemma [9] that H(z) is constant in Ω, which is not the case.
Thus the minimum is attained on An, which implies that H(z) > 0
in the closure of Ω. It now follows from the maximum principle
for harmonic functions that H(z) > 0 for all z e Ω. Furthermore,
H(z) > 0 on Bn+\, since H(z) does not reach its minimum there.
Finally, another application of Hopf s lemma shows that dH/dn{z) >
0 on An , since H(z) = 0 there. This completes the proof.

Finally, Theorem 7 may be applied to derive a monotonicity prop-
erty of the period matrix {{Qjk)) In the notation of Theorem 6,
let

(61) ^ ( 0 =

be the generalized harmonic measures with respect to An , and let

(62) Q{S =
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denote the Robin matrix of Ω with respect to An. Since Green's
function g(z, ζ) = Rm(z, ζ) 9 it is clear that ((β{j°)) is simply the
Riemann matrix ((Pjk)) of Ω.

THEOREM 8. Let Ω be a multiply connected domain with smooth
boundary curves Γ\, ... , Γm. In the above notation, let ((Q^)) de-
note the n x n Robin matrix of Ω with respect to An. Then for
1 < n < m the strict inequalities

Q%+l)<Qfk\ \<j,k<n,

hold. In particular, Pjk < Q^, where ((Pjk)) is the Riemann matrix
ofQ.

Proof. According to Theorem 7,

Thus it is clear from (61) that σf+x)(z) < σf\z) for all z e Ω if

1 < j <n. Recall now that σ n^ is the harmonic function for which

σf\z) = 1 on Tj, σf] = 0 on Tk for 1 < k < n but k φ j , and

dσjι\z)ldn = 0 on Tk for n < k < m. Thus the harmonic function

u(z) = σf\z) - σf+1)(z)
is positive in Ω and vanishes everywhere on An. Thus by Hopf s
lemma, |^(z) > 0 for all z e An. This holds in particular on each
curve Γfc with 1 < k < n, so it is clear from the definition (62) that

β $ + l ) < Qfk f o r * ^ J> k - n - T a k i n 8 Λ = w - 1, we conclude that
Pjk < Q%~1), and it obviously follows that Pjk < βj.J* for every n
(1 <n < m) and for all indices j and k in the range I <j, k <n.

7. The Robin function as a reproducing kernel. Again let Ω be a
domain bounded by smooth curves Γ\9 ... ,Γm, and let R(z, ζ) be
the Robin function of Ω with respect to the boundary subset A =
Γi U U Γπ, where 1 < n < m. Let B = Γπ+i U U Γm be the_
complementary subset of <9Ω. t

Consider the linear space N of all functions harmonic in Ω which
vanish on A and have a finite Dirichlet integral:

\\u\\2= if \Vu(z)\2dxdy < 00.
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Define the kernel

K(z,ζ) = ±

where g(z, ζ) is Green's function of Ω. Observe that for each fixed
ζ e Ω, the function K(z, ζ) belongs to N. For each i/eJVwe have

(63) JJ VK(z,ζ)-Vu(z)dxdy

Thus K(z, ζ) is a reproducing kernel in N. Note that K(z, ζ) =
K(ζ, z), and that K(z, f) > 0 by Theorem 6.

The reproducing property (63) shows that \\K(z, ζ)\\2 = K(ζ, ζ).
It also follows from (63) and the Schwarz inequality that

u(ζ)2<K(ζ,ζ)\\u\\\

and equality occurs for u(z) = K(z, ζ)/K(ζ, ζ). Another conse-
quence of (63) is the uniqueness of the reproducing kernel.

This point of view suggests a new approach to the Robin function.
In particular, the direct construction of the kernel function through a
complete orthonormal system will give another proof of the existence
of the Robin function.

As an example, let us construct the kernel function of the annulus
Ω = {z: 1 < \z\ < b}, where A is the inner boundary circle \z\ = 1.
A complete orthonormal system in the space N is provided by the
functions

= cln{rn - r~n)cosnθ, n = 1, 2 . . .

rn - r~n)sinnθ, /! = 0, 1, ..

where z = reiθ and the positive constants cz are chosen to make
\\uk\\ = 1. A calculation gives
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Thus the kernel function is

(rn - r~n){pn - p~n)

where z = reiθ and ζ = peiφ .
It is well known that Green's function of an annulus can be given

explicitly in terms of elliptic functions. Having Green's function and
the kernel function, one then has Robin's function of the annulus.

Alternatively, Robin's function of the annulus can be calculated di-
rectly by conformal mapping. In terms of Jacobi's sine amplitude
function sn z, which maps a rectangle onto the upper half-plane, one
can construct a function w = F(z) which maps the annulus Ω con-
formally onto a domain Dec with boundary components C\ and
Cι, where C\ is again the unit circle and Cι is a radial segment out-
side C\. The mapping can be constructed so that C\ = F(Γ\) and
F(ζ) = oc for an arbitrarily specified point ζ € Ω. It is clear by in-
spection that the Robin function of D with pole at infinity is simply
logH . Thus the Robin function of Ω is R(z, ζ) = \og\F(z)\.
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