Nihonkai Math. J.
Vol.9 (1998), 63—70

ON WEYL SPECTRUM AND A CLASS OF OPERATORS

YOUNGOH YANG

ABSTRACT. In this paper we show that the set W of all operators satisfy-
ing the equality of the Weyl and essential spectra is norm closed in B(H),
invariant under compact perturbation, and closed under approximate simi-
larity. But W is not closed under addition. Also we show that the Weyl
spectrum of an operator in W satisfies the spectral mapping theorem for
analytic functions and give properties of an operator in W.

0. Introduction. Let H be an infinite dimensional Hilbert space
and we write B(H) for the set of all bourided linear operators on H and
K for the set of all compact operators on H. If T € B(H), we write o(T)
for the spectrum of T and mo(T) for the isolated points of o(T') which
are eigenvalues of finite multiplicity. An operator T' € B(H) is said to be
Fredholm if its range ran T is closed and both the null space ker T and ker T*
are finite dimensionals The indez of a Fredholm operator T, denoted by (T,
is defined by

i(T) = dimker T — dimker T*.

It was well-known ([4]) that ¢ : F — Z is a continuous function where the
set J of Fredholm operators has the norm topology and Z has the discrete
topology. The essential spectrum of T, denoted by o.(T), is defined by

0e(T) ={A € C: T — I is not Fredholm}.

A Fredholm operator of index zero is called Weyl. The Weyl spectrum of T,
denoted by w(T'), is defined by

w(T)={Ae€ C: T — Al is not Weyl}.

It was shown ([1]) that for any operator T, o0¢(T) C w(T) C o(T) and
equalities do not hold in general. Also

w(T) = Nxexo(T + K)

Key words and phrases. Fredholm, Weyl, approximately equivalent
1991 Mathematics Subject Classification. 47A10, 47A53, 47B20,.

— 63 —



and w(T) is a nonempty compact subset of C.

We write W for the set of all operators T satisfying o.(7") = w(T'). For
example, every normal(compact, and quasinilpotent) operator is in W. How-
ever, consider the unilateral shift U on [ given by

U(zy,z2, ) = (0,z1,z2,23, ).

Then U is hyponormal, w(U) = o(U) = D(= the closed unit disc) and
0.(U) = C(= the unit circle)(See [1, Example 1.2]). Hence U is not in W.

It was also known that the mapping T' — w(T') is upper semi-continuous,
but not continuous at T'([9]). However if T, — T with T,,T = TT, for all
n € N then

(0.1) limw(Ty) = w(T).

It was known that w(T') satisfies the one-way spectral mapping theorem for
analytic funcions: if f is analytic on a neighborhood of ¢(T'), then

(0.2) w(f(T)) C f(w(T))-

The inclusion (0.2) may be proper(see [1, Example 3.3]). If T is normal
then 0.(T) and w(T') coincide. Thus if T is normal since f(T') is also nor-
mal, it follows that w(T') satisfies the spectral mapping theorem for analytic
functions.

In this paper we show that the set W of operators T satisfying the e-
quality 0.(T) = w(T) of the Weyl and essential spectra is norm closed in
B(H), invariant under compact perturbation, and closed under approximate
similarity. But W is not closed under addition. Also we show that the Weyl
spectrum of an operator in W satisfies the spectral mapping theorem for
analytic functions and give properties of an operator in W.

1. Equality of the Weyl and essential spectra. By [1, Example
2.12], every compact operator K is in W. Also it is easy to show that if T is
in W and a € C, then T* and oT are in W.

The following lemma shows that the Weyl spectrum of an operator is the
disjoint union of the essential spectrum and a particular open set.
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LEMMA 1. ([1],[4]) For any operator T' in B(H),
w(T) = o0.(T)U 6(T) (disjoint union),

where 6(T) = {X : T — AI is Fredholm and i(T — \I) # 0}.

For example, if U is the simple unilateral shift, then o.(U) = {X : |\| = 1},
and O(U) = {X : [A\| < 1}. From Lemma 1, we note that o.(T) = w(T) if and
only if the open set §(T') is empty. Also the following corollary gives some
simple criteria for equality of the Weyl and essential spectra:

COROLLARY 2. If any of the following conditions holds for T in B(H),
then T is in W:
(1) T is normal,
(2) the point spectra of T and T* are countably infinite.

Proof. For any T in B(H), A in 6(T) implies that
dimker(T — AI) # dimker(T* — XI).

If T is normal, it was well-known that ker(T — AI) = ker(T* — XI) for
every A. Therefore 6(T') is empty.

If A is in 6(T'), then either ) is an eigenvalue of T or A is an eigenvalue of
T*. Hence if the point spectra of T and T* are countably infinite, then 6(T)
is countable. Since §(T) is also open, 6(T") is empty.

Our class W is strictly larger than the class of normal operators. For
an example of a nonnormal operator in W, let T be a non-normal compact
operator or an operator such as o(T) = {0}. Then 0.(T) = w(T) = o(T).

THEOREM 3. The set W is norm closed in B(H) and invariant under
compact perturbations.

Proof. Suppose T, is in W for each n and T, — T in norm topology. If
0.(T) # w(T), then by Lemma 1 there exists A € C such that T — I is
Fredholm of nonzero index. By [7, Theorem IV.5.17], there exists an € > 0
such that if ||T'— AI — S|| < ¢, then S is a Fredholm operator. Also there

exists an integer N; such that for n > N; we have

(T — AI) — (T — AD)|| < -;-
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Thus T, — Al is Fredholm for n > N;. Since the index : is continuous,
there exists an integer N2 such that for n > Nj, (T, — AI) # 0. Hence
for n > N = max(N;, N;), T, — Al is Fredholm of nonzero index and so
0e(Tn) # w(Ty) by Lemma 1. This is a contradiction. Thus 0.(T) = w(T)
and so T is in W. Therefore the set of operators in W is closed in B(H)

If T € W and if K is compact, then w(T + K) = w(T) by [1, Corollary
2.7] and, clearly, 0.(T) = 0(T + K). Hence T + K € W and so the set of

operators in W is invariant under compact perturbations.
THEOREM 4. The set W is not closed under addition.

Proof. If it were, then every operator A would be in W from the sym-
metric decomposition A = B +:C, B, (C selfadjoint. This is a contraction.

THEOREM 5. If A isin W and if A is invertible, then A™! is also in W.

Proof. By the spectral mapping theorem, o.(A™!) = 1/0.(A).

Claim: w(A) = 1/w(A™!). Suppose 0 # z ¢ w(A). Then A — zI is Weyl
and so A — zI + K is invertible in B(H)/K. Thus 2z ¢ 0(A + K) and so
1/z ¢ 0(A+K)™! = 0(A™1 +K). Hence (A~ — (1/2)I) + K is invertible
B(H)/K and A~! —(1/2)I is Fredholm. Also dimker(A —zI) = dimker(A —
2I)* < oo, and so dimker(A~! — (1/2)I) = dimker(A™! — (1/2)])* < oo.
Hence A™! — (1/2)I is Weyl and so 1/z ¢ w(A™!). (If z = 0, the claim is
obvious.) Thus 1/w(A™!) C w(A), which implies that w(A™1) C 1/w(A) and
hence, replacing A by A™!, w(A4) C 1/w(A™!). Therefore w(A) = 1/w(A4A™?)
as claimed. And then, we have 0.(A7!) = 1/0.(4) = 1/w(A) = w(47}),
and so A7 is in W.

Two operators S and T in B(H) are said to be approzimately equivalent if
there is a sequence {U,} of unitary operators such that ||U:SU, — T|| — 0.
They are approzimately similar if there is a sequence {X,} of invertible
operators such that

sup{||Xa[, IX;'I} <co and | X7 SX.—T| —o0.

THEOREM 6. The set W is closed under approximate similarity.

Proof. Let S € W and let T be approximately similar to S. Then there
exists a sequence {X,} of invertible operators such that

sup{|| Xa |, IX;"|I} <co and || X;'SX,-T| — 0.

— 66 —



Note that S is of the form invertible + compact if and only if P"1SP is
of that form where P is invertible. Thus o.(X;1SX,) = 0.(S). And since
dimker X 1SX, = dimker S, «(X;1SX,) = i(S) and hence w(X;15X,) =
w(S). Since S € W, for each n,
WX 78X, =w(S) = 0e(S) = ge( X 15X,)
and so X;'SX, € W. By Theorem 3, T € W.
COROLLARY 7. The set W is closed under similarity.

LEMMA 8. For T, S € B(H), we have

(1.1) w(T ® S) C w(T) U w(S).

If either T € W or S € W, then the equality holds and T & S € W.
Proof. It follows from the fact that

0e(T®S)=0(T)U0.(S)

and that the index of a direct sum is the sum of indices.
THEOREM 9. If 6(S) No(T) = 0 and if either S € W or T € W, then

(g []J‘> is in W.

Proof. By [11, Corollary 0.15], the operator ('g g) is similar to S®T.

By Lemma 8, S @ T is in W. By Corollary 7, (g g) is in W.

LEMMA 10. ([5]) If T is Weyl and if K is compact in B(H), then T + K
is Weyl.

THEOREM 11. If T in B(H) is of the form normal + compact, then T is
inW. :

Proof. Let T = N + K, where N is normal and K is compact. If T is not
in W, then by Lemma 1, there exists A € C such that T"— Al is Fredholm of
nonzero index. Since {(T — A — K) =N —AI)=0,T — A\[ — K is Weyl -
and, by Lemma 10, T' — A\I is Weyl. This is a contradiction.

From this theorem we know that the unilateral shift U is not of the form
normal + compact.
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THEOREM 12. T is in W if and only if there exists a compact operator
K such that o(T + K) = 0.(T).

Proof. If o(T 4+ K) = 0¢(T) for some compact operator K, then
w(T) = Ngexo(T + K) C o.(T).

Hence T is in W.

Conversely if T is in W, then ¢.(T) = w(T), and so by [12, Theorem
4], there exists a compact operator K such that o(T + K) = w(T'). Hence
o(T + K) = w(T) = 0.(T) for some compact operator K.

It was well-known([2]) that every Riesz operator T is in W since w(T) =
{0} = 0.(T). Also we note that if T' is a normal operator and f is any
continuous complex-valued function on o(T"), then w(f(T)) = f(w(T)) and
so f(T) is in W([1, Theorem 3.1)).

THEOREM 13. If T is in W and f is analytic on a neighborhood of o(T),
then w(f(T)) = f(w(T)).

Proof. Suppose that p is any polynomial. Then by the spectral mapping
theorem,

p(w(T)) = p(0e(T)) = 0e(p(T)) € w(p(T))-

But for any operator T' € B(H), w(p(T)) C p(w(T))([1, Theorem 3.2]).
Therefore

(1.2) | w(p(T)) = p(w(T))

for any polynomial p.
Next suppose r is any rational function with no poles in o(T"). Write
r = p/q, where p and ¢ are polynomials and ¢ has no zeros in (7). Then

r(T) — AL = (p — A\g)(T)(a¢(T)) ™"
By (1.2), |

(p — A\g)(T) Weyl <= p — Aq has no zeros in w(T).
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Thus we have

A ¢ w(r(T)) <= (p— Ag)(T) = Weyl
<= p — Aq has no zeros in w(T)
< ((p — A\q)(z))g(z)" #0 for any z € w(T)
= A ¢ r(w(T))

which says that w(r(T)) = r(w(T)). If f is analytic on a neighborhood of
o(T), then by Runge’s theorem([4]), there is a sequence {r,} of rational
functions with no poles in o(T') such that {r,} converges to f uniformly on
a neighborhood of o(T'). Since {rn(T')} converges to f(T') and each r,(T)
commutes with f(T'), by [9],

W(f(T)) = limw(ra(T)) = limra(w(T)) = f(@(T)).

COROLLARY 14. If T is in W and f is analytic on a neighborhood of
o(T), then f(T) isin W.

Proof. By Theorem 12 and by the spectral mapping theorem, w(f(T)) =
f(w(T)) = f(0e(T)) = 0e(f(T)) and so f(T) is in W.
We say that Weyl’s theorem holds for T if

w(T) = o(T) — moo(T).

There are several classes of operators including normal and hyponormal op-
erators on a Hilbert space for which Weyl’s theorem holds. Recall ([10]) that
T € B(H) is said to be isoloid if isolated points of o(T') are eigenvalues of
T 4

REMARK 1. We note that every operator in W is not isoloid. For exam-
ple, let V' be a Volterra operator. Then V is a compact operator and so in
W. Since o(V) = {0} and V has no eigenvalues, 0 is an isolated point of
a(V), but 0 is not an eigenvalue of o(V). Hence V is not isoloid.

REMARK 2. In general, Weyl’s theorem does not hold for an operator in
W. For example, let T' be an operator on [y defined by

1 1
T(xl,xz,zs,"') = (332,5333, 2T4,7 ).

3
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Then T is a compact operator and so in W. Since o(T) = {0} = w(T) and
also moo(T') = {0},

o(T) —w(T) =0 # {0} = moo(T).

Hence Weyl’s theorem does not hold for T'.
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