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THE 2-IDEAL CLASS GROUPS OF Q(ζl)

PIETRO CORNACCHIA

Abstract. For prime l we study the structure of the 2-part of the ideal class
group Cl of

�
(ζl ). We prove that Cl ⊗ � 2 is a cyclic Galois module for all

l < 10000 with one exception and compute the explicit structure in several
cases.

§1. Introduction

Let l be an odd prime number and let ζl be a primitive l-th root of

unity. We denote by Cl the ideal class group of the field Q(ζl). The aim of

this paper is to study the structure of the 2-part of Cl as an abelian group.

Let G be the Galois group Gal(Q(ζl)/Q). We have a natural decomposition

G = ∆×P where P is the 2-Sylow subgroup of G and ∆ is the subgroup of

G consisting of the elements of odd order. Let Cl+ be the ideal class group

of the field Q(ζl + ζ−1
l ); there exists a natural injective map Cl+ → Cl, and

we denote by Cl− its cokernel. In order to study the 2-part of class groups,

it is useful to introduce 2-adic characters. Let χ : ∆ → Q
∗
2 be a 2-adic

character, and denote by Oχ the ring Z2(χ). For any Z[G]-module M , we

define its χ-part M(χ) as (M ⊗Z Z2) ⊗Z2[∆] Oχ. It is an Oχ[P ]-module. In

particular, the 2-part M ⊗Z Z2 of M is a direct sum of χ-parts. For more

information on χ-parts, see [4]. In Section 2 we prove a cyclicity criterion,

which is a version of théorème I.9 of [10] adapted to our situation:

Theorem 1. Let l ≡ 1 (mod 4). The group Cl(χ) is a nontrivial

cyclic Oχ-module if and only if #Cl−(χ) = #(Oχ/2).

The above theorem allows one to determine Cl(χ) in some cases. As

an example, consider the field Q(ζ9337). Let χ be the character of order 3.

We have #Cl−(χ) = #(Oχ/2), and #Cl+(χ) = #(Oχ/8). Applying the

theorem, we get Cl(χ) ∼= Oχ/16.
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We then characterize the cohomological triviality of the Oχ[P ]-module

Cl(χ). In Proposition 4 we show that Cl(χ) is cohomologically trivial if and

only if the χ-part of the units of Q(ζl + ζ−1
l ) have independent signs.

In Section 3 we study the cyclicity of Cl(χ) as an Oχ[P ]-module. If

Cl(χ) is cyclic, then it is possible to compute explicitly the Oχ[P ]-structure

of Cl+(χ) and of Cl−(χ). The structure of Cl−(χ) is given by Proposition

2. The description of the structure of Cl+(χ) is more complicated. There

exists an ideal J+(χ) of Oχ[P ] such that Cl+(χ) and Oχ[P ]/J+(χ) have

the same order. The definition of J+(χ) can be found in Proposition 9

of [4]. The ideal J+(χ) annihilates Cl+(χ) (Theorem 2.2 of [13]): this is

proved using methods developed by F. Thaine. A more precise result is

also given in [5]. Therefore, in case Cl+(χ) is cyclic over Oχ[P ], we have

Cl+(χ) ∼= Oχ[P ]/J+(χ). The ideals J+(χ) have been computed in [17] for all

fields of prime conductor l < 10000. Cyclicity questions have been studied

in [15], where it is proved that the minus class group Cl− of Q(ζl) is a cyclic

Galois module for all primes l ≤ 509. For class groups of real cyclic fields

there are also some results in this direction [1, 7]. Numerical computations

suggest that Cl(χ) is a cyclic Oχ[P ]-module most of the times, and it is quite

hard to find examples when this condition is not verified. We prove that

Cl(χ) is cyclic whenever Cl+(χ) is trivial (Propositions 5 and 6). Moreover,

we prove the following:

Theorem 2. If l < 10000 is a prime number not equal to 7687, then

the group Cl(χ) is a cyclic Galois module.

In the case l = 7687 and χ a nontrivial cubic character, one could

show by explicit computations that Cl(χ) has actually two generators. In

Section 4 we give several structure results on the Oχ-structure of Cl(χ) in

the case that Cl(χ) is a cyclic Oχ[P ]-module. In particular, we determine

completely the Oχ-structure of Cl(χ) when l ≡ 3 (mod 4), Cl(χ) is a cyclic

Oχ[P ]-module and #Cl+(χ) 6= #Cl−(χ) (Propositions 7 and 8). These

results allow us to determine in many cases the structure of Cl(χ) as an Oχ-

module. The numerical results are presented in the table which is described

in Section 5.

§2. Generalities on class groups

We maintain the same notations as in the introduction. Let G be the

Galois group of the field Q(ζl) over the rationals. The group G is a cyclic

abelian group of order l − 1. Let 2e be the exact power of 2 dividing l − 1.
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Let χ : ∆ → Q
∗
2 be a 2-adic character of ∆, and denote by Oχ the discrete

valuation ring Z2(χ). Let Cl(χ) be the χ-part of the ideal class group of

Q(ζl). For any Z[G]-module M , we define its χ-part

M(χ) = (M ⊗Z Z2) ⊗Z2[∆] Oχ.

We are interested in the structure of Cl(χ) as a Oχ[P ]-module. In order to

proceed, we introduce some notation. Let d be the order of the character χ.

We denote by Ke the subfield of Q(ζl) fixed by Ker χ. It is a cyclic extension

of Q of degree d · 2e. For all 0 ≤ i ≤ e, we denote by Ki the unique subfield

of Ke of degree d · 2i over Q. The fields Ki are totally real abelian fields for

all 0 ≤ i ≤ e − 1. We denote by Cli and by Cl∞i the ideal class group and

the narrow ideal class group respectively of the field Ki. We also write Cl+e
for Cle−1. Observe that Cle ∼= Cl∞e .

Proposition 1. Let the notations be as above. For i ≥ j, we denote

by σi,j a generator of Gal(Ki/Kj). Then we have

Cl∞i
∼= Cle/(Cle)

1−σe,i ,∀ 0 ≤ i ≤ e,(1)

Cli ∼= Cle−1/(Cle−1)
1−σe−1,i ,∀ 0 ≤ i ≤ e − 1.(2)

Proof. The proof is the same as the one of Lemma 1 of [3]. We prove

(1); the proof of (2) is analogous. The extension Ke/Ki is totally ramified

at the unique prime ideal of Ki above l and unramified above all other finite

primes. Class field theory implies that the norm map Ne,i : Cle → Cl∞i is

surjective. The group (Cle)
1−σe,i is clearly contained in the kernel. Apply-

ing the genus theory formula (see [11], Chapter 13, Lemma 4.1) and Hasse’s

principle, it follows that #Cl∞i = #Cl
Gal(Ke/Ki)
e = #Cle/(Cle)

1−σe,i . There-

fore the map Ne,i induces an isomorphism, and our claim is proved.

We define the minus class group Cl−e to be the cokernel of the natural

map Cle−1 → Cle.

Let j ∈ G denote complex conjugation. Let ζ2e ∈ Q2 be a primitive

2e-th root of unity. There exists an isomorphism Cl−e (χ) ∼= Cl−(χ) induced

by the norm map from Q(ζl) to Ke. The group Cl−(χ) is an Oχ[P ]/(1 +

j) ∼= Oχ[ζ2e ]-module. Suppose that Cl−(χ) is a cyclic Galois module. Since

Oχ[ζ2e ] is a discrete valuation ring, there is a simple description of the

structure of Cl−(χ). Let 2f = #(Oχ/2). The following is Proposition 3.4 of

[15].
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Proposition 2. Suppose that A is a cyclic Oχ[P ]/(1 + j)-module.

Moreover suppose that #A = 2ft. Then there is an isomorphism of Oχ[ζ2e ]-

modules

A ∼= Oχ[ζ2e ]/(1 − ζ2e)t(3)

and an isomorphism of Oχ-modules

A ∼= (Oχ/2r)(2
e−1−s) × (Oχ/2r+1)s(4)

where r, s ∈ N are determined by t = r2e−1 + s and 0 ≤ s < 2e−1.

Proof. This follows because Oχ[ζ2e ] is a discrete valuation ring with

uniformizing element 1 − ζ2e .

For any Oχ-module A, we denote by rankOχA the dimension of the

Oχ/2-vector space A/2.

Corollary 1. Let #Cl−(χ) = 2ft and suppose that Cl−(χ) is a

cyclic Oχ[P ]-module. Then rankOχCl−(χ) = min(t, 2e−1).

Proof. Since 1+ j annihilates Cl−(χ), we can apply Proposition 2 with

A = Cl−(χ). If t < 2e−1, then r = 0, s = t and (4) gives us rankOχCl−(χ) =

s = t. If t ≥ 2e−1 then r > 0 and (4) gives us rankOχCl−(χ) = 2e−1, as we

wanted to show.

We are now ready to prove Theorem 1 of the introduction.

Proof of Theorem 1. Suppose that Cl(χ) ∼= Cle(χ) is nontrivial and

cyclic over Oχ. This implies that Cl−(χ) is a nontrivial cyclic Oχ-module.

The condition on l is equivalent to say that e > 1. Corollary 1 implies

t = 1, therefore #Cl−(χ) = 2f = #(Oχ/2). Suppose now that #Cl−(χ) =

#(Oχ/2). In particular, Cl−(χ) is a cyclic Oχ[P ]-module. We have Cl−(χ) ∼=
Cl(χ)/Cl(χ)1+j and 1 + j is in the maximal ideal of Oχ[P ]. Nakayama’s

lemma implies that the group Cl(χ) is a cyclic Oχ[P ]-module. We identify

the ring Oχ[P ] with the ring R = Oχ[T ]/((1 + T )2
e − 1). Since R/2 ∼=

Oχ

2 [T ]/(T 2e

), we have Cl(χ)/2 ∼= Oχ

2 [T ]/(Th) for some h ≤ 2e. Since 1+ j =

1 + (1 + T )2
e−1

, we obtain Cl−(χ)/2 ∼= Oχ

2 [T ]/(Th, T 2e−1
). Our assumption

implies that min(h, 2e−1) = 1. Since e > 1, we must have h = 1: this means

that Cl(χ) is a cyclic Oχ-module.
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We now study the cohomology of the groups Cl(χ). We say that Cl(χ)

is cohomologically trivial if the Tate cohomology groups Ĥ i(P,Cl(χ)) are

trivial for all i ∈ Z. Since P is a cyclic group and Cl(χ) has finite order,

Tate cohomology has period 2 and the Herbrand quotient is 1. Therefore

saying that Cl(χ) is cohomologically trivial is equivalent to say that there

exists an i such that Ĥ i(P,Cl(χ)) is trivial.

We need to recall some notations and results. For any field E, we denote

by O∗
E the unit group of its ring of integers. If E is a totally real field, we

also denote by E+ the set of totally positive elements of E, and by O∗
E,+

the group of totally positive units in O∗
E . Combining Theorem 1 of [4] and

Proposition 7 (iii) of [4] we get that

Ĥ0(P,Cl(χ)) ∼= (O∗
K0,+/NKe

K0
O∗

Ke
)(χ)(5)

where NKe

K0
is the norm map from Ke to K0. We need to recall another

result.

Proposition 3. Let K be a totally real number field and let K/E be

a quadratic extension. Suppose that (O∗
E)2 = O∗

E,+. We then have a natural

isomorphism

K∗/(K∗
+O∗

K) ∼= Ĥ0(Gal(K/E),O∗
K ).

For a proof see [2], Theorem 12.11, page 61. We now give a criterion for

the cohomological triviality of Cl(χ) in terms of the signature of the units.

Proposition 4. The cohomology group Ĥ0(P,Cl(χ)) is trivial if and

only if (O∗
Ke−1,+/(O∗

Ke−1
)2)(χ) ∼= 0.

Proof. Since O∗
Ke

= µ(Ke)O∗
Ke−1

, where µ(Ke) are the roots of unity

in Ke (the Hasse index is 1 in our situation), NKe

K0
O∗

Ke
= (N

Ke−1

K0
O∗

Ke−1
)2.

We have

(N
Ke−1

K0
O∗

Ke−1
)2 ⊂ (O∗

K0
)2 ⊂ O∗

K0,+.

Therefore, by (5), Ĥ0(P,Cl(χ)) ∼= 0 is equivalent to

(N
Ke−1

K0
O∗

Ke−1
)(χ) = O∗

K0
(χ) and (O∗

K0
)2(χ) = O∗

K0,+(χ).(6)

If e = 1, then Ke−1 = K0 and we are done. From now on, we suppose that

e > 1. Since the isomorphism in Proposition 3 is natural, it remains true if
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we take χ-parts. Suppose that (6) holds. The first condition, which can be

stated as 1

Ĥ0(Gal(Ke−1/K0),O∗
Ke−1

(χ)) ∼= 0(7)

implies that

Ĥ0(Gal(Ki+1/Ki),O∗
Ki+1

(χ)) ∼= 0, ∀ 0 ≤ i ≤ e − 2.

We apply inductively Proposition 3 to the extensions Ki+1/Ki, until i =

e − 2. At each step we get (Ki+1)
∗/((Ki+1)

∗
+O∗

Ki+1
)(χ) ∼= 0, which is

equivalent to (O∗
Ki+1,+/(O∗

Ki+1
)2)(χ) ∼= 0. The last step gives our claim.

Vice versa, suppose that the group (O∗
Ke−1,+/(O∗

Ke−1
)2)(χ) is trivial. Since

the extension Ke−1/K0 is totally ramified above l 6= 2, we have that

(O∗
Ki,+

/(O∗
Ki

)2)(χ) is trivial for all i = 1, . . . , e−1. Therefore using Proposi-

tion 3 again, we have that at each step the cohomology group Ĥ0(Ki+1/Ki,

O∗
Ki+1

(χ)) is trivial. This implies that O∗
K0

(χ) ∼= N
Ke−1

K0
O∗

Ke−1
(χ), thus (6)

is satisfied.

§3. Cyclicity of Cl(χ) as a Galois module

In this section we study the case when Cl(χ) is a cyclic Oχ[P ]-module.

Numerical computations suggest that this is almost always the case, and

in this situation we have more information on the structure of Cl(χ). We

maintain the notations from the previous sections. The norm map Cl → Cl+

is surjective by class field theory, and the natural map Cl+ → Cl is injective

[11, Chap. 3, Th. 4.2]. The composition of these maps is multiplication by

1 + j; this allows us to identify Cl+ with Cl1+j .

We first state a criterion of cyclicity of Cl0(χ) as a Oχ-module.

Theorem 3. (T. Berthier) Suppose that χ is not the trivial character.

If rankOχCl0(χ) = 1 then there exists a prime number r ≡ 3 (mod 4) which

is split in K0/Q, such that the χ-part2 Clχ,r of the ideal class group of

the field K0(
√
−r) has order #Cl0(χ)#(Oχ/2). On the other hand, if there

exists a prime r as above, then rankOχCl0(χ) ≤ 1.

1We remark that if χ is not the trivial character, then it is true that (7) is equivalent
to say that O∗

K
e−1

(χ) is a free one dimensional Oχ[Gal(Ke−1/K0)]-module, but we do

not need this.
2Here we view χ as a character of Gal(K0/Q) and extend it to

Gal(K0(
√
−r)/Q(

√
−r)).
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This result is a special case of [1, Th. 2.4.3]. The proof of the first part

is difficult. Here we sketch the proof of the second part. The conditions

imposed on r imply that the places which ramify in K0(
√
−r)/K0 are pre-

cisely the infinite ones and the ones above r. If we apply the χ-ambiguous

class number formula of genus theory3, we get that Cl
Gal(K0(

√
−r)/K0)

χ,r has

order at least #Cl0(χ)#(Oχ/2). Therefore our hypothesis force Clχ,r to

be Gal(K0(
√
−r)/K0)-invariant. Since the field K0(

√
−r) is totally imag-

inary, the field K0 is totally real, and χ is not the trivial character, it

is not hard to show that the natural map Cl0(χ) → Clχ,r is injective.

Moreover, since the extension K0(
√
−r)/K0 is ramified, the norm map

Clχ,r → Cl0(χ) is surjective. Let σ be a generator of Gal(K0(
√
−r)/K0).

We have Cl2χ,r = Cl1+σ
χ,r

∼= Cl0(χ). Therefore

#(Clχ,r/Cl2χ,r) = #(Oχ/2)

and we get that rankOχClχ,r = 1. Since Cl0(χ) is an epimorphic image of

Clχ,r, we get rankOχCl0(χ) ≤ 1.

Corollary 2. If Cl0(χ) is a cyclic Oχ-module, then Cl∞0 (χ) is a

cyclic Oχ-module as well.

Proof. We can assume that Cl0(χ) is nontrivial, otherwise Cl∞0 (χ) is

either trivial or isomorphic to Oχ/2, hence cyclic. In this situation χ is not

the trivial character and we can apply Theorem 3. Therefore there exists a

quadratic totally imaginary extension E = K0(
√
−r) of K0 such that the

χ-part ClE(χ) of the ideal class group of E has Oχ-rank equal to 1 (see the

proof of Theorem 3). Moreover the extension E/K0 is ramified at the finite

primes above r. Therefore the norm map ClE(χ) → Cl∞0 (χ) between narrow

ideal class groups is surjective. The group Cl∞0 (χ) is then a surjective image

of ClE(χ) (they are actually isomorphic). Therefore Cl∞0 (χ) is a cyclic Oχ-

module.

Observe that in the case −1 is a power of 2 modulo the order of χ,

B. Oriat already proved the equality rankOχCl0(χ) = rankOχCl∞0 (χ) using

the Spiegelungssatz [12, Cor. 2 c].

Remark. In [15, Th. 3.3] a sufficient condition for Cl−(χ) to be a cyclic

Oχ[P ]-module is given.

3This is the χ-version of Lemma 4.1, Chapter 13 of [11]. See also [6].
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Proposition 5. The following assertions are equivalent :

1. Cl(χ) is a cyclic Oχ[P ]-module ;

2. Cl−(χ) is a cyclic Oχ[P ]-module ;

3. Cl+(χ) is a cyclic Oχ[P ]-module ;

4. Cl∞0 (χ) is a cyclic Oχ-module ;

5. Cl0(χ) is a cyclic Oχ-module.

Proof. The ring Oχ[P ] is a local ring with maximal ideal (2, 1 − σ),

where σ is a generator of P . By definition

Cl−(χ) ∼= Cl(χ)/Cl+(χ) ∼= Cl(χ)/Cl(χ)1+j .

Nakayama’s lemma gives the equivalence of 1 and 2. The equivalence of 1

and 4 follows again by Nakayama’s lemma and Equation (1) of Proposi-

tion 1. Similarly, 3 and 5 are equivalent by Nakayama’s lemma and Equa-

tion (2) of Proposition 1. Since Cl0(χ) is a surjective image of Cl∞0 (χ),

condition 4 implies 5. Moreover 5 implies 4 by Corollary 2.

Sometimes it is easy to show that Cl(χ) is a cyclic Galois module.

Proposition 6. Suppose that Cl+(χ) ∼= 0. Then Cl(χ) is a cyclic

Oχ[P ]-module.

Proof. This is immediate from Proposition 5, but we give a direct

proof independent of Corollary 2. In the notation of the previous section, the

group Cl0(χ) is trivial, because it is a surjective image of Cle−1(χ) = Cl+(χ)

under the norm map. This implies that Cl∞0 (χ) is either trivial, or isomor-

phic to Oχ/2. Therefore in both cases Cl∞0 (χ) is a cyclic Oχ[P ]-module. By

Proposition 1 we have Cl∞0 (χ) ∼= Cl(χ)/Cl(χ)1−σ . By Nakayama’s lemma,

we get that Cl(χ) is cyclic, as we had to show.

Proof of Theorem 2. Because of Proposition 6, we can suppose that

Cl+(χ) is not trivial. In [4] we determined all 2-adic characters χ of con-

ductor l < 10000 such that Cl+(χ) is not trivial. They also appear in the

table at the end of this paper. By Proposition 5 we can rule out all cases

with either #Cl+(χ) ≤ #(Oχ/2) or #Cl−(χ) ≤ #(Oχ/2). Only few cases

remain; they are precisely the characters of order 3 and conductors l = 349,
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709, 1777, 4261, 4297, 4357, 4561, 6247, 7687, 9109. For these characters,

it is enough to check whether condition 5 of Proposition 5 holds. Looking

at the tables in [8], one sees that for l = 349, 709, 4261, 4357, 4561, 9109,

the group Cl0(χ) has order 4 = #(Oχ/2), hence it is Oχ-cyclic. Since we

exclude l = 7687, to complete the proof we are left with the three cases

l = 1777, 4297, 6247. To prove the cyclicity of Cl0(χ) it is enough to find

in each case an auxiliary prime r satisfying the conditions of Theorem 3.

This has been done in [1]: if l = 1777 or l = 4297 one can take r = 7, for

l = 6247 one takes r = 11. The proof of the theorem is now complete.

§4. Structure of Cl(χ) as an Oχ-module

Suppose we are given a prime number l, a character χ as in the previous

sections, and we know that Cl(χ) is a cyclic Oχ[P ]-module. In several cases

it is possible to determine the structure of Cl(χ) as an Oχ-module from

the knowledge of h+
χ = #Cl+(χ), h−

χ = #Cl−(χ) and the order of the

cohomology groups. In this section we give several criteria in this direction.

4.1. The case l ≡ 3 (mod 4)

The case l ≡ 3 (mod 4) is simpler because P is cyclic of order 2,

generated by complex conjugation j. Suppose that Cl(χ) is a cyclic Galois

module. In this situation both Cl+(χ) and Cl−(χ) are cyclic Oχ-modules.

Let fχ be the dimension of Oχ/2, as a Z/2Z-vector space. We denote by a+
χ

and by a−χ respectively the integers fχ
√

h+
χ and fχ

√
h−

χ . They are defined in

such a way that

#(Oχ/a+
χ ) = h+

χ and #(Oχ/a−χ ) = h−
χ .

Let amax
χ = max(a+

χ , a−χ ) and amin
χ = min(a+

χ , a−χ ).

Lemma 1. Assume that l ≡ 3 (mod 4). Then Cl(χ) is annihilated by

2amax
χ .

Proof. Let x ∈ Cl(χ). We have

x2 = x1+jx1−j .(8)

We have Cl(χ)a
+
χ (1+j) = 1. Since

Cl(χ)1−j ⊂ Ker(1 + j : Cl(χ) → Cl(χ)1+j)
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we get that

#Cl(χ)1−j ≤ h−
χ

therefore Cl(χ)a
−

χ (1−j) = 1. If we apply amax
χ to (8) we get x2amax

χ = 1, as

we wanted to show.

Corollary 3. Let l ≡ 3 (mod 4). Suppose that Cl(χ) is a nontrivial

cyclic Oχ[P ]-module. Then, either

Cl(χ) ∼= (Oχ/a+
χ ) × (Oχ/a−χ ),

or

Cl(χ) ∼= (Oχ/2amax
χ ) × (Oχ/(amin

χ /2))

as Oχ-modules.

Proof. The hypothesis implies that both Cl+(χ) and Cl−(χ) are cyclic

Oχ-modules. Therefore Cl(χ) has Oχ-rank at most 2. The result now follows

from Lemma 1.

We now show that if l ≡ 3 (mod 4), Cl(χ) is a cyclic Oχ[P ]-module, and

h+
χ 6= h−

χ , then the structure of Cl(χ) as an Oχ-module, can be determined.

Proposition 7. Let l ≡ 3 (mod 4), h+
χ > h−

χ and suppose that Cl(χ)

is a cyclic Oχ[P ]-module. Then there is an isomorphism of Oχ-modules:

Cl(χ) ∼= (Oχ/2a+
χ ) × (Oχ/(a−χ /2)).

Proof. Let x be a generator of Cl(χ). We consider

x2 = x1+jx1−j .

Multiplying by a+
χ /2, we get

xa+
χ = x(a+

χ /2)(1+j)

since a+
χ /2 ≥ a−χ kills Cl(χ)1−j . Since Cl(χ)1+j ∼= Cl+(χ) is cyclic and has

exponent a+
χ , the right hand side is not trivial. Thus x has order 2a+

χ , and

we are in the second case of Corollary 3.

Proposition 8. Let l ≡ 3 (mod 4), h+
χ < h−

χ and suppose that Cl(χ)

is a cyclic Oχ[P ]-module. Then we have, as Oχ-modules:
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1. Cl(χ) ∼= (Oχ/a−χ ) × (Oχ/a+
χ ) if Cl(χ) is not cohomologically trivial ;

2. Cl(χ) ∼= (Oχ/2a−χ ) × (Oχ/(a+
χ /2)) if Cl(χ) is cohomologically trivial.

Proof. Because of Corollary 3, it is enough to prove that the first con-

dition is verified if and only if Cl(χ) is not cohomologically trivial. Suppose

that

Cl(χ) ∼= (Oχ/a−χ ) × (Oχ/a+
χ )

as Oχ-modules. The module Cl(χ) is killed by a−χ and by a+
χ (1 + j). Since

Cl(χ) is Oχ[P ]-cyclic, counting orders we must have an isomorphism of

Oχ[P ]-modules

Cl(χ) ∼=
Oχ[P ]

(a−χ , a+
χ (1 + j))

.

It is immediately verified that this is not cohomologically trivial. Now sup-

pose that Cl(χ) is not cohomologically trivial. Let x an element of Cl(χ).

We have

x2 = x1+jx1−j .(9)

Since Ĥ1(P,Cl(χ)) is not trivial, we get

#Cl(χ)1−j < #Ker(1 + j) = #Cl−(χ) = #(Oχ/a−χ ).

This implies that a−χ /2 kills Cl(χ)1−j . But, since h+
χ < h−

χ , the number

a−χ /2 kills also Cl(χ)1+j . If we multiply (9) by a−χ /2, we get

xa−

χ = 1.

This implies that Cl(χ) has exponent a−χ . Therefore

Cl(χ) ∼= (Oχ/a−χ ) × (Oχ/a+
χ )

as Oχ-modules. This completes the proof.

If h+
χ = h−

χ , then we do not have a criterion to determine the structure

of Cl(χ) as an Oχ-module in general. Anyway, the following is true:

Proposition 9. Let l ≡ 3 (mod 4), h+
χ = h−

χ and suppose that Cl(χ)

is a cyclic Oχ[P ]-module. If Cl(χ) is not cohomologically trivial, then there

is an isomorphism of Oχ-modules :

Cl(χ) ∼= (Oχ/2a+
χ ) × (Oχ/(a+

χ /2)).
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Proof. In our situation we have that Ĥ i(P,Cl(χ)) is isomorphic to

Oχ/2, for all i ∈ Z. By the properties of Tate cohomology groups

Ĥ1(P,Cl(χ)) ∼= NCl(χ)/Cl(χ)1−j

where NCl(χ) denotes the kernel of the norm map

Cl(χ) → Cl(χ) : x → x1+j .

We have that #(NCl(χ)) = h−
χ . From this we get easily that

#Cl(χ)1−j = #(Oχ/(a−χ /2)).

In particular, a−χ /2 kills Cl(χ)1−j . On the other hand, since Cl+(χ) ∼=
Cl(χ)1+j is a cyclic Oχ-module, Cl(χ)1+j ∼= Oχ/a+

χ . Therefore a+
χ is the

exponent of Cl(χ)1+j . Now let x be a generator of Cl(χ). We have

x2 = x1+jx1−j .

It is now easy to see that x has order 2a+
χ . Thus we are in the second case

of Corollary 3.

4.2. The general case

In this subsection we give some results which are a generalization of the

ones in the previous subsection. If A is any finite abelian group, we denote

by Exp(A) its exponent.

Proposition 10. Suppose that Cl(χ) is a cyclic Oχ[P ]-module. Let

Q be the cyclic group of order 2 generated by j. Suppose that

#Ĥ0(Q,Cl(χ)) = h−
χ .

Then

#(Cl(χ)/Cl(χ)2) = h−
χ

and Exp(Cl(χ)) = 2Exp(Cl(χ)1+j).

Proof. We have an isomorphism

Ĥ0(Q,Cl(χ)) ∼= Cl(χ)Q/Cl(χ)1+j .

This implies that our assumption on the order of the cohomology group

is equivalent to the equality Cl(χ)Q = Cl(χ). Since in this case j acts as
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identity on Cl(χ), we get Cl(χ)2 = Cl(χ)1+j . The proof of the first part of

the proposition follows substituting these relations in our hypothesis. Let

now x be a generator of Cl(χ). The element x2 = x1+j is a generator of

Cl(χ)1+j ∼= Cl+(χ). Thus 2Exp(Cl(χ)1+j) = Exp(Cl(χ)), as we wanted to

prove.

Proposition 11. Suppose that Cl(χ) is a cyclic Oχ[P ]-module. Sup-

pose that Exp(Cl+(χ)) > Exp(Cl−(χ)). Then Exp(Cl(χ)) = 2Exp(Cl+(χ)).

Proof. We first want to show that #Cl(χ)1−j ≤ h−
χ . This is true be-

cause

Cl(χ)1−j ⊂ Ker(1 + j : Cl(χ) → Cl(χ)1+j)

and the right hand side has order h−
χ . Both Cl(χ)1−j and Cl−(χ) are cyclic

modules over the discrete valuation ring Oχ[P ]/(1 + j). Since Cl(χ)1−j

has order less or equal than #Cl−(χ) = h−
χ , it follows that Cl(χ)1−j is

isomorphic to a quotient of Cl−(χ). This implies that Exp(Cl(χ)1−j) ≤
Exp(Cl−(χ)) < Exp(Cl+(χ)). Let x be a generator of Cl(χ). We consider

the identity

x2 = x1+jx1−j .

It is easy to see that the order of the right hand side is Exp(Cl(χ)1+j) =

Exp(Cl+(χ)). Looking at the left hand side, we get that the order of x is

2Exp(Cl+(χ)). This completes the proof.

The following proposition deals with a very ad hoc situation. It will

enable us to determine the exponent of Cl(χ) in the cases l = 397 and

l = 9421.

Proposition 12. Let l≡5 (mod 8). Suppose that #Cl−(χ) = #Oχ/8,

and #Cl+(χ) = #Oχ/2. If Cl(χ) is a cyclic Oχ[P ]-module, then it has ex-

ponent equal to 4.

Proof. Combining Theorem 1 of [4] and Proposition 7 (iii) of [4] we

get that

Ĥ0(Q,Cl(χ)) ∼= (O∗
F,+/(O∗

F )2)(χ)

where F = Q(ζl + ζ−1
l ) and Q is the subgroup of P of order 2 generated

by j. We have e = 2 and Cl+(χ) = Cl1(χ). By contradiction, suppose that

#Cl∞1 (χ) = #Cl1(χ) = #(Oχ/2). Since by Proposition 5 the group Cl∞0 (χ)

is not trivial, we get that the surjective map Cl∞1 (χ) → Cl∞0 (χ) induced



14 P. CORNACCHIA

by the norm is actually an isomorphism. Let σ be a generator of P . From

Equation (1) of Proposition 1 we obtain

Cl(χ)1−σ = Cl(χ)1−σ2
= (Cl(χ)1−σ)1+σ.

Since the element 1 + σ is contained in the maximal ideal of the local ring

Oχ[P ], Nakayama’s lemma gives Cl(χ)1−σ ∼= 0. Proposition 1 then implies

that Cl(χ) ∼= Cl1(χ) ∼= Cl+(χ), which is absurd, because Cl−(χ) is not

trivial. Therefore #Cl∞1 (χ) > #Cl1(χ) and (O∗
F,+/(O∗

F )2)(χ) is not trivial.

This implies that the Tate cohomology group Ĥ1(Q,Cl(χ)) is not trivial.

Therefore Cl(χ)1−j has order strictly smaller than h−
χ , hence #Cl(χ)1−j ≤

#(Oχ/4). The group Cl(χ)1−j is a cyclic module over Oχ[P ]/(1 + j). By

Proposition 2 we get that Cl(χ)1−j can have at most exponent equal to 2.

Let x be a generator of Cl(χ). From the usual identity

x2 = x1+jx1−j

we see that Cl(χ) has at most exponent 4. If we show that Cl−(χ) has expo-

nent 4, then the proof is complete. But again Cl−(χ) is a cyclic Oχ[P ]/(1+

j)-module of order #Oχ/8. By Proposition 2 such a module has exponent

4.

§5. Tables

Let l be a prime number and let χ be a 2-adic character as in the

previous sections. The theory developed allows us to determine much infor-

mation about Cl(χ), and sometimes the whole structure as an Oχ-module.

In this section we present a table containing our numerical results. If Cl+(χ)

is trivial then Cl(χ) ∼= Cl−(χ). In this case, using Propositions 6 and 2 it is

easy to determine the whole Oχ[P ]-structure of Cl−(χ) from the knowledge

of its order. The table has an entry for each prime number l < 10000 such

that Cl+(χ) is not trivial. For each l we determine various quantities. The

number d denotes the degree of the field Ke ⊂ Q(ζl) fixed by Ker(χ). The

numbers h+
χ and h−

χ denote the order of Cl+(χ) and of Cl−(χ) respectively.

They have been computed in [4]. The column #Ĥ0 contains the order of

the Tate cohomology group Ĥ0(Q,Cl(χ)), where Q is the group of order 2

generated by complex conjugation. This quantity can be easily computed

using the table and Theorem 1 of [4]. The other entries contain the struc-

ture of the groups Cl+(χ), Cl−(χ) and Cl(χ) as Oχ-modules. In the table
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we write n for Oχ/n. Observe that as an abelian group we have

Oχ/2k ∼= (Z/2kZ)fχ

where fχ = [Z2(χ) : Z2] is the multiplicative order of 2 in (Z/ord(χ))∗.
We are not able to determine these structures in all cases. Therefore some

entries are left blank. The structure of Cl+(χ) and of Cl−(χ) are computed

in all cases when Cl(χ) is a cyclic Oχ[P ]-module. By Theorem 2, this hap-

pens when l 6= 7687. The groups Cl+(χ) have been computed from the

ideals J+(χ) which can be found in the table of [17] (see the remarks in the

introduction). The groups Cl−(χ) can be computed using Proposition 2.

The groups Cl(χ) have been computed in some cases, using the results

mentioned in the column labelled as “notes”. It turns out that for each

l < 10000 there is at most one character χ such that Cl+(χ) is not trivial,

except for l = 7841. For l = 7841 there are exactly two characters with

this property; in this case the table has two entries corresponding to each

character. In the two cases l = 397 and l = 9421, we are able to determine

only the exponent of the class group Cl(χ).

l d h+
χ h−

χ #Ĥ0 Cl+(χ) Cl−(χ) Cl(χ) notes

163 6 22 22 1 2 2

277 12 22 24 22 2 2, 2

349 12 24 24 1 2, 2 2, 2

397 12 22 26 22 2 2, 4 Exp=4 prop. 12

491 14 23 23 1 2 2

547 6 22 22 1 2 2

607 6 22 24 1 2 4 8 prop. 8

709 12 24 24 1 2, 2 2, 2

827 14 23 23 1 2 2

853 12 22 22 22 2 2 4 th. 1

937 24 24 22 22 4 2 8 th. 1

941 20 24 28 24 2 2, 2

1009 48 22 22 22 2 2 4 th. 1

1399 6 22 24 1 2 4 8 prop. 8

1699 6 22 22 22 2 2 4 prop. 9

1777 48 24 24 24 4 2, 2 2, 8 prop. 11

1789 12 22 24 22 2 2, 2

1879 6 22 22 1 2 2

1951 6 22 22 1 2 2
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l d h+
χ h−

χ #Ĥ0 Cl+(χ) Cl−(χ) Cl(χ) notes

2131 6 22 22 1 2 2

2161 80 24 24 24 2 2 4 th. 1

2311 6 22 22 1 2 2

2689 384 22 22 22 2 2 4 th. 1

2797 12 22 24 22 2 2, 2

2803 6 22 22 1 2 2

2927 14 23 23 1 2 2

3037 12 22 24 22 2 2, 2

3271 6 22 22 1 2 2

3301 20 24 24 24 2 2 4 th. 1

3517 12 22 22 22 2 2 4 th. 1

3727 6 22 22 1 2 2

3931 10 28 24 1 4 2 8 prop. 7

4099 6 22 22 1 2 2

4219 6 22 22 1 2 2

4261 12 24 24 1 2, 2 2, 2

4297 24 28 24 24 2, 8 2, 2 4, 16 prop. 10

4327 14 23 23 1 2 2

4357 12 24 24 22 4 2, 2 2, 8 prop. 11

4561 48 24 24 24 2, 2 2, 2 4, 4 prop. 10

4567 6 22 22 1 2 2

4639 6 22 22 1 2 2

4789 12 22 24 22 2 2, 2

4801 192 22 24 24 2 2, 2 2, 4 prop. 10

5197 12 22 24 22 2 2, 2

5479 6 22 22 1 2 2

5531 14 23 23 1 2 2

5659 6 22 22 1 2 2

5779 6 22 22 1 2 2

5953 192 22 22 22 2 2 4 th. 1

6037 12 22 22 22 2 2 4 th. 1

6079 6 22 22 1 2 2

6163 6 22 26 1 2 8 16 prop. 8

6247 6 24 26 1 4 8 2, 16 prop. 8

6301 28 23 23 23 2 2 4 th. 1

6553 24 22 22 22 2 2 4 th. 1
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l d h+
χ h−

χ #Ĥ0 Cl+(χ) Cl−(χ) Cl(χ) notes

6637 12 22 22 22 2 2 4 th. 1

6709 12 22 22 22 2 2 4 th. 1

6833 112 23 23 23 2 2 4 th. 1

7027 6 22 22 22 2 2 4 prop. 9

7297 384 22 24 24 2 2, 2 2, 4 prop. 10

7489 192 26 22 22 8 2 16 th. 1

7589 28 23 23 23 2 2 4 th. 1

7639 6 22 24 22 2 4 2, 4 prop. 8

7687 6 24 24 1

7841 224 23 23 23 2 2 4 th. 1

224 23 23 23 2 2 4 th. 1

7867 6 22 22 1 2 2

7879 6 22 22 1 2 2

8011 6 22 22 1 2 2

8191 6 22 24 22 2 4 2, 4 prop. 8

8209 48 22 22 22 2 2 4 th. 1

8629 12 22 22 22 2 2 4 th. 1

8647 6 22 22 1 2 2

8731 6 22 22 1 2 2

8831 10 24 24 1 2 2

8887 6 22 22 1 2 2

9109 12 24 24 22 4 2, 2 2, 8 prop. 11

9283 6 22 22 22 2 2 4 prop. 9

9319 6 22 22 1 2 2

9337 24 26 22 1 8 2 16 th. 1

9391 6 22 22 1 2 2

9421 12 22 26 22 2 2, 4 Exp=4 prop. 12

9601 384 24 22 22 4 2 8 th. 1

9649 48 22 24 24 2 2, 2 2, 4 prop. 10

9721 24 22 22 22 2 2 4 th. 1
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