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EXISTENCE AND GEOMETRY
OF A FREE BOUNDARY PROBLEM

FOR THE HEAT EQUATION

ANDREW ACKER AND KIRK LANCASTER

A periodic (in t) free boundary problem for the one-dimensional
heat equation is examined. The existence and regularity of the
(unique) solution is established and the geometry of the free boundary
is shown to be no more complicated than the geometry of the fixed
boundary.

0. Introduction. Free boundary problems (and moving boundary
problems) arise in a large variety of contexts and have been studied
for over one hundred years. There is an extensive literature on many
aspects of free boundary problems including the existence, uniqueness,
regularity, and stability of solutions and the qualitative properties of
the free boundary ([14], [18]). Many applications, especially to con-
tinuum mechanics, have been considered since the work in the 1860's
of Helmholtz and of Kirchhoff on fluid jets and of Neuman on the
Stefan problem ([9], [10], [12], [15], [17], [27], [30]). In addition, the
approximation of solutions and of free boundaries using numerical
methods is well established (e.g. [16]).

Among parabolic problems, Stefan problems have generated a great
deal of interest and an extensive literature (e.g. [11], [30]). We will
examine a periodic free boundary problem for the one-dimensional
heat equation which might be considered as a free boundary prob-
lem of Stefan type ([32]) in which the known (or "fixed") boundary
varies periodically in time and the free boundary is determined by a
prescribed flux condition (rather than a phase-change condition). In
addition, this can be viewed as a model for certain processes involv-
ing chemical reactions. Alternatively, our problem might be viewed
as a model problem in which techniques which have proven useful for
certain elliptic free boundary problems (e.g. [1], [2], [5]) are applied
to a particular parabolic problem.

We will use a trial-free-boundary approach based on an operator
method to establish the existence of a solution to our free boundary
problem. Trial-free-boundary methods have been used for over 70
years with success, as illustrated, for example, by the work of Cryer
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([16]). Our solution will be obtained as the limit of the fixed points
of a sequence of contracting operators (similar to [2]) and the trial-
free-boundary method based on this limiting process can be shown to
converge (albeit slowly) to a solution as in [5].

An alternative approach for establishing the existence of a solution
is to use a variational method. A natural functional to minimize in
this case is the sum of the area and the heat flow (over one period).
However, a minimizer of this functional does not lead to a solution
of our problems. While another variational approach might be suc-
cessful, we are unaware of an existence proof for our problem based
on variational methods.

We will establish the regularity and, using (a variant of) the Lavren-
tiev principle, the uniqueness of the solution. We will then examine
geometric properties of the free boundary. For certain harmonic or
minimal surface free boundary problems, curves of constant gradient
direction have been used to relate geometric properties of the free
boundary to geometric properties of the fixed boundary (e.g. [4], [6]);
these curves are related to the "nodal lines" of the Courant nodal line
theorem ([13]) as well as to later work (e.g. [20], [25], [28]). We will
use such curves to prove that the geometry of the free boundary is
no more complicated than the geometry of the fixed boundary. To
the best of our knowledge, the only previous application of this idea
to parabolic free boundary problems is in the work of Friedman and
Jensen ([19]).

1. Preliminaries. Given periodic functions X*(t) and X(t) with
period τ and, say, X(t) > X*(t) for each t e ίH, let us denote

Γ = {(X*(t),t):teiR}9

Γ = {(X(t), ί ) : ί e £H}, and

Ω = {(JC , t): X*(t) < x < X(t), teΰ\}.

Let us define U = £/(Γ*, Γ) e C2(Ω) n C°(Ω) to be the τ-periodic
(in t) solution of the Dirichlet problem

Ut = Uxx i n Ω ,

U(x*(t),t) = ι ten,
U(X(t) , 0 = 0 ί 6 9i

We are interested in the following

Free Boundary Problem. Given Γ* as above, find Γ (as above) such
that if U = U(Γ*, Γ) then Ux e C°(Ω U Γ) and Ux(X(t), t) = - 1 .
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We will prove that if X*{t) is Lipschitz continuous, then the free
boundary problem above has a solution Γ = {(X(t), t): t e 9t} with
X(t) Lipschitz continuous, this solution is unique, and the "geometry"
of Γ is no more complicated than that of Γ*.

2. Existence. Suppose X*(t) is a τ-periodic, Lipschitz continuous
function with Lipschitz constant a. Let K = K(a, τ) denote the
set of τ-periodic, Lipschitz continuous functions X{t) with Lipschitz
constant a such that X{t) > X*(t) for t e SR.

NOTATION. At times, we will write Γ e K if Γ = Σ(X) and X eK,
where

F o r Xx, X2 e K (resp. Γι,Γ2eK w i t h Γk = Σ ( X k ) , k = 1 , 2 ) , w e
define the form

ll*i - Xi\\ = IIΓi - Γ2 | | = max{|ΛΊ(0 - X2{t)\: t e * } .

For any X e K, ε e (0, 1), and Γ = Σ(X), let

Φe(Γ) = {(*,ί ) : U(x,t) = e, teft},

ψfi(Γ) = {(x + ε , ί ) : {x,t)eΓ}, and

where 1/ = C7(Γ*, Γ). We let φε, ψε, and tε be defined on A" so that
Φβ(Γ) = Σ(^β(ΛΓ)), Ψe(Γ) = Σ(^ e (X)), and Γβ(Γ) = Σ(ίβ(JΓ)), where
Γ = Σ(Z) and X e K. Notice that

U(φε(X)(t),ή = ε,

ψε(X)(t) = ΛΓ(ί) + £, and ίe(ΛΓ) = ψε(Φε(X)) for X e K.

LEMMA 1. φε: K -+ K.

Proof. Let X e K and Γ = Σ(X). Clearly φε{X) is τ-periodic,
since U is τ-periodic in t, and </>β(Λf)(ί) > -Y*(ί)» since X(t) >
X * ( t ) , U(X*(t), ί) = 1 , a n d U(X(t), t) = 0 . Let | α o | >α,h>0,

Th = Γ + (α0Λ, A) Ξ {(Λ + αoh, t + h): ( x , ί ) e Γ }

Γ; = Γ* + (αoh ,h), αh = Ω + ( α 0 ^ , Λ), and
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for (x, t) e Ωh Notice that Uh(x, t) > U(x, t) in Ω n Ω A , since
Uh = \>U onT\, Uh > 0 = U on Γ, and U and Uh both satisfy
ut = uxx in Ω/jflΩ. This means that U is (weakly) decreasing on
rays x = χ 0 + α o ί , x > χ0 (and strictly decreasing if |αo| > α ) . It
follows that if (*o, ίo) e Φ e(Γ), then Φe(Γ) lies to the left of the
cone {(x + XQ, t + to): \t\< \aox\, x > 0}, since otherwise C/ could
not be monotonic on the ray x = XQ + ao(t - fo), •* > χ o Thus 0ε(x)
is Lipschitz continuous with Lipschitz constant a. D

REMARK. If VU were continuous on Ω, we could simply have

considered | ^ with v = (αo> \)l{Ja^ + 1).

LEMMA 2. Suppose Γ* w α Lipschitz-continuously differentiable
curve. Then Ux <0 on Γ*.

Proof. This follows from the Hopf boundary point lemma for para-
bolic equations (e.g. [29], p. 170).

For two curves Γi and Γ2 with I \ = {(Xk(t), t) : ί 6 £H}, let us
say Γi < Γ2 if Xλ{t) < X2{t) for all t e 9t.

LEMMA 3. 77jere exw/ cwrv^ Γi , Γ2 e K with Γ2 < Γ2

Γfi(Γi) > Γi and Tε(Γ2) < Γ2 for ε e (0, 1) sufficiently small

Proof. Choose Γi = Γ* + (σ, 0) = {(x*(t) + σ, t): ί e ίH} with cr >
0 small enough that \dU{/dx\ » 1 on Γ 1 ? where Ux = ί / ( P , Π ) ,
and let Γ2 = {(xo? 0 ί € #t} for XQ sufficiently large. D

We define K = K(Γ*, Γ!, Γ2) by

K = {X e K : Π < Σ(X) < Γ2}

and write Γ G K if Γ = Σ(X) a n d l e ^ . Notice that if e e (0, 1)
is sufficiently small, Lemma 3 implies that Tε: K -^ K. We may now
state an existence theorem for fixed points of Tε.

THEOREM 1. Let Γ* be a Lipschitz-continuously differentiable curve
and suppose U = U(Γ*, Γ) is continuously differentiable in Ω u P .
Then, for e e (0,1) sufficiently small tε:K —• K is a contraction.
Thus, for each small ε > 0, there exists a unique "fixed point" Γε eK
ofTε.
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Proof. Using Lemma 2 and the maximum principle, Φe can be
shown to be contracting as in [2]. Since Φβ is contracting, so
is Tε. D

LEMMA 4 (Uniform Modulus of Continuity near Γ). Suppose Γ e K
and V e C2(Ω) n C°(Ω) is a solution of Vt = Vxx in Ω = Ω(Γ*, Γ),
V = 0 on Γ, and V = 1 on Γ*. If V is periodic in t with period τ,
then

V(x,y)<Cdist((x,t),Γ)

for (χ,ή e Ω, where C = C(Γ*, Γ{, Γ2, α) > 0 w independent
ofT.

Proof. Let α > 0 denote the Lipschitz constant of K. Let (X{to),
ίo) e Γ and set

Let y* = y + (ΛΓ*(ί0) - X(h), 0) and let ω = ω(ί0, α) be the region
between y* and y. Since the Lipschitz constant of X*(t) and X{t) is
(<) α , Γ n { ( x , ί ) : ί < '()} lies to the left of γ and Γ*n{(x, ί ) : ί <
ί0} lies to the left of γ*. Let w(x,t) be the solution of wt = wxx in
ω, ty = 0 on γ, and w = 1 on y*. Using the fact that 0 < V < 1 in
Ω and 0 < w < 1 in ω, it is easily seen that V < w on the parabolic
boundary of the region ΩnωΠ{(x, t) : t < to}. Therefore, the
maximum principle implies that V < w in Ω Π ω n {(x, ί ) : ί < ίo}.
Now

w(x, t) = <̂ (x + αί)

for some φ e C2([X*(t0) + at0, JΓ(ί0) + at0]). Then

and so 0(j) = Ae°*+B. Since 0(X*(ίo)+αίo) = 1 and
= 0, we see that φ{s) = {eQSi - eas)/{easi - easή, where s0 = JΓ*(ί0) +

and s\ = JΓ(ί0) + at0. Thus

where xo = X*

w(x, ή-

(?o) and x\ =

w{x,

e<χ(χt

-X(t0

ίo) =

\-oct0) _ ^ α ( x o + α ί o ) '

), and, in particular,

β^i - eaxo
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for x e[xo, x\]. Then V(xχ - h, ίo) < w(.xi - h, t0) and

_ eax0

ah + O((ah)2)

for /? > 0 sufficiently small and C\ = eax>/(eaxι - eaxo) + 1, for
example. Now

dist((x,/ 0 ),Γ)>dist((x,ί 0 )>)>)

and

dist((x! - h, ί 0 ), y) =
l

so

V(x - h, to) < Cdist((x, ίo), Γ),

where C = (1 + a2)~^2Cι. Notice that Xi > Xo + σ (recall Π
= Γ* + (σ, 0)) and so C\ has a finite upper bound independent
of Γ. D

εConstruction of a candidate for a solution. For some ε0 > 0, T£

has a "fixed point" Tε e K for all 0 < ε < βg provided Γ* is suffi-
ciently regular (Theorem 1). Since each T e K satisfies Γi < Γ < Γ2
and Xι(t) < X(t) < X2(t), t € Λ, where Γ = Σ(JΓ), the Arzela-
Ascoli Theorem implies that there exists a sequence {εn} converging
to 0 and X° e K such that X,n -> X° in C°(Λ) and Γw -> Γ°
uniformly as /1 -> 00, where Γ° = Σ(X°) and Γ« = Σ ( X e ) . Let us
denote U(Γ*, Γ°) by C/°, Ω ( P , Γ°) by Ω°, U(Γ, Γπ) by ί7w , and
Ω(Γ,ΓΠ) by Ω w .

THEOREM 2. Suppose Γ* w sufficiently regular that the hypotheses
of Theorem 1 λoW. ΓΛ /̂i C/j? € C°(Ω°) ^ ^ C/J? = - 1 on Γ° . In

particular, Γ° solves the free boundary problem. Further, this solution
is unique.

Proof. Notice that ||Γπ-Γ°||oo = max{|ΛΓβ| i(ί)-^0(0l te ft} goes
to zero as n —• oc. Using Lemma 4 and the fact that Un = U° = I on
Γ*, we see that Un —• £/° uniformly on compact subsets of Ω° n Γ*.

Let

v ( γ Λ _ Un(x, t) - UnjX-en,t)



FREE BOUNDARY PROBLEM 213

in Ωn = Ω ( P + ( β Λ , 0 ) , Γ Λ ) . Then Vn = (0 - εn)/εn = - 1 on
Γ w , since Γe(Γ£) = Γε and so φε(Xε)(t) = Xe(t) — ε. Also notice
(Vn)t = (Vn)xx in Ωw and, from the mean-value theorem,

Vn(x, t) = j^(Un(λn(t),t))

for some λn(ή G (x-en, x). Now suppose (x, f) G Ω° and n is large
enough that (x, ί) G Ωw . Since, as n —• oo, t/π converges uniformly
on compact subsets of Ω° to U°, we see that

(e.g. [29]) and hence

as n —> oo.
Let ΩJ = {(*, ί) € Ω : [/0(χ? /) < \} and let Γ; denote the left

boundary of Ω°p . Let V G C2(Ω^) n C°(Ω^) satisfy F, = Vxx in Ω^,
K = — 1 on Γ°, F = C/ c on Γ*, and F(x, ί) is τ-periodic in /.
Since Vn = - 1 on Γw, a result analogous to Lemma 4 implies

for (x, ί) an element of the right boundary of Ω°nΩ w , where kn —> 0
as n -^ oo. Since F(x, ί) = C/?(x, t) and F r t(x, ί) -> U$(x9 t) as
« —• oo, for (x, t) G Γ*, we see that J^(x, /) —• V(x, ί) as # —• oo,
for ( j c , ί ) e Γ ; . Thus

F * - + F

uniformly on compacta in Ω$ and so F = U$. Since F(x, ί) —• - 1

as (x9t)e Ω° approaches Γ°, Ux = - 1 on Γ°.
Turning to the uniqueness question, we will show, using an adap-

tation of the Lavrentiev principle ([23], [24]) that the existence of
two distinct solutions Γ°, Γ1 G K leads to a contradiction. As-
suming Γ° > Γ1 is false, let σ > 0 be the least number such that
Γ1 < Γ2 = Γ° + (σ, 0). Then two applications of the maximum prin-
ciple show that

U(Γ, Γ1) < U(Γ, Γ2) < U(Γ + (σ, 0), Γ° + (σ, 0))

throughout Ω(Γ* + (σ, 0), Γ 1 ) , where the inequalities reduce to equal-
ity at any point po G Γ1 n Γ 2 . Using the regularity results of §3 (which
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apply to both Γ° and Γ1) and the Hopf boundary point lemma, we
see that

- 1 = UX(Γ, Tι)(pQ) > UX(Γ + (σ, 0), Γ + (σ, 0))(p0)

-(σ,0)) = - l . D

From now on, we will write Γ° as Γ.

3. Regularity of the free boundary. In this section, we will let Γ* =
{(X*(t), t): t G ίH}, where X* is a τ-periodic, Lipschitz continuous
function with Lipschitz constant a and we will let Γ € K be the
solution of the free boundary problem, whose existence follows from
Theorem 2. We will let U = U(Γ*, Γ) and Ω = Ω(Γ*, Γ).

LEMMA 5. The level curves of U are Lipschitz continuous with Lip-
schitz constant a.

Proof. This follows from Lemma 1. D

LEMMA 6. Ut and Uxx are uniformly bounded in Ω.

Proof. Recall U(Xε(t), t) = ε for all 0 < ε < e0. If we differentiate
with respect to t, we obtain

and so

\Ut(XB(t),t)\ = \X'8(t)\\Uχ(Xε(t),t)\<a\Ux(Xe(t)9t)\.

Now Ux(x, t) —• — 1 as (x, t) -> Γ and Ux is bounded in Ω, so \Ut\
is bounded in Ω. Since Uxx = Ut, Uxx is also bounded. D

LEMMA 7. Uxt is uniformly bounded in Ωp = {(JC, /) : U(x9 t) <

i
Proof. We will assume that Γ* is as regular as we wish, and prove

the lemma in Ω, since otherwise we could replace U by V(x, t) =
2U(x, t) and Ω by Ωp and notice that the left boundary of Ωp is
smooth. Let us define

in ΩΛ = Ω n (Ω - (0, h)). Notice that Ωh -» Ω as h -> 0 + . Let
ΓΛ = Σ(ΛΓA) and Γ^ = Σ(X*h), where ΛΓA(ί) = min{ΛΓ(ί), X(ί + h)}
and X*h{t) = max{X*(ί), X*(t + h)}. Then

\Vh(Xh(t), 01 = |Ck(* Λ (ί), ί + A) - % ( ^ * ( 0 , Ol
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Suppose, say, that X{t + h)> X(t) and so Xh{t) = X(t). Then

\Vh{Xh{t), 0| = \Ux{X{t),t + h) - Ux(X(t),t)\

= \Ux{X{t),t + h) + l\

= \Uxx(λ(t),t
< Ma\h\

w h e r e \UXX\ < M i n Ω a n d λ(t) e (X(ή, X(t + h ) ) . If X(t + h)<
X(t), a similar argument yields the same estimate. Now U is smooth
in ΩuΓ* (by our assumption of regularity of Γ*) and so there exists
Mi such that \Uxt\ < Mx on {{x, t) : \ < U(x, t) < 1}. Since
Vf,(x, t)/h is the difference quotient for Uxt(x, t), we see that for
M2 > Mi and h > 0 sufficiently small,

\Vh{X*h{t), t)\ < M2\h\.

Since (Vh)t = (Vh)xx in Ωh and \Vh(x, t)\ < M3|/z| ond{Ω.h), where
Λf3 = max{Ma, M2} , we obtain

in
h

for any h small enough. It follows that \Uxt\ < M3 in Ω. G

LEMMA 8. Ut is continuous on Ω u Γ .

Proof. Let us begin by defining Ut on Γ. Set fε = Ut(X(t) - ε, t)
for ε > 0 small. Notice that fε e C°(0i) and

\fe(ί) - fβ(t)\ = \Ut(X(t)-e, t) - C/,(X(0 -β, t)\
<\Uxt(λε>β(t))\\ε-β\<M3\ε-β\,

where X(0 - ε < λε>β(t) < X{t) - β if ε > β. Then fε(t) con-
verges uniformly as ε —• 0+ to a function / e C°(ίH). Let us define
Ut(X(t),ή = f(ή.

Now we wish to show that Ut € C°(Ω U Γ). Let (x0, t0) =
(X(ί0), to) e Γ and let (x, /) e Ω. Then

< |l7t(xo, ίo) - Ut(X(t),t)\ + \Ut(X(t),t) - Ut(x, ί)|

< irc/o) - y*(oι+AT3 |JC - ΛΓ(OI

< ξ(t - t0) + M3\x- xo\ + M3α\t - ί o H 0

as t -+ to, x -> XQ, where ξ(τ) -> 0 as τ -»• 0 . D
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LEMMA 9. Γ is C1 (i.e. XeCl(ft)).

Proof Since U(Xε(t), t) = ε9 X'ε(t) = -Ut(XB(t),t)/Ux(Xe(t)9t).
Since Ux e C°(Ω U Γ), Ux = - 1 on Γ, and Ut is bounded and
continuous, we have

X'ε-+-Ut{X[t)9t)

uniformly in t as ε —• 0 + . Now

JT(ί + Λ) - X(t) = \im(X£(t + h) - JTβ(ί))

J^($)ίfc = - / Ut(X(s)9s)ds

Jt

and so
i rt+h

X'{t) = lim - Γ / C/f(AΓ(j), J) ̂  = -E/f (*(*), ί)

Since £/, e C°(ΩuΓ),IΈ C°(ίK). •

THEOREM 3. Γ is C°° and U e C°°(ΩuΓ).

Proof. This follows from Lemma 9 and [22]. D

4. Geometry of the free boundary. As in the previous section, we let
Γ* = {(x*(ή 9t): t e ίH} and Γ = {(X(t), t): teM} be the solution
of the free boundary problem, U = £/(Γ*, Γ), and Ω = Ω(Γ*, Γ).
We will compare the geometry of Γ to that of Γ*.

Let v = aϊ + bj with a > 0 and suppose that p0 = (JCO, ίo) =
{X(t0), tQ) e Γ is a ϊ/-minimum of Γ (i.e. h{t) = (ΛΓ(ί) 9t)-v has a
strict local minimum at t0 or, for some δ > 0, if |ί - to\ < δ, then
A(ί) > A(ίo) and for some t\, t2e (to-δ, to + δ) with t\ < t0 < t2,
A(ίi) > Λ(ί0), and h(t2) > h(t0)). Then Uλ(p0) = 0 if λ = -bΐ+ aj.
Also Uλ(X(t), ί) > 0 if t > to is near ί0 and ί7̂  < 0 if / < t0 is
near t0. Here Uλ(x, /) = VC/ λ = -bUx(x, ί) + αt/^x, ί ) .

LEMMA 10. For any direction λ and any compact M c Ω , there are
only a finite number of points in M at which Uχ = 0 and (Uχ)x = 0
simultaneously.

Proof. Let φ(x, ί) = Uλ(x, ί ) . Then φt = 0χχ in Ω. Now let
pQ = (χ0 9 t0) e M. Suppose first that φ(po) φ 0 or 0x(^o) 7̂  0 Then
we can find a (closed) rectangle N centered at po such that either
φ(x9 t) Φ 0 or φx(x,t)φ0 for each (x, t) e N. Suppose now that
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φ(p0) = φx(p0) = 0. Let N be the rectangle given in Theorem B of
[8], where δ, ε > 0. Let z(ί) denote the number of zeros of φ( , ί)
in the interval / = [XQ - ε, x 0 + e] and let fc(ί) denote the number of
common zeros of φ(-, t) and </>*(•, t) in / , for t e J = [ίo-<5, to+δ]
Using [8], we see that z(t) is nonincreasing and z(t\) > z(t2) + k(t2)
when t\, t2 G / with f i < ^ Since z(ίo - δ) is finite, a simple
counting argument, together with the maximum principle, shows that
S = ΣteJ k(t) < oc in fact, S < \z{t$ - δ). Hence, the number of
points in N at which φ = φx = 0 is finite. Since M can be covered
by a finite number of rectangles of the two types above, which have
either none or a finite number of points at which φ = φx = 0, we are
done. D

LEMMA 11. Let po e Ω be a point of the set σ = {(x91) e Ω :
Uχ(x, t) = 0} at which VUχ Φ 0. 77zeft σ is (or can be extended to
be) a smooth (i.e. C°°) arc near po.

Proof. The proof follows from the implicit function theorem. D

LEMMA 12. Let σ be any directed arc such that Uλ = 0 on σ and
Uλ > 0 locally to the right of σ. Then the map f(p) = -bϋ(p) +

p) is strictly increasing on σ.

Proof. Let σ be parametrized by p(s) = (x(s), t(s)) with \pf(s)\ Φ
0 (except possibly at a finite number of points). Let S\ G 91 and
(xι, ίi) = pCsi) G y. Let us set F(s) = /(*($), ί(j)). Then F'(s) =
(-ftC/fCp^ + flC/^Cp^)))^). If φx) > 0, then (~bUx + aUt)x

> 0 and so -bUt + aUxt = -AC/^ + ΛC/^ > 0. If ί#(^) < 0, then
(-bUx + aUt)χ < 0 and so -bUt + aUxt < 0. In either case, F'(s{) >
0. Since S\ was arbitrary, we see that F(s) is (weakly) increasing.
To see that F(s) is strictly increasing, suppose F'(s) = 0 for s in
an open interval / . There are only a finite number of points in any
compact subset of Ω at which Uχ = (Uχ)x = 0. We may thus assume
that Uλ Φ 0 on p(I) this implies t1 = 0 on / . Then σ is horizontal
(near p(I)) and so (Uχ)x = 0 on p(I), a contradiction. D

Let us now define a directed arc γ = y(i/, po) from po i n to Ω
such that Uλ = 0 on y and t/α > 0 locally to the right of γ. Let
/) = {(JC5 ί) g Q : Uχ(x, t) > 0} and let D° be the component
of D whose boundary contains the upper portion (i.e. t > to) of
some neighborhood of po in Γ. Let y(v, /?0) be the component of

n (Ω U {(x, ί) G Γ : £/*(*, ί) = 0}) which contains p0. We give
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γ = γ(v, PQ) the direction which keeps D° locally to the right of y
at every point of y Π Ω. In a neighborhood of each point p eγ with
VUλ(p) ^ 0, γ is a smooth arc with Uλ < 0 to the left of y. α

LEMMA 13. The set γ = y{υ, /?o) w # Jordan arc.

Proof. Since y cannot intersect itself (Lemma 12 or the maximum
principle, since Uχ cannot vanish identically on an open subset of
Ω), the only possible difficulty would have to occur at a point p 3 =
(*3, h) e γ with VUλ{p3) = 0. By Theorem B of [8] and Lemma
10, we may assume that in the rectangle N = [x$ - e, x$ + ε] x
[*3 — <5, *3 + <5] (for some ε, 5 > 0), Uχ(-, t$ + δ) has at most one
zero in [x3 - e, X3 + e], C/̂ ( , ί3 - <5) has at least two zeros in [x3 -
e, X3 + ε], and C/^(p) φ0ifp3φpeNΠγ. Either C/λ( , 3̂)
changes signs at x^ or it does not. First if, say, Uλ(x, t$) > 0 for
x Φ X3 with (x, ί3) G JV, then C/A(x, ί) > 0 if (x ? ί) € ΛΓ with
ί > ί3 and there exist (unique) CL, X^ e C°([/3 - δ, /3]) such that

^(^3) = ^ 3 , ̂ 3 - β < xdt) < XR{() < X3 + e for all t e
-δ, t3), Uλ(xL(t), ί) = t/ λ(xΛ(ί), ί) = 0 for ί € [ί3 - <5, ί 3 ] , and

, t) > 0 if (x, ί) e iV, / < ί3, and x ^ [ ^ L ( 0 ^ Λ ( 0 ]
 T h e n

y n iV = {(χR(t), ί)} U {(XL(0 , 0} Second, if Uλ(x, ί3) < 0 when
*3-e < Λ: < X3 and C/ (̂x, t$) > 0 when X3 < x < xj+β, for example,
then there exists xR e C°([ί3 - δ, ί3 + δ]) such that Uλ(xR(t) , 0 = 0
for ί e [ ί 3 - ί , ί3+ί] and C/A(x, t) <0 if (x9t)eN and x > x ^ ( i ) .
Then γ π N = {(xR(t), 0} I n e a c h c a s e ? 7 is a Jordan arc in a
neighborhood of P3 . D

REMARK, (a) γ is double-point free.
(b) If γ enters Ω at a point po e Γ, then 7 can never return to

Γ, since /(/?) = - α o n Γ .

LEMMA 14. Lei y be as above. Then
(a) 7 cannot have a strict local (0, l)-rninimum in Ω.
(b) 7 cannot have more than one strict local (0, ί)-maximum

in Ω.

Proof. Notice that φ = -bUx + aUt satisfies φt = φxx in Ω and
φ = 0 on γ. Suppose y has a strict local (0, l)-minimum at (xo, ίo)
Then, for some sufficiently small ε > 0, there is a connected, simply
connected region ω bounded below by an arc of y and above by
an interval of t = ί0 + ε s u c h t h a t (*o> ίo) € <9ω. Since 0 = 0
on 9ft)Πy, which is the parabolic boundary of ω, the maximum
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principle implies that φ = 0 and so φ = 0 in Ω, a contradiction.
Conclusion (b) follows immediately from (a). D

COROLLARY. Let (x(s),t(s)) be a parametrization ofγ. Then t(s)
is monotonic or there exists s0 such that t(s) is increasing on s < s$
and decreasing on s >sO

LEMMA 15. Suppose Γ* is not a vertical line, po = (xo, to) € Γ is
a v-minimum of Γ, where v = aί+ bj, and γ = y{y, po) begins at
Po. Then, for some k > 0, γ lies between t = to + k and t = to - k.

Proof. Let ( j φ ) , t(s)) be an arclength parametrization of γ and
suppose /(s) ~> oc as 5 —• oc. From the corollary above, we see that
t(s) is an increasing function and γ can be represented as x =
t>to For each natural number rc, let

γn = {{χ, t - n τ ) : ( x , t ) e γ }

and notice that yΛ is represented by

x = ^ ( ί ) = ^(ί + /iτ), / > ίo - nτ.

Now the γn do not intersect, since if (x, t) e γnΓ\γm, then ( c,
and (x, t+mτ) are in y and Lemma 12 implies m = n . This implies
m = n. This implies ^ π + i ( ί) < ^Λ(ί) in the domain t > to- For any
fixed t>to, {ψnW) is a decreasing sequence bounded below by X*(t)
(since y n c Ω for each ri) and so ^(ί) = lim,I_»00 ψn{t) exists. Now
^(ί) = χ*(t) for all ί > t0 by Theorem A of [8] and so γn -• Γ* as
« —• oo. Since -bU + aUx is increasing on γn for each n, it must be
nondecreasing on Γ*. Since Γ*, U, and Ux are all τ-periodic in t,
we see that -bU + aUx is constant on Γ*. Now U = 1 on Γ* and
so Ux is constant on Γ*. Thus the τ-periodic function g = Ux is a
solution of the boundary value problem

gt = gxx in Ω

g = - 1 on Γ

g = C on Γ*.

Then CM*, ί) = (C + 1)1/ - 1 in Ω and so I/, = Uxx = (C + 1)1/*
in Ω. Thus Γ and Γ* are straight lines and, since they are periodic
in t, they are vertical. This contradiction implies that t(s) does not
approach +oc. A similar argument shows that t(s) does not approach
- o o . D
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REMARK. It does not follow from the τ-periodicity of U, Ux, Ut9

etc. that maximal connected sets of the form y = {-bUx + aUt = 0}
are τ-periodic. There are no τ-periodic connected sets γ = {-bUx +
aUt = 0}, since -bU + aUx would be monotonic and τ-periodic
on y.

LEMMA 16. Suppose the hypotheses of Lemma 15 are satisfied. Then
γ must terminate at a point PQ e Γ* with the same normal vector
(to Γ*) v = aΐ+ bj.

Proof. Suppose po = (xo , fo) € Γ is a ι/-minimum and y begins
at PQ . Let (x(s), t(s)) be an arclength parametrization of y and
let / = -bU + allx. Now y remains in a bounded subset of Ω.
Further, once it leaves a neighborhood of po , y remains bounded
away from Γ. Moreover, it can be shown using Lemmas 10, 11, and
14 that y has no accumulation points in Ω. Since y does not end
at a point of Ω, there must be a terminal point or an accumulation
point PQ = (XQ , ίjjj) G Γ* of γ. Since V£/ is continuous on Ω and
Uλ = 0 at each point of γ, U^(PQ) = 0; thus the normal to Γ* at
PQ is v = aϊ+ bj (recall λ = -bΐ+ a]). Since t(s) is monotonic
(at least for s > SQ) , ί(j) —• ίj$ a s ^ "^ \v\ (1̂ 1 m a Y ^ e °° )• ^ ^ί 5 )
does not have a limit as s -» oo, then there exists <J —> 0 such that
each point of [xζ, x£ + 5] x {/Q} is an accumulation point of y and
hence C4 = 0 on this interval, a horizontal line segment in Γ*. This
is not possible, since Γ* = {(x, t) : x = X*{t)}, and so x(s) -• XQ a s

j - > | y | . •

REMARK. Everything above carries over when po € Γ is a i/-maxi-
mum except that -bU + aUx is decreasing on y.

LEMMA 17. Suppose Γ* is not a vertical line. Suppose a > 0, & > 0,
am/ Po = (xo, ô) G Γ w ̂  v-minimum of Γ, wΛ r̂̂  i/ = ΛΪ + Z>y. Lβ^
y te the curve of constant gradient direction beginning at po as in
Lemma 16 and let γ terminate at p\ = (xi, t\) e Γ*. Suppose that
x > x\ for every point (x, t) eγ. ΓΛ^n v -(po—pι)> a.

Proof. Let us consider the path independent integral

/ = Γ\-bU + aUx)dx + (-bUx + aUt)dL

If we integrate along y from po to p\ and integrate by parts, we see
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that

/ = / (-bU + aUx)dx

and so

I = (x- Xι)(-bU + aUx)\p

Pl - f \x - xλ)d{-bU + aUx).
JPo

Since -bU + allx is increasing along γ and x — X\ > 0, we see that

On the other hand, / = af£ Uxdx + Utdt - b f£ Udx + Uxdt,
and the first integral equals a. If we integrate the second integral first
along Γ from p0 to #o = (*3 ->h) and then along the horizontal line
from 0o to p\, we see that I > a + b(t\ - ίo). If we combine the two
inequalities for / , we obtain v - (Po -P\) > a. π

LEMMA 18. Suppose σ is any curve from a point p$ = (x 4, t^) G Ω
to a point p\ = (x\, t\) e Γ* with X4 > x\ along which Ut = 0 and
Ut>0 locally to the right of σ. Then x > X\ for all points (x, t) G a.

Proof. Suppose first that the curve σ stays to the right of the vertical
line x = X\ near p\. Suppose a crosses the line x = X\ at a point
j93 = (xj ? f3) and stays to the right of the vertical line between p^
and p\. Let pi = [xι, 2̂) € σ be the furthest point to the right on σ
between p 3 and p i . From the monotonicity of U — x on σ, we see
that for some number D > 0, C/x < - D on σ between p 3 and p2

and ί/x > -Z> on σ between pi and p\. Then

= Γ
Jpx

0.

Thus C/(̂ 3) > U(p\) = 1 in violation of the maximum principle.
Suppose next that σ lies to the left of the line x = x\ near p\.

Let us assume that in a neighborhood of p\, σ stays above ί = t\
and between Γ* and x = x\. Then for some ε > 0, Ut(X*(t), t) < 0
for ίi < ί < ίi + ε. Since ί/* > 0 to the right of σ, there must be a
curve σ which begins at p\ and lies between Γ* and σ along which
Ut = 0 and 17* increases as points move away from p\. This curve
σ must either terminate at a point P5 of Γ* or cross the line x = X\
at a point p6. If we argue in a similar manner to the first paragraph,
we obtain either U(p$) > U(j>\) or U(pβ) > U(p\) in either case, a
contradiction results.
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Finally, if neither case holds, then σ intersects the line x = X\
infinitely often. An argument similar to the argument of the first
paragraph implies that there is a sequence (qn) (of "every other point
of intersection of σ and x = X\ ") such that qn converges to p\ as
n —> oc and U(qn) < U(qn+\) for each n. Since U is continuous,
this contradicts the maximum principle. D

REMARK. Using a similar (but more complicated) proof, it can be
shown that a curve σ as above with Uχ = 0 on σ and Uχ > 0 locally
to the right of σ cannot cross the tangent line a(x-X\)+b(t-t\) = 0.

THEOREM 4. (a) IfT has v-minima (v-maxima) in one period (i.e.
in Γn(9tx[fo, to+τ])), then Γ* has at least n v-minima (u-maxima)
in one period.

(b) The total curvature of Γ in a single period cannot exceed the
total curvature of Γ* in one period.

(c) The x-variation of Γ in one period (i.e. ίζ\x9{t)\dt9 where
(X(t), t) is a parametrization of Γ) cannot exceed that of Γ* in one
period.

Proof. Suppose /?£ = (xj, φ e Γ , k = 1, . . . , n, with t\ < fi2 <
• < t% < t\ + τ such that p\ is a z/-minimum of Γ, k = 1, . . . ,«,
and, for some ί € (tk, ί f c + 1), C/Λ(^(O ,t)φO,ΐoτ each 1 < A: < n-1.
For each k = 1, . . . , n, there is a curve γ^ starting at p^ and ending
at a point /?£ e Γ* such that ί/Λ = 0 on yk and Uλ > 0 locally to
the right of yfc. Then v is a normal to Γ* at p\, k = 1, . . . , n,
and the curves % do not intersect in Ω. To see this, let ? G Γ lie
between pk and pk+\ such that q is a ^-minimum of Γ, where i/*
is not parallel to ι/. Let σ\ be the curve of constant gradient direction
beginning at q and ending at a point q\ e Γ*. If σi intersects y^, for
example, at p, then VC/(p) = 6. From Lemma 2 and the maximum
principle, we see that Ux Φ 0 in Ω and so σi Π ̂  = 0 . Since (7i
separates γk and y^+1 near Γ, the yk cannot intersect in Ω. Notice
then that p*k Φ /?£+1, 1 < k < n - 1.

Next, let us fix k e {1, . . . , n}. Let q\ EΓ with q\ between/^
and /?k+1 and q2 G Γ with #2 between /?£_! and /?̂  such that v\ =
αΓ+ b\] and u2 = aΐ+ b2j are (exterior) normals to Γ at q\ and
#2 respectively with b\ < b < b2 and #1 and #2 are strict local
minima of Γ with respect to their normals vk (where pn+\ = p\ +
(0, τ) and p 0

 Ξ Pn - (0, τ)). Let ft and 72 be curves of constant
gradient direction beginning at q\ and q2 respectively. Then γx and
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γ2 terminate at points q\ and q\ of Γ* respectively and v\ and v2

are (interior) normals to Γ* at q\ and q\ respectively. Since Γ* is
C 1 and p£ lies between q\ and q\ , there must be a point /?£* G Γ* at
which Γ* has a z/-minimum (in the sense mentioned at the beginning
of this section). The proof of (a) and (b) follows.

Suppose po = (XQ, to) e Γ is a (1, 0)-minimum of Γ and pi =
(*2 > h) £ Γ is the next (1, 0)-maximum of Γ. Suppose that γ and
γ are curves of constant gradient direction starting from po and pi
respectively as in Lemma 16 and let these curves terminate at points
P\ = (x\, t\) and p 3 = (x 3, ί3) of Γ* respectively. Notice that Ut > 0
locally to the left of y. Let a = 1 and b = 0. From Lemmas 17 and
18, we see that XQ — x\ > 1. If we apply the first part of the proof
of Lemma 17 to γ, we see that / > x2 - X3. (An argument similar
to that of Lemma 18 shows that γ cannot cross the line x = χ3.)
Since / = a = 1, we obtain x2 - x$ < 1. Thus the x -variation of
Γ between po and pi is less than the x-variation of Γ* between p\
and /?3. The last part follows from this. D

REMARK. Results similar, for example, to Theorem 4 of [4] and
Theorem 5 of [6] for this problem follow from our methods.

REMARK. The results in §§2 and 3 were obtained by the first author
(Acker) while he was a guest of SFB 123, University of Heidelberg, in
summer, 1987. Section 4 represents joint work.
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