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0. Introduction

There are many works on the determination or the estimation of the funda-
mental unit € and the ideal class number % of real quadratic number fields F
([1], [3], [6] and [10], for example). The &s which are treated in them have
small orders of absolute value in comparison to their discriminants D, that is,
€=0(v/D) or logé=O(log\/D). The aim of this note is to construct such
F’s with comparatively large €’s.

Let p and ¢ be rational primes such that p<gq. Then put

(0.1) my=(p*q+p+1y—4p

for k=1,2, .. Set F,=@Q(\/my) the quadratic number field obtained by ad-
jolning \/my to the rational number field @ and denote by D,, & and %, the
discriminant, the fundamental unit and the ideal class number of F, respectively.
It holds Dj—co as k—oo, namely, F,(k=1, 2, --+) gives infinitely many real
quadratic number fields. Then we can find a positive constant ¢, such that

0.2) loge,>c(logy/ D)’

holds for sufficiently large D, (Theorem 3.2).
It is known ([4]) that the following inequality holds for all real quadratic num-
ber fields;

(0.3) hloge </D(log /D +1).
Combining (0.2) and (0.3), we get
/Dy
0.4 h —
( ) k<62(10g\/Dk)2 (CZ<cl)
for sufficiently large D,.

On the other hand, for imaginary quadratic number fields F’s with D <0,
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it was shown by Hecke that

VD]
(0.5) h> e BT

if there exists a positive constant ¢, such that
Cs
(0.6) L(s,X)+0 for 1— Tog |D] <s <1,

where L(s,X) is the Dirichlet L-funcioin attached to F. To be very broad, we
can say that the order of the ideal class numbers of real quadratic number fields
is smaller than that of imaginary ones under the assumption (0.6) is valid for all
D<O.

NoraTions: We denote by Z, @ and R the ring of rational integers, the ra-
tional nubmer field and the real number field respectively.

1. Reduced quadratic irrationals

In the first place, we recall some fundamental properties of quadratic irra-
tionals (see [2], [5], or [9]). Let a be a real quadratic irrational number with
discriminant D, that is, « is a root of a quadratic equation

aX*+-bX+c=0

with rational integral coefficients a, b, ¢ such that a>0, (a, b, c)=1 and b*—4ac
=D. In what follows, we give our attention to the case D>0 exclusively, so
the quadratic irrationals are always to be understood to be real ones. We call a
quadratic irrational « reduced if ¢>1and 0>«a’ > —1, where o’ is the conjugate
of a with respect to @. Let « and B be two quadratic irrationals, we say « and
B are equivalent if we have

al-+b
a= cB+d

with a, b, ¢, d= Z satisfying ad—bc=+-1, then a and B have the same discrim-
inant. We know that every quadratic irrational is equivalent to a reduced one.

Denote by A*=A*(D) and A=A(D) the set of all quadratic irrationals with
discriminant D and the subset of A* consisting of all reduced ones respectively.

Lemma 1.1. (a) A4 is a finite set.

(6) For ac A*, a is reduced (i.e. a < A) if and only if the continued fractional
expansion of o is purely periodic.

Let a=A. Set
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a,=a,

(1.1) a—a+ 1
Aty

for i=1, 2,..,

where a; is the greatest rational integer not exceeding «;. Then, from Lemma
1.1 (), it holds ay+,=a,, where N is the (minimal) period of the continued
fractional expansion of a, and moreover a,(i=1,2,--+, N) forma coset of 4 with
respect to the equivalence relation. Let

A=A,U 4,U---U4,

be the equivalence class decomposition of A4, then the number % of the cosets is
equal to the ideal class number of the field F=@Q(+/ D) if D is the discriminant of
F. We restrict ourselves to the case where D is the discriminant of a real quad-
ratic number field F in the following.

From (1.1) we have, for a4,

N 1,1 aath
(1.2) a=at— bt = et a

Then ad—bc=(—1)¥ and the fundamental unit € of F is given by ca+-d.

Proposition 1.2 If D is equal to the discriminant of a real quadratic number
field F and & is the fundamental umt of F, then
(1.3) [a=¢

®E4;
Jor any equivalence class A (i=1,2,--, k).

Corollary 1.3. It holds that
Ma=¢*.

aEA

Proof of the Proposition 1.2. Let a4 and define a; by relation (1.1).
Then the equivalence class containing « is given by {a,, oy, oy}, where
N is the period of the continued fractional expansion of «. From (1.2), the
fundamental unit € is given by

(14) 8=ca+d=[a2,a3,---,aN, 0[]
where[ ] is defined in the following;
[ 1=1, [b]=b, and

[bn bzy ) bk]=[bv ) bk—1]bk+[b1, °t bl;—z] (ng)
We claim



264 Y. Yamamoro

(1.5) 00y A=Ay Ayy***, Ap_yy Q] (R=2).
In fact, from (1.1), it holds
(1.6) a o n=a.0,,+1 (E=1).
So (1.5) is valid for k=2. Suppose (1.5) is valid for &.
Then
azaa'.-ak“’l
=[a2a"" Ap_yy ak] Aty
=[a2)"" ak—l] 0Oyt [azs"', ak—z]akh
=[a2)"'; ak—l] A0+ [aza"" ak—1] +[a2,"', ak—z] O gty
=[az,"‘, alz] Apirt+ [azx"" ah—l]
2[02,'“, Ap, ak+1]-

Therefore (1.5) is valid for all k=2. Our proposition follows from (1.4) and
(1.5), using the relation ay.+,=a,=a.

ReMARK.  Relation (1.3) is used also in [5].

2. Reduced ideals

Let F=Q(\/ 3) be the real quadratic number field with discriminant D. Put

w=D+T\/D, then 1 and o form a Z-basis of the ring o of all algebraic integers in
F. Leté, &, -, &, be elements of F, we denote by [&,, £, --+, &,] and by (&,
£, ..., E4) respectively the modules in F generated by the elements over Z and
over 0. So 0=[l, w]=(1). Every integral ideal a has the (unique) canonical
basis of the following form: a=[a, b+ cw] where a, b, cE Z satisfying (i) a>0,
¢>0 and ac=N(a) (the absolute norm of a), (ii) a=6=0 (mod ¢) and N(b+cw)
=0 (mod ac) and (iii) —a<<b+cw’' <0 (o’ is the conjugate of w). Then we
define a by

a=qaa)= H_%
and call « the quadratic irrational associated with the ideal a. An integral ideal
a is called reduced if c=1 and a(a) is a reduced quadratic irrational.

Proposition 2.1. The map a—ca(a) gives a bijection of the set of all
reduced ideals to the set A = A(D) of all reduced quadratic irrationals with discrimi-
nant D. And it induces a bijection of the ideal class group of F to the set {A,, A,,--,
A4} of the equivalence classes of A.
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Proposition 2.2. An integral ideal a is reduced if (i) N(@)<Yo2 and (ii)
the conjugate ideal a’ is relatively prime to a.

For the proof of Proposition 2.1, see [2], [5] or [9]. Proposition 2.2 is
easily seen by checking the definition of reduced quadratic irrationals.

3. Lower bounds of regulators

In this section we estimate the values of the regulators of a certain type of
real quadratic number fields.

Theorem 3.1. Let p; (i=1, 2, :--, n) be rational primes satisfying p, <p,<
s < pn. Assume that there exist infinitely many real quadratic number fields F
satisfying the following condition (*):

(*) Every p; is decomposed in F into the product of two principal prime
ideals p, and p,’.

Then there exists a positive constant ¢, depending only on n and p,, p,, -+, ps such that

log €>¢, (logy/ D)**+*
holds for sufficiently large D, where D and € are the discriminant and the funda-

mental unit or F.

Proof. Consider the ideals a of the form

a= I”I P/

Then a is a principal integral ideal and reduced if (a) N(a)=p,“1*/1-++p, v /a<

\/ZD and (b) e, f,="---=e,f,=0 (Proposition 2.2). Let a,, a,, -+, a, be the set

of all reduced ideals obtained as above. Then the quadratic irrationals a,, o,
-+, a, associated with them build a subset of the equivalence class A4,, say,
corresponding to the principal ideal class. So we get, from Proposition 1.2,

E=Ha>f[a,..

GEAI i=1
On the other hand, we have

. _
= gigag > G (B piat ),

where a,=[N(a,), b;+ ] is the canonical basis of a;. Hence we get the following
inequality
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(3.1) e>1T —ﬁ?—.—/g’m=80.

The product in (3.1) is taken over all integers e; and f; satisfying

@) (etf:) logpit -+ (extf) logp,<log (L2,

®" e;20,f,=0and ¢;f,=0 (:=1,2, -+, n).
‘We have
VD AN Dy
/ —
(3.2) === (—*‘ 5
Thev number ¢ equalé to the cardinal of the set of 2n-tuples (e, f,*, €y, f4) satisfy-
ing (a’) and (b"). 'Then it holds

2y
(3.3) t="p

+0((log Y27,

where V is the volume of the z-simplex A in the #-dimensional euclidean space
R”;

xlgox ‘“,x,,;o, .

By X, < log\/ZD '

A= { (%), =+, ¥ )ER™ :
and P= (log p,) (log p.)--:(log p.).
We have ’

1 D.\"
Ve S dx,--dx, = - (log\/T) .
A

For the product of all denominators in the right side of (3.1), we have
(34) IOg I (Plel+f1 ---Pnen+fn)
=2 [(e,+ 1) logpit--+-+ (eat1) log pal

n

=%g (o) diy o, + O(log Y2’

~ e ip tosv D) +0(logv' DY),

From (3.3) and (3.4), we get
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Dt
log 60=10g (%2) — log H/ (plel+fl --.P”S”-i-f”)

=(n—_F21:)W(log\/§) " £ 0((logv/ D).

Our theorem follows from this and (3.1).

Theorem 3.2. For the case n=2, the assumption of Theorem 3.1 is satisfied
by the following F’s : F=Q(x/my)

mp= (Pk9+P+1)2_4P (k=1y2)'")’
where we set p=p, and q=p,.

Proof. We see easily that m, =1 (mod p), m,= (p—1)? (mod ¢) and m,=1
(mod 4) (m,=1 (mod 8) if p=2). Hence each of p and ¢ is decomposed into the
product of two distinct prime ideals in F (if m, is not a square). Set p=pp’ and
g=qq’. From the definition of m, it holds

(3.5) (2% g+p+1) —mu=4p
(3.6) (P* g+p—1) —m=—4p* q.

R _
From (3.5), p and p’ are both principal (set p=(P AN +21 v m, ), for example).

From (3.6), either p¥q or p’*q is principal. Since p* and p’* are principal, both
q and q’ are also principal. So the condition (*) in Theorem 3.1 is satisfied. Finally,
the infiniteness of the number of F’s given above is as follows. Set k=2; (we
consider the case where & is even), then

my=my ;= (P g+p+ 1) —4p=¢"p" +2¢ (p+1)p*+ (p—1).
Since the diophantine equation
Dy*=g'x'+2¢(p+D)x*+(p—1)

has only a finite number of rational integral solutions (x, y) for a fixed integer D
(Siegel’s theorem), Q(v/m,;) represents infinitely many real quadratic number
fields F for j=1,2,.... This completes the proof.

4. Some examples

(I) The case n=1.
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Set F,=Q(\/k¥+4p), for a given prime number p,=p. Then it can
easily be seen that F, satisfies the condition (*) in Theorem 3.1. Hence we get
the lower bound for the fundamental unit &, of F;

log £,>¢, (log \/ D)

if the discriminant D, of F, is sufficiently large.
Here is an interesting example where we can determine the fundamental

units. Let F =Q(\/7), where
d=d=(2%+3)—8.

Since d=1 (mod 8), the discriminant of F is equal to d if d is square-free. Sup-
pose d is square-free. Set
254144
=q,=———,
2

T'hen“a is the reduced quadratic irrational with discriminant d associated with
the ideal (1) in F. Calculating the continued fractional expansion (1.1) and
(1.2), we see that all the reduced quadratic irrationals equivalent to « are given
by

. .
L 2H14vid (i=1, 2, k),

2% Qk-itz

— Zk__M (i=1, 2, k).

a2|’+1 - 2k+,‘

From Proposition 1.2, we get
E=0t; Oy Olyp Oty

(214 @)A1 Q)
- 2 (22 23.“21;4.1)2

_@HIVAE 2V

4 ) 2
In fact,
d, = 17, h=1, &=4+4+/17.
d, = 41, h=1, &=3245/41.
d, = 113, h=1, &=776+73/113.
d, = 353, h=1, €£=71264+3793\/353.
d, = 1217, h=1, €£=276 282567 91969/ 1217.
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where } is the ideal class number of F. For the values of h=h, (k<12) c.f. [8].

(IT) The case n=2 (c.f. Theorem 3.2).
Set
m=m=(p* q+p+1) —4p  (p<9).
Let F= Q(+/ m ) and k be the ideal class number of F.
(a) p=2, qﬁS,
m= 73, h=1,
€ =1068+4-125\/73.
m,—= 217=7-31, h=1,
€ =38 4406342 60952,/ 217.
my= 721=7-103, h=1,
& =18 63217 69432 92415469389 85301 22112,/721.
m= 2593, h=1,
€ =2290 04858 04690 92256 48456 +44 97212 78935 82134 31953/2593.

(b) p=2, g¢=5.
m= 161=7-23, h=1,
& =11775+928/161.
my= 521, h=1,
m— 1841=7.263, h=1,
£ =221 70854 28203 335355 16720 31146 43592 /1841,
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