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THE CONVERGENCY OF SOME ROUTING PROTOCOLS

TAKUJI KAWAMOTO

1. Introduction

1.1. Conventional routings

In every network, many nodes with brains are connected by many links each

other. Some nodes are, for example, computers, terminals, or routers. The both

ends of a link can communicate directly each other. For example, local area net-

work, in which every nodes are directly connected each other, looks like Figure 1,

then every nodes can communicate directly to others.

\^i ί
FIGURE 1. Local area network.

But, in global area network, it is difficult to connect every nodes directly, so

they have to communicate through intermediate nodes. In this case, we encounter a

routing problem, that is, there may exist many routes to the destination, if the net-

work has reticulated links as Figure 2.

Up to now, every routes were not so complicated. Therefore, we took a way

that persons give a certain route to the destination in advance or routing informa-

tion protocol (RIP) (Hedrick [5] and Mills [8]), and for wide area network, took the

method called core gateway system or autonomous system.

We explain some algorithms first for complicated routes.

The RIP is a protocol in a series of routing protocols based on the Bellman-

Ford (or distance vector) algorithm (Ford and Fulkerson [4]).

Each nodes decide the shortest route to the destination by the RIP
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communication between neighbouring nodes, that is, nodes decide dynamically the

hop count number which is the smallest number of the entirely relay nodes in a

route, which runs through all of the routes to a given destination.

In other words, each node announce a hop count number that is the smallest

number, which neighbour nodes announced last time, plus 1.

But, this protocol has a problem called "slow convergence" or "count to infin-

ity" (Theorem 3.2).

LI

I T
FIGURE 2. Wide area network.

There have been proposed some improved methods of RIP which avoid this

problem. One is by "assumption a certain distance as unreachable", and the second

is "split horizon update", and is "hold down", and the last is "poison reverse with

triggered updates".

"assumption a certain distance as unreachable" is a method considering the

destination to be unreachable when the number of it's hop count exceeds a

threshold which is determined in advance. So there is the upper bound of the

length of the links.

We do not describe detail for "split horizon update", but in this method, rout-

ing does not function so effectively, when its topology has some long loops.

Moreover, since RIP can not correspond dynamically to the crowdness of net-

work, these routing controls are static one.

Therefore, in order to correspond to a dynamic change of the network load,

the HELLO routing protocol (Mills [11]) were suggested.

This protocol is as like as RIP but delay between nodes instead of hop count.

These typical protocols are introduced in Comer [3] and variations are treated

in Bertsekas [2].

But there is no essential solution of the problem "slow convergence", so this
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method is not intended for practical use, because the method of "assumption a cer-

tain distance as unreachable" restricts the number of nodes joined.

The last of all, the methods called core gateway system and called autonomous

system is suggested. Internet has been grown adding new networks to ARPANET.

Core gateway system is used to add these sub networks. Each sub network is link-

ed to ARPANET at core gateway, which has informations for that sub network.

Core gateways destermine route to destination network by talking each other. If

there is a packet which we want to send to the host H in the network N, that pack-

et is sent to the core gateway which connects to N first, and is sent to H in N next.

Autonomous system is a developed one of core gateway system.

In autonomous system, we divide the whole of network to some sub auton-

omous systems, and we restrict routing controls to each sub system and to coset of

sub systems, and each sub system may contain sub sub systems.

In these methods, the control of each system is left each organization, and the

routing protocol is also various, that is the method by hand, RIP, HELLO, or etc.

Since Internet is the aggregation of many networks which are owned each

organizations, these method is useful, but since each of sub systems is linked by

only one link, we have some faults, those are the increase of traffic at there, and

the weakness for breaking line. So these methods are useless in order to expand to

wide complicated network.

So, in order to avoid the problem "slow convergence", we will define another

method, modelize it, and prove mathematically that the "decision of arrival" is

warranted in arbitrary network without restriction of it's topology.

1.2. Suggestion of new routing
This new protocol is based on the RIP and the HELLO protocol. Each nodes

have a common period1 and they are synchronized.

In the HELLO protocol, for the given destination node w, each node which

wants to decide the route to w renews the delay database to w every period.

Each node communicates the information of the delay database at current

period, and determine the value of database at the next period.

The method to determine it is the way that the delay database at each node at

the current period is calculated as follows, first, for all neighbourhood nodes, con-

sider additions of the delay databases at the last period to the delay times between

the watching node and its neighbourhoods, and select the least value among these

values for the delay database.

1 In the actual protocol, more complicated synchronous method is taken.
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Now, in order to avoid "slow convergence", we provide the following assump-
tion,

ASSUMPTION. Consider the value of a delay database renewed at each node

every period. It must be constant, decreasing, or infinite, and the information infi-

nite has to be told as "emergency information" to neighborhoods in an instant.

The exact definition is described in Section 2.1.

Then, we must show that the convergency problem is solved in such given

routing protocol, that is as follows.

QUESTION 1.1. Consider a routing protocol which is given as previous. If a

crowdness converges, does the routing which decided by that algorithm

converge ?

This paper's principal purpose is to give a solution to this problem.

1.3. Outline
First of all, in Section 2.1, we modelize the routing protocols (Definition 2.9),

and moreover, define delay function and it's convergency. The convergency is an

important property. In this section, we use basic terms of the ordinal numbers,

which are introduced in Jech [6] or Kenneth [7].

Then we define some routing models, such as RIP (Example 2.8), the HELLO

routing protocol (Example 2.7), and decreasing routing protocol (Definition 2.10)

which we suggest.

Next, in Section 2.2, we consider lower dependency (Definition 2.13) and

prove convergency of delay functions (Theorem 2.3).

In Section 2.3, we discuss the relation of convergency and connectivity

(Theorems 2.6 and 2.8). Then we prove equivalency of convergency and connec-

tivity when routing protocol is HELLO or the decreasing routing protocol (Corol-

lary 2.10).

Finally, in the last section (Section 3), we prove the convergency of RIP

(Theorem 3.1) and the decreasing routing protocol (Theorem 3.3), and show an ex-

ample that HELLO does not always converge (Theorem 3.2).
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2. A modelization of routings

2.1. The definition of routing

DEFINITION 2.1. Let T be an ordinal number, which has no maximal elements.

We call it a time set.

Remark. Definition 2.1 is equivalent to that T is a limit number, and that the

upper limit of any subset in T is in it.

EXAMPLE 2.1. T= ω = (0,1,2, . . .} is a time set. It is called the descrete

time.

DEFINITION 2.2. Let V be an ordinal number with the maximal element °° ,

which forms a semi group by (not necessary commutative) addition, and satisfies

the followings,

(1) h + °o = °° + h = °° for each A e V,

(2) the minimum element 0 of V is the zero element, that is, h + 0 = 0 + h

= h for each h ^ V,

(3) h + W > h for each h(Φ «>), h'(Φ 0) e V.

We call it a /io£ vα/we set.

EXAMPLE 2.2 (natural ordinal numbers). Let a be an ordinal number, and de-

note + its natural addition, and let V = a + 1 = a U {°o = #} further. If we de-

fine an addition + by the followings,

+ ft', A + A ' < °o,

then V is a hop value set.

EXAMPLE 2.3 (another example of hop value set). Let a be an ordinal number,

and denote x its natural multiplication. Let V = (α 4- 1) \ {0} = α \ {0} U {oo

= a} further. If we define an addition + by the followings

ιh x h\ h x W < °°,

then V is a hop value set.
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EXAMPLE 2.4 (natural numbers). In the definition of Example 2.2, let a — ω,

then a is a hop value set.

EXAMPLE 2.5 (finite sets). Fix an integer n > 0, and assume a = n = {0, 1,.. .,

n — 1} further in Example 2.1. Then it is a hop value set.

DEFINITION 2.3. We call G = {Y, 8} a graph, when Y is finite, $ is a subset

in t X ί , and they satisfy the followings,

(1) (v, w) eg=>(w,v) eg for each v, «/ e f,

(2) i; <Ξ f = > (i;, t;) £<§.

We call Y a verticies set of G, and <§ an edges set of G.

Remark. We regard for convenience' sake the set of edges 8 contains no di-

agonal elements.

EXAMPLE 2.6 (networks). A Network is considerd a graph, by regarding N as

the whole of nodes, and £ as the set of these links.

DEFINITION 2.4. Let G = {Y, 8) be a graph. We denote N(v) and CM

respectively the neighbourhood of v and the connected component of v. These are de-

fined as follows,

(2.i) c o ω = ω,

(2.2) C » = ( t t i e f l V e Cw_», « iiO <= (?) U C^ίi;),

(2.3) TVω = QίrfXCod;),

(2.4) CMW = UmCn(v).

You see Cn(v) ^ Cw - I(t;) clearly, and the limit in the formula (2.4) terminates at

some n.

DEFINITION 2.5. We fix a time set T, a hop value set V and a graph G =

{1/,(f}. We call a function φ:T x g-+\{0} the crowdness function. We denote # G

the whole crowdness functions on a graph G.

DEFINITION 2.6. We say that an edge e is broken at a time £, when a crowd-

ness φ(t> e) equals infty °° , and that a crowdness function φ converges, when

there exists some time t^ T such that φ(tv e) = φ(t2, e) holds for any tlf
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t2 (> t) e T, e €= <?.

DEFINITION 2.7. Let G = {"K, <?} be a graph, and define another graph G' =

{ f , $'} with t " = f and g' = ie^ g\ φ(t, e) converges to a finite value}

where φ is a given convergent crowdness function, and Nφ(v), Cφl(v) and Cφoo(v)

be sets as same as defined by Gf but no symbol φ respectively.

DEFINITION 2.8 (routings). Let a time set T and a hop value set Vbe fixed.

Routing is a function p : T X V X 2 —• K We denote 3? the whole routing

functions set.

DEFINITION 2.9 (routing protocols (based on the Bellman-Ford algorithm)).

Routing protocol is a quintuple {7\ V, G, C, p) where a time set T, a hop value

set V, a graph G = {Y, 8}, a set of crowdness functions C c <g>

G, and a routing

EXAMPLE 2,7 (the hello routing protocol (Mills [11])). We fix a time set T —

ω and a hop value set V — α> + 1 and let G = {"̂ , 8} be an arbitrary graph.

Let C = ί?G be a set of crowdness functions, and define a routing p ^ ^ as

pit, h,H)= pmin(t, h, H) = m i n ί Γ ,

for each t^T,h^VfH^2v.We call ί ω , ω 4- 1, G, ^ G , p m i n } the /fe/to rout-

ing protocol

EXAMPLE 2.8 (the routing information protocol (RIP) (Hedrick [5], Malkin [8]).

Pick a suitable integer n, that is ordinary 16, and fix a time set T = ω and a hop

value set V= n + 1 = {0, 1 , . . . , n - 1, w = °°}, and leave G = {Y, 8} ordinal-

ly graph.

The RIP is the quintuple {ω, Fn, G, ΉQ , pmiϊ), where the set of crowdness

functions C cz (βG is defined by the followings,

C = C I P = {φ^%\ # {φ(t, e) < oo | t e Γ} < 1 for every « £ « } ,

and the routing by p = pmin.

DEFINITION 2.10 (a decreasing routing protocol with triggered disconnection).

Let a time set T = ω, hop value set V= ω 4- 1 and tp(> 1) ^ T be fixed, and

G = {Y, 8} be an arbitrary set.

Consider the quintuple {ω, ω + 1, G, ^ G / ί , P | ) , where the crowdness set is
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C — %G/tp = {φ G ί?G I <p(/, e) = φ(tplt/tp\, e)} and the routing is defined as fol-

lows,

For each t^Tyh^VyH^2v

pit, h,H) =pi(t, h, H)

min H, min H < h and t divides tp,

h, min H < h and t does not divide tp,

. °°, min/f > /z.

We call it decreasing routing protocol with triggered disconnection or decreasing rout-

ing protocol briefly.

DEFINITION 2.11. Let {7\ V, G = {f, §}, C, p} be an arbitrary routing

protocol. The d<?/αj> function

Hφp: Γ x y x V -* 7

is defined inductively for a crowdness function φ ^ C and a routing p, as follows,

(1) #φ,p(f, v,v)=0 for each ί e Γ a n d ί e f ,

(2) For each t e Γ and v, w e V (v Φ w),

(a) in case of t = 0, we put Hφp(0, v, w) — °°,

(b) in case that t is a succesor,

using the set of the hop values

(2.5) W= {HψιP(t-l, x, w) + φ(t~l, (v, x)))xelflυ) U {°o},

we define

HφJt,v, w) =p(t,HφιP(t-l, vyw),W)y

(c) in case that t is a limit number,

we set

Hφ,p(t, v, w) = \ims^tH9iP(s, v, w).

A delay function with a destination w is a map Hφp(' , , M ; ) : Γ X f - ^ K

Remark. We note that routing is, the other way, a kind of the calculation of

delay function. That is, if we obtain the delay function's value on a point and on

around points, it calcules the next step value of that function on that point.

We note furthermore that its culculation is independent to given point, and

the crowdness function is considered the weight of the edges.
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DEFINITION 2.12. Let Hψp be a delay function with destination M i e f . We

say that Hφp converges at v ^ Y when there exists some time t ^ T such that

Hφp(tv v, w) = Hφp(t2, v, w) for each tl9 t2(> t) e T.

We say that Hφp diverges at v ^ Y when there exists some time t <Ξ T for

each hop value h e Vexcept °°, such that Hφp(t, υ, w) > h.

LEMMA 2.1. The definition of a delay function Hφp is independent of both the

crowdness function φ and the routing p.

Proof If you read Definition 2.11 carefully, you will find that it is defined

by the transfinite induction by the time set. So its uniqness is evidently. EH

2.2. The converg ency

The following definition seems to be a natural condition.

DEFINITION 2.13. We say the routing p is lower dependent, if the following

statement is satisfied.

For three tupples tίf t2 ^ Γ, hv h2 ^ V, Hlf H2 e 2 , we may assume that

r{ — p{tv hif H) (i = 1,2) and r = rλ < r2 because of these symmetry, then

hγ>r,h2>r and Hx Π [0, r] = H2 Π [0,r] => rx = r2 or r2 = h2.

Remark. You may think the conclusion r2 = h2 in the Definition 2.13 is very

strange, but it becomes finally to the equation r2 = rv in the proof of Theorem

2.3.

But since the description of Definition 2.13 is more suitable than a definition

without the conclusion r2 = h2, We dare to describe by this form.

LEMMA 2.2. The all routing protocols mentioned in Examples 2.7, 2.8 and De-

finition 2.10 are lower dependent.

Proof Each definitions make us understood easily. EH

THEOREM 2.3. Let {T, V, G = {Y, <?}, C, p) be an arbitrary routing protocol,

and furthermore φ is convergent, p is lower dependent. Then there exists some limit

number μ ^ V and some stair function h < Ή=> f(h) < f(hf), such that

(2.6) 3t>f(h),HφJt, v, w) =h^wt>f(h),Hφp(t, v,w) = A,
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for each υ, ω ^ V and h e [0, μ). // £/ι<? ίiwβ sβ£ T is bigger enough, μ can be

chosen larger.

Proof. We prove formula (2.6) by transfinite induction by h. However, we

assume it as we like that the time set is bigger enough if h is a limit number.

(1) In the case of h = 0.

We choose /(0) for the condition

(2.7) φ(t\ e) = φ(t\ e)

is concluded for each t', f ( > / ( 0 ) ) ^ Γ, e e <§. The following condition

make us find that formula (2.6) is correct,

3 / < Ξ 7\ 0 = H9ιP(t, v,w)&v = w

< ^ V ί e 7\ 0 = HφιP(t, υ, w).

(2) In the case oί h Φ 0 and formula (2.6) is correct for the values which are

less than /

Let f(h) e Γ be lim, τ Λ/(^) = inf {/(^) | ^ < h} if A = g 4- 1 is a limit

number, and be fig) otherwise. An impossibility that T contains the

value lirrig f Λ /(#) may be considerd, but we can avoid it by taking T big-

ger. We fix v, w e Y. First of all, we show that

(2.8) H9tP(t, v, w) = h=>HφιP(t+l, v,w) <h

for each t>f(h).

Now, we find n = Hφp(t — I, υ, w) > h, in fact, if we assume n < h

namely n < g, then we have t—\ >f(h) >f(n). Therefore by the

assumption of induction we obtain n — Hφp(t, v, w) — h. These contra-

dict n < h.

Next, we put

hx = HψJt- l,v,w)=n>h

Ex = {Hφ>e{t - 1, x, w) + φ(t - 1, {υ, x))} I β W t o ) U

rx = p(tv hv HJ

t2 = t + 1

h2 = Hφp(t, v,w) = h

H2 = {HψJt, x, w) + φ(t, (v, x)))xemv) U {00}

r2 = p(t2, h2, H2)
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then

rλ = p(tlf hv HJ

= p(t,HφtP(t-l,v,w),Hι)

= Hφp(t, v, w)

= h

r2 = p(t2, h2, H2)

= p(t+l, HφJt, v, w),H2)

= H9tP(t+l,v, w)

is obtained by the definition of Hψp. We shall derive contradiction by

assuming h < r2 which is the negation of the conclusion h > r2.

We shall check the assumption of the Definition 2.13. We find r — rι —

h < r2 and obtain

H, Π [0, r] = H, Π [0, n]

= {h = HφιP(t-l,x,w) + φ(t-l, {υyx))\h<n}x^mυ) U {oo}

H2 Π [0, r] = H2 Π [0, n]

= ih = HφtP(t, x, w) + φ(t, (v, x))\h< n}XGN{v) U {oo}.

Therefore H^s are all less than h, and t - 1 > f(h) ^f(HφJ is hold.

If we use the assumption of induction, then we have

Hφ>β(t- l,x, w) =HφJt,x, w).

Furthermore Hλ Π [0, r] = H2 Π [0, r] is obtained, because the condi-

tion (2.7) leads φ(t - 1, (v, x)) = φ(t, v, x)).

We get hλ> r, h2> r easily too, we find the assumption of the Defini-

tion 2.13 is completely satisfied. So that we get finally rλ — r2 or r2 =

h2. These contradict r2 > rx = h = h2.

Now we get correctness of formula (2.8). then we shall examine for more

detail. Formula (2.8) says that if Hφp takes the value h once on the time t

>/(/0, then it holds h otherwise it becomes less than h, and that if it

takes the value less than h, then it never decreases, because of the

assumption of induction. So, we obtain the following three situations,

there exists f(h) < sx < s2 < T such that

HφΛt, v, w)

> h, /(A) <t<s19

= h, sι < t < s29

= * ' ( < A), s2< t.



24 TAKUJI KAWAMOTO

Namely, we get finally the other three situations,

(a) for each t > /(A) + 1, HφJt, v, w) > h,

(b) there exists/(A) < s such that Hφp(t, v, w) = h for each t > s,

(c) there exists/(A) < s such that Hφp(t, v, w) < h for each t > s.

Now we put f(h) the largest one among previous/(/z) + 1 and s's for all

v, w ^ Y, then for each situations, we obtain the last three situations,

(a) for each t>f(h), HφJt, v, w) > h,

(b) for each t > /(A), H9§p(t, v, w) = h,

(c) for each t > /(A), H9tP(t9 υy w) < k

So we get the conclusion formula (2.6) of induction. D

COROLLARY 2.4. If we suppose the condition of Theorem 2.3 and additionally we

can take μ — °°, that is in Example 2.4 or T is big enough, Hφβ(', v, w) converges

or deverges for each v, w ^ Y.

Proof This corollary follows from Theorem 2.3. EH

COROLLARY 2.5. Under the condition of Theorem 2.3, if the hop value set V is a

finite set, Hφp(-, v, w) converges any value including oo, for each υ> w ^ Y.

Proof This corollary follows from Theorem 2.3. D

2.3. Connected components of the destination w

In this section, we fix Γ, V, p, and let G, C be arbitrary graph and crowd-

ness function, where {Γ, V, G = {Y} <§}, C, p) is a given routing protocol, and

we assume the situation in Theorem 2.3 and β = °° . Furthermore, we discuss

with fixing the destination w.

Remark. The equation μ = °° is independent of neither crowdness functions

nor graphs.

Corollary 2.4 says that HφtP( , v, w) will converge or divege, if we decide the

destination w and the vertex υ which we notice.

Then we divide Y into the following two subsets,

(2.9) ί = ί < M U f ί 0 O ,

where

(2.10) Y<O0 = { t ; G f | H9iP(-9 v, w) converges},
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(2.11) f ΐoo = {v £Ξψ\ HφtP(', v, w) : divergent}.

Furthermore we divide V into another two subsets,

(2.12) Ϋ = Y.WUΨ^W

where

(2.13) Y_w = CφJw)

(2.14) y ^

THEOREM 2.6. Under the previous conditions, consider the foHoming two condi-

tions.

(1) f<oo C Ύ_wy for each G, C.

(2) For each t <Ξ T, h <Ξ V, H <^ 2V,

p(tf h,H)< h=>p(t, KH)> Pntoit, h, H).

Then condition (2) => condition (1).

Proof We assume condition (2). For arbitrary given v ̂  Ύ<oo, let h be its

convergent value, and we shall show υ e y_ w by transfinite induction by h.

First of all, in the case of h = 0, the conclusion of induction is correct, be-

cause h = OO'v = w.

Next, we assume /* > 0.

Theorem 2.3 says that Hφp(t, v,w) — h holds for each t > f(h). It follows

the definition of delay function that Hφp(t 4- 1, v, w) = p(f + 1, #Φ ( P(/, ι>, w), WO

where W ̂  2 is defined in formula (2.5).

That is h = p(ί + 1, /i, $0, and with condition (2), we wίίl find that there

exists x e JV(i ) such that A > ̂ ( ί , ΛT, W) + φ(tf (v, x)). φ(t, (vf x)) > 0

implies h> ti = HψyP(ty v> w). Here, Theorem 2.3 says also that Hψp(t\ x, w) =

hr is satisfies for each t > f(h'). So, x e y<cy3. The assumption of the induction

drives x e y_w> and t; e y . ^ follows. Π

LEMMA 2.7. Routing protocols specified in Example 2.7 and Definition 2.10 froί/t

satisfies the assumption of Theorem 2.6 and condition (2).

Proo/. Easy to check. •

THEOREM 2.8. Assume that we have hy hr{< oo) e F=> h + h' < °° in addi-
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tion. Consider the following two conditions.

(1) Ψ i o o a V^w for each G, C.

(2) For each t^T,h^VfH^2V there exists t'(> t) e T such that

pit', h'f Hf) < pmm(t\ h', H') for each hr e V, Hf e 2V.

Then condition (2) => condition (1).

Proof. We assume condition (2). If necessary, we consider large time enough,

we can assume φ is a constant. Its concrete value is /(0) that is shown in the

proof of Theorem 2.3. Furthermore, we consider larger time, we can also assume

each delay functions on Y<oo are constant. Its concrete value is also specified in

the same proof. Then we put h = max υ^<^ {HΦΛt, υ, w) + ω(t, e)}. We see
eeg,φ(t,e)«*> Ψ'μ

that its right-hand expression is a finite set, so we find that the maximum value of

its right-hand expression exists and h < °° holds.

We can replace a time of large one which is more than f(h + 1) where / is

given in Theorem 2.3.

Now, we assume that Y τ«, Π Y_w Φ 0. Evidently we get also Ψ<0O Π Ύ_w Φ 0

. So we can take υ e ψ τ w Π V^ and v' e y < o o Π y_w such that (f, t/) e 5 holds.

Then we find that hop values on v is larger than h. That is, £ > f{h + 1) im-

plies i/V f P(i, t;, w) > A.

Now, we take arbitrary t > f(h + 1). If we take t large enough, condition (2)

derives that

h<HφJt+l, v,w)

= p(t\Hψ)β(t,v,w), W)

= min ίF

<Hφ>p{tyxy w) +φ(t, (v,x))

for each x e Λ (̂t>).

Fortiori that holds for .r = fr. That contradicts the selection of h.

Now we get Y τ«, Π y_ w = 0 , that is, f τ«, c y_w holds. D

LEMMA 2.9. T/ι̂  routing protocols specified in Example 2.7 and Definition 2.10

satisfies the assumption of Theorem 2.8 and condition (2).

Pwo/ Easy to check. [H

COROLLARY 2.10. W# fix the destination w ^ Ύ for the protocols specified in Ex-

ample 2.7 ans Definition 2.10.
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Then the convergency of the delay function on υ is equivalent to v ^ Cφoo(w) for

any vertices v ^ Y :

Proof. This corollary follows from Theorem 2.6, Lemma 2.7, Theorem 2.8

and Lemma 2.9. D

3. The convergency of typical routing protocols

3.1. The RIP

THEOREM 3.1. Let (T=ω,V= Fn,G= {Y, 8},C = <βψ, p = pmiΐ) be RIP.

If we are given a convergent crowdness function φ, we obtain Hφp{' , v, w) is a con-

stant for each v, w ^ Y after some finite times.

Proof This theorem follows to Corollary 2.5 immediately. CU

u υ w

FIGURE 3. The sub graph consisted of three vertices.

3.2. The hello routing protocol

THEOREM 3.2. Let {T = ω, V= ω + 1, G = {Y, g}, C = %G, p = ρmin} be

a Hello routing protocol. If G has a connected component which contains more than or

exactly three vertices, there exists some convergent crowdness function φ such that

HφtP( , v, w) diver gents for some v, w <^ Y.

Proof G has a sub graph which contains just three vertices as shown by Fi-

gure 3.

We define a crowd function φ as follows,

φ(t, (u, υ)) = 1,

f 1, 0 < t< 2,

then we are able to easily calculate:

ί oo

U/2J + 1, t.
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We write down the first some times to Table 1.

w

t

Hφp(t, w, w)

φ(t, (v, w))

Hφβ(t, vy w)

φ(t, (u, υ))

Hψβ(t, u, w)

0

0

1
oo

1

oo

1

0

1

1

1

oo

2

0

1

1

1

2

3

0
oo

2

1

2

4

0
oo

2

1

3

5

0
oo

3
1

3

...

...

...

...

...

...

TABLE 1. An example of devergence.

If G has more than three vertices, we can take crowdness function's value oo

on edges except Figure 3. D

3.3. Decreasing routing protocol

THEOREM 3.3. Let {T = α>, V= ω + 1, G = {V,8} be the decreasing routing

protocol where C — %G/t , β = β | } , and we assume that tp > # V.

Then for given convergent crowdness function φ and each υy w ^ Y, Hψp{' , v, w)

terminates after some finite time.

Proof. Corollary 2.4 says that Hφp(', v, w) converges to a finite value or di-

vergent including converges to °°.

On the other hand, Corollary 2.10 says that it converges to a finite value if

and only if v ^ Cψoo(w).

In order to prove the theorem, we show that Hφ>p(-, v, w) converges to oo for

each v £ Cψoo(w).

Put m(t) = m i n ^ c ro {w){Hφp(t, υy w)}. The Definition 2.10 of the routing

says that m(f) is a increasing function.

Let t0 be a suitable multiple of tp, and consider t such that t0 < t < tQ + tp.

Definition 2.10 also says that there exists hvw(< °°) e V and (t0 < )

Kw^ to + tp) e Γsuch that

Then we find Hφp(t, υ, w) = °° for the vertex v that satisfies m(t — 1) =

Hφp(t — 1, f, w) for each time £

It leads that at least one vertex arrives at oo for each time t step.

If we consider the last time t = tQ + tp, we find every vertices υ £ Cφoo(w)

arrive at oo, that is H M, υ, w) = °°.
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The increasing function m(f)tGT arrives at oo, that is, it converges to oo. So

we get that HψtP( , v, w) converges oo for every vertices v £ Cψoo(w) also. •
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