RECONSTRUCTIBLE GRAPHS, SIMPLICIAL FLAG COMPLEXES OF HOMOLOGY MANIFOLDS AND ASSOCIATED RIGHT-ANGLED COXETER GROUPS

Tetsuya HOSAKA

(Received April 4, 2014, revised October 2, 2014)

Abstract

In this paper, we investigate a relation between finite graphs, simplicial flag complexes and right-angled Coxeter groups, and we provide a class of reconstructible finite graphs. We show that if Γ is a finite graph which is the 1 -skeleton of some simplicial flag complex L which is a homology manifold of dimension $n \geq 1$, then the graph Γ is reconstructible.

1. Introduction

In this paper, we investigate a relation between finite graphs, simplicial flag complexes and right-angled Coxeter groups, and we provide a class of reconstructible finite graphs. This paper treats only "simplicial" graphs. We show that if Γ is a finite graph which is the 1 -skeleton of some simplicial flag complex L which is a homology manifold of dimension $n \geq 1$, then the graph Γ is reconstructible.

A graph Γ is said to be reconstructible, if any graph Γ^{\prime} with the following property $(*)$ is isomorphic to Γ.
(*) Let S and S^{\prime} be the vertex sets of Γ and Γ^{\prime} respectively. Then there exists a bijection $f: S \rightarrow S^{\prime}$ such that the subgraphs $\Gamma_{S-\{s\}}$ and $\Gamma_{S^{\prime}-\{f(s)\}}^{\prime}$ are isomorphic for any $s \in S$, where $\Gamma_{S-\{s\}}$ and $\Gamma_{S^{\prime}-\{f(s)\}}^{\prime}$ are the full subgraphs of Γ and Γ^{\prime} whose vertex sets are $S-\{s\}$ and $S^{\prime}-\{f(s)\}$ respectively.

The following open problem is well-known as the reconstruction conjecture.
Problem (Reconstruction conjecture). Every finite graph with at least three vertices will be reconstructible?

Some classes of reconstructible graphs are known (cf. [3], [20], [21], [22], [23], [26]) as follows: Let Γ be a finite graph with at least three vertices.

[^0](i) If Γ is a regular graph, then it is reconstructible.
(ii) If Γ is a tree, then it is reconstructible.
(iii) If Γ is not connected, then it is reconstructible.
(iv) If Γ has at most 11 vertices, then it is reconstructible.

Our motivation to consider graphs of the 1 -skeletons of some simplicial flag complexes comes from the following idea on right-angled Coxeter groups and their nerves.

Details of Coxeter groups and Coxeter systems are found in [4], [6] and [19], and details of flag complexes, nerves, Davis complexes and their boundaries are found in [8], [9] and [24].

Let Γ be a finite graph and let S be the vertex set of Γ. Then the graph Γ uniquely determines a finite simplicial flag complex L whose 1 -skeleton $L^{(1)}$ coincide with Γ. Here a simplicial complex L is a flag complex, if the following condition holds: $(* *)$ For any vertex set $\left\{s_{0}, \ldots, s_{n}\right\}$ of L, if $\left\{s_{i}, s_{j}\right\}$ spans 1 -simplex in L for any $i, j \in\{0, \ldots, n\}$ with $i \neq j$ then the vertex set $\left\{s_{0}, \ldots, s_{n}\right\}$ spans n-simplex in L.

Also every finite simplicial flag complex L uniquely determines a right-angled Coxeter system (W, S) whose nerve $L(W, S$) coincide with L (cf. [1], [8], [9], [10], [12]). Here for any subset T of S, T spans a simplex of L if and only if the parabolic subgroup W_{T} generated by T is finite (such a subset T is called a spherical subset of S).

Moreover it is known that every right-angled Coxeter group W uniquely determines its right-angled Coxeter system (W, S) up to isomorphisms ([28], [18]).

By this corresponding, we can identify a finite graph Γ, a finite simplicial flag complex L, a right-angled Coxeter system (W, S) and a right-angled Coxeter group W.

Let Γ and Γ^{\prime} be finite graphs, let L and L^{\prime} be the corresponding flag complexes, let (W, S) and (W^{\prime}, S^{\prime}) be the corresponding right-angled Coxeter systems, and let W and W^{\prime} be the corresponding right-angled Coxeter groups, respectively. Then the following statements are equivalent:
(1) Γ and Γ^{\prime} are isomorphic as graphs;
(2) L and L^{\prime} are isomorphic as simplicial complexes;
(3) (W, S) and (W^{\prime}, S^{\prime}) are isomorphic as Coxeter systems;
(4) W and W^{\prime} are isomorphic as groups.

Also, for any subset T of the vertex set S of the graph Γ, the full subgraph Γ_{T} of Γ with vertex set T corresponds the full subcomplex L_{T} of L with vertex set T, the parabolic Coxeter system $\left(W_{T}, T\right)$ generated by T, and the parabolic subgroup W_{T} of W generated by T.

Hence we can consider the reconstruction problem as the problem on simplicial flag complexes and also as the problem on right-angled Coxeter groups.

Moreover, the right-angled Coxeter system (W, S) associated by the graph Γ defines the Davis complex Σ which is a $\operatorname{CAT}(0)$ space and we can consider the ideal boundary $\partial \Sigma$ of the $\operatorname{CAT}(0)$ space Σ (cf. [1], [2], [5], [8], [9], [10], [12], [15], [16], [24]). Then the topology of the boundary $\partial \Sigma$ is determined by the graph Γ, and the
topology of $\partial \Sigma$ is also a graph invariant.
Based on the observations above, we can obtain the following lemma from results of F.T. Farrell [13, Theorem 3], M.W. Davis [10, Theorem 5.5] and [17, Corollary 4.2] (we introduce details of this argument in Section 3).

Lemma 1.1. Let (W, S) be an irreducible Coxeter system where W is infinite and let $L=L(W, S)$ be the nerve of (W, S). Then the following statements are equivalent:
(1) W is a virtual Poincaré duality group.
(2) L is a generalized homology sphere.
(3) $\tilde{H}^{i}\left(L_{S-T}\right)=0$ for any i and any non-empty spherical subset T of S.

Here a generalized homology n-sphere is a polyhedral homology n-manifold with the same homology as an n-sphere \mathbb{S}^{n} (cf. [10, Section 5], [11], [25, p.374], [27]). Also detail of (virtual) Poincaré duality groups is found in [7], [10], [11], [13].

In Lemma 1.1, we particularly note that the statement (3) is a local condition of L which determines a global structure of L as the statement (2). From this observation, it seems that the following theorem holds. (However the proof is not so obvious.)

Theorem 1.2. Let Γ be a finite graph with at least 3 vertices and let (W, S) be the right-angled Coxeter system associated by Γ (i.e. the 1 -skeleton of the nerve $L(W, S)$ of (W, S) is Γ). If the Coxeter group W is an irreducible virtual Poincaré duality group, then the graph Γ is reconstructible. Hence,
(i) if Γ is the 1 -skeleton of some simplicial flag complex L which is a generalized homology sphere, then the graph Γ is reconstructible, and
(ii) in particular, if Γ is the 1 -skeleton of some flag triangulation L of some n-sphere $\mathbb{S}^{n}(n \geq 1)$, then the graph Γ is reconstructible.

Here, based on this motivation, we investigate a finite graph which is the 1 -skeleton of some simplicial flag complex which is a homology manifold as an extension of a generalized homology sphere, and we prove the following theorem. (Hence as a corollary, we also obtain Theorem 1.2.)

Theorem 1.3. Let Γ be a finite graph with at least 3 vertices.
(i) If Γ is the 1 -skeleton of some simplicial flag complex L which is a homology n-manifold ($n \geq 1$), then the graph Γ is reconstructible.
(ii) In particular, if Γ is the 1 -skeleton of some flag triangulation L of some n-manifold ($n \geq 1$), then the graph Γ is reconstructible.

Here detail of homology manifolds is found in [10, Section 5], [11], [25, p. 374], [27].

2. Proof of Theorem $\mathbf{1 . 3}$

We prove Theorem 1.3.
Proof of Theorem 1.3. Let Γ be a finite graph with at least 3 vertices which is the 1 -skeleton of some simplicial flag complex L which is a homology manifold of dimension $n \geq 1$. Then we show that the graph Γ is reconstructible.

Let Γ^{\prime} be a finite graph and let L^{\prime} be the finite simplicial flag complex associated by Γ^{\prime}. Also let S and S^{\prime} be the vertex sets of the graphs Γ and Γ^{\prime} respectively.

Now we suppose that the condition $(*)$ holds:
(*) There exists a bijection $f: S \rightarrow S^{\prime}$ such that the subgraphs $\Gamma_{S-\{s\}}$ and $\Gamma_{S^{\prime}-\{f(s)\}}^{\prime}$ are isomorphic for any $s \in S$.

To show that the graph Γ is reconstructible, we prove that the two graphs Γ and Γ^{\prime} are isomorphic, i.e., the two simplicial flag complexes L and L^{\prime} associated by Γ and Γ^{\prime} respectively are isomorphic.

Let $v_{0} \in S$ and let $v_{0}^{\prime}=f\left(v_{0}\right)$. Then the two subgraphs $\Gamma_{S-\left\{v_{0}\right\}}$ and $\Gamma_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}$ are isomorphic by the assumption $(*)$, and the two subcomplexes $L_{S-\left\{v_{0}\right\}}$ and $L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}$ are isomorphic. Let ϕ be an isomorphism from $L_{S-\left\{v_{0}\right\}}$ to $L_{S^{\prime}-\left\{v_{0}^{v_{0}}\right\}}^{\prime}$.

If for any $a \in \operatorname{Lk}\left(v_{0}, L\right)^{(0)}, \phi(a) \in \operatorname{Lk}\left(v_{0}^{\prime}, L^{\prime}\right)^{(0)}$ then we obtain an isomorphism $\bar{\phi}: L \rightarrow L^{\prime}$ from $\left.\bar{\phi}\right|_{L_{S-\left(v_{0}\right)}}=\phi$ and $\bar{\phi}\left(v_{0}\right)=v_{0}^{\prime}\left(\right.$ since $\operatorname{deg} v_{0}=\operatorname{deg} v_{0}^{\prime}$), hence L and L^{\prime} are isomorphic.

Now we suppose that there exists $a_{0} \in S-\left\{v_{0}\right\}$ such that $a_{0} \notin \operatorname{Lk}\left(v_{0}, L\right)^{(0)}$ and $a_{0}^{\prime}:=\phi\left(a_{0}\right) \in \operatorname{Lk}\left(v_{0}^{\prime}, L^{\prime}\right)^{(0)}$.

Here if there does not exist $u_{0}^{\prime} \in S^{\prime}-\operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)^{(0)}$, then $\operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)^{(0)}=S^{\prime}$, where $\operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)$ means the closed star of a_{0}^{\prime} in L^{\prime}. Hence $\left[a_{0}^{\prime}, b^{\prime}\right] \in L^{\prime(1)}$ for any $b^{\prime} \in S^{\prime}-\left\{a_{0}^{\prime}\right\}$. Since $\operatorname{deg} a_{0}=\operatorname{deg} a_{0}^{\prime}$ and $|S|=\left|S^{\prime}\right|,\left[a_{0}, b\right] \in L^{(1)}$ for any $b \in S-\left\{a_{0}\right\}$. This particularly implies $\left[a_{0}, v_{0}\right] \in L^{(1)}$. This is a contradiction because it means $a_{0} \in \operatorname{Lk}\left(v_{0}, L\right)^{(0)}$.

Thus we suppose that there exists $u_{0}^{\prime} \in S^{\prime}-\operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)^{(0)}$.
Let $u_{0}:=f^{-1}\left(u_{0}^{\prime}\right)$. Then by the assumption (*), the two subcomplexes $L_{S-\left\{u_{0}\right\}}$ and $L_{S^{\prime}-\left\{u_{0}^{\prime}\right\}}^{\prime}$ are isomorphic and let ψ be an isomorphism from $L_{S-\left\{u_{0}\right\}}$ to $L_{S^{\prime}-\left\{u_{0}^{\prime}\right\}}^{\prime}$.

Then

$$
\begin{aligned}
\operatorname{Lk}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L_{S-\left\{u_{0}\right\}}\right) & \cong \operatorname{Lk}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{u_{0}^{\prime}\right\}}^{\prime}\right) \\
& \cong \operatorname{Lk}\left(a_{0}^{\prime}, L^{\prime}\right),
\end{aligned}
$$

since ψ is an isomorphism and $u_{0}^{\prime} \notin \operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)$. Also we obtain

$$
\begin{aligned}
\operatorname{St}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L_{S-\left\{u_{0}\right\}}\right) & \cong \operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{u_{0}^{\prime}\right\}}^{\prime}\right) \\
& \cong \operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)
\end{aligned}
$$

Then

$$
\operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}\right) \varsubsetneqq \operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right) \cong \operatorname{St}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L_{S-\left\{u_{0}\right\}}\right) .
$$

Here we note that $\operatorname{St}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L_{S-\left\{u_{0}\right\}}\right)$ is either
(a) the closed star $\operatorname{St}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L\right)$ of the vertex $\psi^{-1}\left(a_{0}^{\prime}\right)$ in the homology n-manifold L, or
(b) $\operatorname{St}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L\right)-u_{0}$ where $u_{0} \in \operatorname{Lk}\left(\psi^{-1}\left(a_{0}^{\prime}\right), L\right)$,
and also note that $\operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}\right)=\operatorname{St}\left(a_{0}^{\prime}, L^{\prime}\right)-v_{0}^{\prime}$. Hence we obtain that
(I) $\operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}\right\}$ is isomorphic to some closed star deleted one or two vertices from its link in the homology n-manifold L.

On the other hand,

$$
\operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}\right) \cong \operatorname{St}\left(a_{0}, L_{S-\left\{v_{0}\right\}}\right) \cong \operatorname{St}\left(a_{0}, L\right),
$$

since ϕ is an isomorphism and $a_{0} \notin \operatorname{St}\left(v_{0}, L\right)$. Here we note that $\operatorname{St}\left(a_{0}, L\right)$ is the closed star in the homology n-manifold L. Hence we obtain that
(II) $\operatorname{St}\left(a_{0}^{\prime}, L_{S^{\prime}-\left\{v_{0}^{\prime}\right\}}^{\prime}\right)$ is isomorphic to some closed star in the homology n-manifold L.

Then (I) and (II) imply the contradiction. Indeed the following claim holds.
Claim. Let $A=\operatorname{St}(a)$ be a closed star of a vertex a in a homology n-manifold and let $B=\operatorname{St}(b)-\left\{c_{1}, c_{2}\right\}$ be a closed star of a vertex b deleted one or two vertices $\left\{c_{1}, c_{2}\right\} \subset \operatorname{Lk}(b)$ in a homology n-manifold. Then the simplicial complexes A and B are not isomorphic.

We first note that every triangulated homology n-manifold is a union of n-simplexes ([25, Corollary 63.3 (a)]). Hence $A=\operatorname{St}(a)$ and $\operatorname{St}(b)$ are unions of n-simplexes containing a and b respectively. Then there exists an n-simplex σ_{0} such that $c_{1} \in \sigma_{0} \subset \operatorname{St}(b)$.

Here if $c_{1} \neq c_{2}$ then we can take σ_{0} as $c_{2} \notin \sigma_{0}$. Indeed if $c_{1} \neq c_{2}$ and $c_{2} \in \sigma_{0}$ then $\left[c_{1}, c_{2}\right] \subset \sigma_{0}$ and we can consider $(n-1)$-simplex τ as $\tau^{(0)}=\sigma_{0}^{(0)}-\left\{c_{2}\right\}$. Then by [25, Corollary 63.3 (b)], there exist precisely two n-simplexes containing τ as a face. Hence we can take an n-simplex σ_{0}^{\prime} containing τ as a face and $\sigma_{0}^{\prime} \neq \sigma_{0}$. Then $c_{1} \in \sigma_{0}^{\prime} \subset \operatorname{St}(b)$ and $c_{2} \notin \sigma_{0}^{\prime}$. Hence in this case we retake σ_{0} as σ_{0}^{\prime}.

Now σ_{0} is an n-simplex such that $c_{1} \in \sigma_{0} \subset \operatorname{St}(b)$ and if $c_{1} \neq c_{2}$ then $c_{2} \notin \sigma_{0}$. Let τ_{0} be the $(n-1)$-simplex as $\tau_{0}^{(0)}=\sigma_{0}^{(0)}-\left\{c_{1}\right\}$. Then we note that $\tau_{0} \subset \operatorname{St}(b)-$ $\left\{c_{1}, c_{2}\right\}=B$.

Now we suppose that A and B are isomorphic and there exists an isomorphism $g: B \rightarrow A$. Then $g\left(\tau_{0}\right)$ is an $(n-1)$-simplex in A. By [25, Corollary 63.3 (b)], there exist precisely two n-simplexes $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ containing $g\left(\tau_{0}\right)$ as a face in A. Then $g^{-1}\left(\bar{\sigma}_{1}\right)$ and $g^{-1}\left(\bar{\sigma}_{2}\right)$ are n-simplexes containing τ_{0} as a face in B, since $g: B \rightarrow A$ is an isomorphism. Here $g^{-1}\left(\bar{\sigma}_{1}\right), g^{-1}\left(\bar{\sigma}_{2}\right)$ and σ_{0} are distinct n-simplexes containing τ_{0} as a face in $\operatorname{St}(b)$. This contradicts to [25, Corollary 63.3 (b)].

Thus the simplicial complexes A and B are not isomorphic.
Hence, there does not exist $a_{0} \in S-\left\{v_{0}\right\}$ such that $a_{0} \notin \operatorname{Lk}\left(v_{0}, L\right)^{(0)}$ and $\phi\left(a_{0}\right) \in$ $\operatorname{Lk}\left(v_{0}^{\prime}, L^{\prime}\right)^{(0)}$, that is, for $a \in S-\left\{v_{0}\right\}, a \in \operatorname{Lk}\left(v_{0}, L\right)^{(0)}$ if and only if $\phi(a) \in \operatorname{Lk}\left(v_{0}^{\prime}, L^{\prime}\right)^{(0)}$,
since $\operatorname{deg} v_{0}=\operatorname{deg} v_{0}^{\prime}$. Hence the map $\bar{\phi}: S \rightarrow S^{\prime}$ defined by $\left.\bar{\phi}\right|_{S-\left\{v_{0}\right\}}=\phi$ and $\bar{\phi}\left(v_{0}\right)=v_{0}^{\prime}$ induces an isomorphism of the two graphs Γ and Γ^{\prime}.

Therefore the graph Γ is reconstructible.

3. Virtual Poincaré duality Coxeter groups and reconstructible graphs

We introduce a relation of virtual Poincaré duality Coxeter groups and reconstructible graphs, which is our motivation of this paper.

Definition 3.1 (cf. [7], [10], [11], [13]). A torsion-free group G is called an n-dimensional Poincaré duality group, if G is of type FP and if

$$
H^{i}(G ; \mathbb{Z} G) \cong \begin{cases}0 & (i \neq n) \\ \mathbb{Z} & (i=n)\end{cases}
$$

Also a group G is called a virtual Poincaré duality group, if G contains a torsion-free subgroup of finite-index which is a Poincaré duality group.

On Coxeter groups and (virtual) Poincaré duality groups, the following results are known.

Theorem 3.2 (Farrell [13, Theorem 3]). Suppose that G is a finitely presented group of type $F P$, and let n be the smallest integer such that $H^{n}(G ; \mathbb{Z} G) \neq 0$. If $H^{n}(G ; \mathbb{Z} G)$ is a finitely generated abelian group, then G is an n-dimensional Poincaré duality group.

REmark. It is known that every infinite Coxeter group W contains some torsionfree subgroup G of finite-index in W which is a finitely presented group of type FP and $H^{*}(G ; \mathbb{Z} G)$ is isomorphic to $H^{*}(W ; \mathbb{Z} W)$. Hence if n is the smallest integer such that $H^{n}(W ; \mathbb{Z} W) \neq 0$ and if $H^{n}(W ; \mathbb{Z} W)$ is finitely generated (as an abelian group), then W is a virtual Poincaré duality group of dimension n.

Theorem 3.3 (Davis [10, Theorem 5.5]). Let (W, S) be a Coxeter system. Then the following statements are equivalent:
(1) W is a virtual Poincaré duality group of dimension n.
(2) W decomposes as a direct product $W=W_{T_{0}} \times W_{T_{1}}$ such that T_{1} is a spherical subset of S and the simplicial complex $L_{T_{0}}=L\left(W_{T_{0}}, T_{0}\right)$ associated by $\left(W_{T_{0}}, T_{0}\right)$ is a generalized homology ($n-1$)-sphere.

Theorem 3.4 ([17, Corollary 4.2]). Let (W, S) be an infinite irreducible Coxeter system, let $L=L(W, S)$ and let $0 \leq i \in \mathbb{Z}$. Then the following statements are equivalent: (1) $H^{i}(W ; \mathbb{Z} W)$ is finitely generated.
(2) $H^{i}(W ; \mathbb{Z} W)$ is isomorphic to $\tilde{H}^{i-1}(L)$.
(3) $\tilde{H}^{i-1}\left(L_{S-T}\right)=0$ for any non-empty spherical subset T of S.

Here $L_{S-T}=L\left(W_{S-T}, S-T\right)$.

We obtain the following lemma from results above.

Lemma 3.5. Let (W, S) be an irreducible Coxeter system where W is infinite and let $L=L(W, S)$. Then the following statements are equivalent:
(1) W is a virtual Poincaré duality group.
(2) L is a generalized homology sphere.
(3) $\tilde{H}^{i}\left(L_{S-T}\right)=0$ for any i and any non-empty spherical subset T of S.

Proof. (1) $\Leftrightarrow(2)$: We obtain the equivalence of (1) and (2) from Theorem 3.3, since (W, S) is irreducible.
$(1) \Rightarrow(3)$: We obtain this implication from Theorem 3.4, because if W is a virtual Poincaré duality group then $H^{i}(W ; \mathbb{Z} W)$ is finitely generated for any i.
$(3) \Rightarrow(1)$: Suppose that $\tilde{H}^{i}\left(L_{S-T}\right)=0$ for any i and any non-empty spherical subset T of S. Then by Theorem $3.4, H^{i+1}(W ; \mathbb{Z} W)$ is finitely generated for any i. Since W is infinite, $H^{i_{0}}(W ; \mathbb{Z} W)$ is non-trivial for some i_{0} (cf. [7], [14]). Hence by Theorem 3.2, W is a virtual Poincaré duality group.

We obtain Theorem 1.2 from Theorem 1.3. In particular, we obtain the following.

Theorem 3.6. Let Γ be a finite graph with at least 3 vertices and let (W, S) be the right-angled Coxeter system associated by Γ. If the Coxeter group W is an irreducible virtual Poincaré duality group, then the graph Γ is reconstructible.

References

[1] M. Bestvina: The virtual cohomological dimension of Coxeter groups; in Geometric Group Theory, 1 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press, Cambridge, 1993, 19-23.
[2] M. Bestvina: Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996), 123-139.
[3] J.A. Bondy and R.L. Hemminger: Graph reconstruction - a survey, J. Graph Theory 1 (1977), 227-268.
[4] N. Bourbaki: Groupes et Algebrès de Lie, Masson, Paris, 1981.
[5] M.R. Bridson and A. Haefliger: Metric Spaces of non-Positive Curvature, Springer, Berlin, 1999.
[6] K.S. Brown: Buildings, Springer, New York, 1989.
[7] K.S. Brown: Cohomology of Groups, Springer, New York, 1982.
[8] M.W. Davis: Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), 293-324.
[9] M.W. Davis: Nonpositive curvature and reflection groups; in Handbook of geometric topology, North-Holland, Amsterdam, 2002, 373-422.
[10] M.W. Davis: The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297-314.
[11] M.W. Davis: Poincaré duality groups; in Surveys on Surgery Theory, 1, Princeton Univ. Press, Princeton, NJ, 1999, 167-193.
[12] A.N. Dranishnikov: On the virtual cohomological dimensions of Coxeter groups, Proc. Amer. Math. Soc. 125 (1997), 1885-1891.
[13] F.T. Farrell: Poincaré duality and groups of type (FP), Comment. Math. Helv. 50 (1975), 187-195.
[14] R. Geoghegan and P. Ontaneda: Boundaries of cocompact proper CAT(0) spaces, Topology 46 (2007), 129-137.
[15] M. Gromov: Hyperbolic groups; in Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, 75-263.
[16] M. Gromov: Asymptotic invariants of infinite groups; in Geometric Group Theory, 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge, 1993, 1-295.
[17] T. Hosaka: On the cohomology of Coxeter groups, J. Pure Appl. Algebra 162 (2001), 291-301.
[18] T. Hosaka: Determination up to isomorphism of right-angled Coxeter systems, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), 33-35.
[19] J.E. Humphreys: Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
[20] P.J. Kelly: A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
[21] B. Manvel: On reconstruction of graphs, Ph.D. thesis, University of Michigan (1988).
[22] B.D. McKay: Computer reconstruction of small graphs, J. Graph Theory 1 (1977), 281-283.
[23] B.D. McKay: Small graphs are reconstructible, Australas. J. Combin. 15 (1997), 123-126.
[24] G. Moussong: Hyperbolic Coxeter groups, Ph.D. thesis, Ohio State Univ. (1988).
[25] J.R. Munkres: Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1984.
[26] A. Nijenhuis: Note on the unique determination of graphs by proper subgraphs, Notices Amer. Math. Soc. 24 (1977), A-290.
[27] F. Quinn: Problems on homology manifolds; in Exotic Homology Manifolds-Oberwolfach 2003, Geom. Topol. Monogr. 9, Geom. Topol. Publ., Coventry, 2006, 87-103.
[28] D. Radcliffe: Unique presentation of Coxeter groups and related groups, Ph.D. thesis, Univ. of Wisconsin-Milwaukee (2001).

Department of Mathematics
Shizuoka University
Suruga-ku, Shizuoka 422-8529
Japan
e-mail: hosaka.tetsuya@shizuoka.ac.jp

[^0]: 2010 Mathematics Subject Classification. 57M15, 05C10, 20 F55.
 Partly supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan. (No. 25800039).

