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Abstract: The present paper describes the //-geometry of the Abelian finite non-
periodic (conformal) Toda systems associated with the B,C and D series of the
simple Lie algebras endowed with the canonical gradation. The principal tool here
1s a generalization of the classical Pliicker embedding of the A-case to the flag
manifolds associated with the fundamental representations of B,, C, and D,, and
a direct proof that the corresponding Kéhler potentials satisfy the system of two-
dimensional finite non-periodic (conformal) Toda equations It is shown that the
W-geometry of the type mentioned above coincide with the differential geometry of
special holomorphic () surfaces in target spaces which are submanifolds (quadrics)
of CPY with appropriate choices of N In addition, these W-surfaces are defined to
satisfy quadratic holomorphic differential conditions that ensure consistency of the
generalized Pliicker embedding These conditions arc automatically fulfilled when
Toda equations hold

1. Introduction

A notion of Wy-geometry of CP"-target manifolds associated with integrable sys-
tems, recently invented in [1] for the case of 4,-Abclian Toda system (see also
[2]) seems to be a very important tool for solvable field theories as geometri-
cal structures behind W -algebras, as well as for algebraic and differential gcome-
tries themselves In particular, such a geometrical picture should be rather essential
in the gauge fields formulation of various models of the two-dimensional grav-
ity, as well as their generalizations for higher dimensions On the same footing as
W -algebras, being the algebras of the characteristic integrals—conserved currents -
for the corresponding nonlinear systems, guarantee, under appropriate conditions,
the integrability property for these systems and give their classification, a descrip-
tion of their W-geometry is equivalent, in a scnse, to a classification scheme of
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the corresponding Kéhler manifolds 3 1t was shown in [1] that the Kahler potentials
of the intrinsic metrics induced on the corresponding W -surfaces coincide with the
A,-Toda fields In what follows we prove that this fact takes place also for the
W -surfaces associated with all other classical (non-exceptional) simple Lie algebras
% and the corresponding ¥-Toda fields, and can be realized explicitly (In fact,
we have conjectured this statement already several years ago, but only now have a
proof for that ) We believe that this notion is relevant for a wide class of integrable
dynamical systems as a geometrical counterpart of /¥ -algebras.

For the readers who are not familiarized with the notions W -algebra and
W-geometry, at least in the meaning which will be used in our paper, let us recall
it in a few words

By A4,-W-geometry we mean the geometry of the CP" W-surface of ref [1]
which are two-dimensional manifolds 2 supplied with a complex structure, and an
embedding into CP” such that half of the coordinates X4, 1 < 4 < n+ 1, of the en-
veloping space holomorphically depends on a local coordinate z of X, X4 = f(z),

while the other half, X 4, are anti-holomorphic functions X g (%) In other words,
in the language of algebraic gcometry, we speak here, on account of the appropriate
reality condition, about holomorphic curves in the corresponding projective target
space CP" Note that we call them surface, instead, on account of their real di-
mension This is more appropriate for applications to conformal models and string
theories The corresponding W-surface is called W, -surface, it is rclated to the
first fundamental representation of 4,, and there are associated surfaces related to
the other fundamental representations of 4,. As shown in ref. [1], and as we shall
recall below, the W, - and associated surfaces correspond to the classical extrin-
sic geometry of the curves in CP” having to deal with the Pliicker image of the
Grassmannians %r(n + 1| k) in CP('7)-!

Since the corresponding complex projective target space is defined as the quo-
tient of the space C"*! by the equivalence lifting (local rescaling of the coordinates),
it immediately follows from the given definition for the W, -surface, that these holo-
morphic (anti-holomorphic) functions are solutions of some homogeneous ordinary
differential equation of the (n + ™ order,

RE fA (anrIfA noo_ pr A
Z W, :

‘\—nil :ZW/ % (11)
cz =1
with nonzero* coefficients W, (W,) In writing these equations we made use of
the fact that the Wronskians Wr[f(z)] and Wr[f(Z)] constructed with the func-
tions f“(z) and f(Z) do not vanish at regular points of X, and onc can divide by
them In other words, here we deal with the osculating hyperplanes to the generic
W -surfaces. Note also in this context that the lincar system of the Pliicker quadrics
which provides the decomposability property of the Pliicker image, is automatically
satisfied on the class of the solutions to (1 1)
One of the main points of this paper is to define some submanifolds in CP", with
appropriate N, which are target spaces for the Wy-surfaces relevant for the other

n+]fA

oz cz

3 Some classification of the manifolds associated, in terms of the corresponding embedding problem
(Gauss—Codazzi and Ricci equations), with the Toda systems, and an attempt of the gcometiical formu-
lation of the integiability ctiteria has been given in [3] Howevet, it provides only some general links, in
particular, with the diagonalisability of the corresponding 3rd fundamental form, and is too complicated
for conciete conclusions

41n this paper, we do not consider singular points of W-suifaces This may be done straightforwaidly
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complex simple Lie algebras %. These spaces are specified by quadratic conditions
whose origin is as follows Now the set of the indices « in the sum in the rhs of
(1 1), for which the coefficients W, 0 and W, 0, coincides with the values of the
exponents of the algebra % The vanishing of the corresponding coefficient functions
in the series in the rhs in (1 1) leads to the set of the quadratic relations on the
embedding functions f“(z) (f(Z)) and their derivatives up to the (n — 1) order;
and these local conditions on the functions ensures consistency of the generalized
Pliicker embedding described in the present paper It happens that the corresponding
Kahler manifolds in /¥-geometry are ultimately related to the Toda fields, being
described by the equations of the two-dimensional finite nonperiodic Toda system
which, fortunately, are exactly solvable [4].

In accordance with [5], see also [6], the results of the Toda theory provide
a realization of the W-algebras in terms of the polynomials constructed with the
corresponding Toda ficlds, more exactly via their derivatives. By W -algebra we
mean [5] an algebra with the defining rclations

(W), W2y = 375 (W) (2 —2)
a

just for the coeflicient functions entering (1 1), which realize the corresponding in-
finitesimal J¥-transformation of the functions /* and f* Here #  are polynomials
of the W,’s and their derivatives over spatial variable z; in two-dimensional space-
time {Z,z} = {(zo £ z1)/2} with the metric’ g1} = —¢22 = 1, the Poisson brackets
are taken for equal time value, zp =z, Morcover, such objects as the elements W,
with values in the ring of gauge invariant differential polynomials, arc quite well
known in the integrable systems business, being in fact local characteristic inte-
grals for the corresponding system of the partial differential equations, the existence
of these integrals provides integrability of the system So, the theory of integrable
systems is a natural place where Lic group-algebraic and differential and algebraic
geometry aspects are intersected as the //-algebra & W-geometry

The relevant instrument for our description is a modification of the Pliicker em-
bedding for all classical series of the simple Lie algebras Recall that the standard
Pliicker embedding is formulated for the A4,-case, see ¢ g. [7], and results in the
infinitesimal and global Pliicker formulas. Note that the statement which general-
izes the infinitesimal Pliicker formula (related to the canonical distribution) for an
arbitrary simple Lie algebra ¥, has been conjectured in [8] and then proved in [9],
see also [10], without any connection with integrable systems, W -geometry, and all
that In [11], using the relevant differential geometry setting, while without any ref-
erence to a coordinate representation of the corresponding flag manifolds associated
with the Abelian Toda system, there was also obtained the generalized infinitesimal
Pliicker formula for an arbitrary simple Lie algebra 4. These flag manifolds are the
quotient spaces G/P with P being the maximal nonsemisimple parabolic subgroups
of G, ¥ =Lie G

As we will show, the relevant //-manifolds in our approach are related to the
target manifolds of integrable systems gauged by a semi-direct product of a nilpotent
and semisimple subgroups of Lie & In other words, the Kdhler manifolds in question
arise as parabolic spaces for a simple Lie group G whose coordinates satisfy some
homogencous equations quadratic in the coordinates Similar to those in the 4,,-case,
these coordinates are some minors of a matrix representative of the corresponding

S One may also define z as a complex vaiiable Then gy; = g = |
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cosets, and they are submitted to homogeneous quadratic equations. However, only
a part of these equations are quadrics of exactly the Pliicker type,® while the other
ones arc caused by the specific features of such algebras as the orthogonal algebras
In general, the Toda fields are related with (minors of) determinants Thus a natural
tool is to perform skew products of representations, hence we shall use fermionic
operators, see below. For A4, one can obtain all finite dimensional irreducible rep-
resentations by skew products of a finite number of copies of the first fundamental
one As we will see, this is related with the fact that, since the Dynkin diagram is
a simple line,- the derivation of the Toda equation goes rather smoothly from the
first root to the last For other algebras, the situation is more complicated Now,
skew products of the first fundamental representation are not enough One should
also include the last one for B, and the last two for D,. These representations are
of a different nature, and their highest weights have half integer components In
the Dynkin diagram they correspond to non-generic points with branching where
the derivation of Toda equations is much more subtle All these difficulties will be
overcome in the ensuing discussion The study of the problem for the orthogonal
algebras alrcady contains’ seemingly all peculiarities and “underwater stones™ that
are naturally absent in the case of 4, Thus we believe that our picture is truly
general

To clarify the principal difference in the formulation of the problem in question
for the simple Lie algebras other than 4,, we shall first recall some results for the
A,-case, mainly following® ref. [1], and complete them by some reasonings leading
io the Plicker quadratic relations As already emphasized, and in distinction to the
case of the Lie algebra 4,, a similar study of Wg-geometry of the Toda systems
for other simple Lie algebras is not so direct if onc wishes to realize the program
in the coordinate basis explicitly

Note that an important instrument of our consideration will be fermionic realiza-
tions of the clements of the classical Lie algebras, similar to the one which has been
efficiently used in [1] for an investigation of the W -geometry of the A4,-Abelian Toda
systems. The main advantage of this realization, apart from its technical simplicity,
is that it allows to interpolate between different fundamental representations, and
relate their basis vectors This is extremely suitable for a solution of the problem
under consideration, where skew products of representations are the key

We give an explicit formulation of a relevant modification of the Pliicker map-
ping for the manifolds associated with the fundamental representations of an arbitrary
classical Lie algebra ¢, and a direct proof that the corresponding Kéhler potentials
satisfy the system of partial differential equations of the Toda type. In general, we
believe’ that every integrable system is naturally associated with the corresponding
Kéhler manifold—that means with the relevant group G and its gauging—which in
turn is determined by the invariance subgroup for the chosen representation space
Here the manifold is defined by the gradation of the Lic algebra % and the grading
spectrum of the corresponding component of the Maurer—Cartan 1-form which re-
sults in the nonlincar systems in question So, the algebraic counterparts of the

6 Recall that just the system of the Pliicker quadrics provides the condition of decomposability of a
multivector 1n the cortesponding complex projective space, and hence defines the Pliicker image in it |7]

7The case of C, is much simplet

8 Part of this discussion alicady appeated in the preprint version of the second article of 1ef [1] It
was removed fiom the piinted version in order to shorten the article and satisfy the editor’s request

Y This was also hypothesized in the first article of 1ef [1]
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given JW-manifold are the Lie algebra, its gradation, and the grading spectrum
of the connections. Note also that, as we have understood from discussions with
M Kontsevich and Yul Manin, our consideration of the nonlinear Toda type sys-
tems as holomorphic curves in the corresponding projective spaces, seems to be
closely related to variations of the Hodge structures in the spirit of Ph A Griffiths.

2. Abelian Toda Systems, and W-A4,-Geometry

Consider a finite-dimensional complex simple Lie algebra ¥ = % of rank n, with
the following defining relations

[hlah/] = O, [hlaEi/] j:K Eﬁ:/a [E-Ha ] - (>l]hl (2 1)

for its Cartan {h,} and Chevalley {E+,} elements, | <i < n, and K being the
Cartan matrix of ¥ Let @ be endowed with the canonical gradation,

< — Z 4
9 - @ {gnn [/—gm, (»l/); ] C egm N
mez

for which %y = {h;} is Abelian, and ¥+, = {EL,} Then, in accordance with the
group-algebraic approach [4],'0 the zero-curvature condition

(003 + A0/ +4.]1=0

for the connection components 4.(z, z) taking values in the subspaces %y © %4, re-
spectively, results in the partial differential equations describing the two-dimensional
finite nonperiodic Toda system

0P, = —expp, 1<

lIA

n
n, pi= S KJo,, (2.2)
j=1

&= 0/éz, ¢ = ¢/0Z The general solution to this system is written, in onc of the
equivalent forms, as follows Associated with each fundamental representation —with
highest weight 2; —there exists a Toda field @; defined by

e = (M (M) ig)e HDHE) (23)
where
dM am - 0
- M}j S(2E =M Y 5,(2)E,,
dz e dz =1

alz)= i’((K’(")"‘)/\/ Ins(z),  &(3) = i (KD (z) (24
P P

The n functions s,(z) and $§;(Z) which are arbitary will be called screening func-
tions, since they are the classical analogues of the Coulomb-gas operators They
determine the general solution of the Goursat (boundary) value problem for (2 3)

. R T . .
The matrix element (/4 |M M|z} in the rhs of (23), is in fact, the tau-function

19 Here and 1n what follows, the tesults concerning the Toda theory ate given following [4]
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for system (2.2), associated with the highest weight vector matrix element of the
k™ fundamental representation of % with the highest state |/;)

For later use, we note that one can consider the same formulae as above, but
for irreducible representations which are not fundamental By definition of the fun-
damental weights, any highest weight is of the form 2 = )", vz, where v; are
nonnegative integers Then the generalization of (2 3) and (2 4) is

e TP o2 (4 s, ()=E G S Gy ()M (2)]2) (2.5)

The proof of this equality is carried out by taking the corresponding powers of (2 3)
This automatically constructs the highest weight vector with highest weight /, on
which the action of M and M can be derived solely from the Lie group theory.

For the case of the 4,-Toda system, all the Toda fields exp(—@®,), | < j < n,
arc expressed via the first one, exp (—@®;) which can be written as

exp(—®) =Y f(z)- f1(3) (26)
A

. -4 _ . .. .
Here the functions f(z) and f (Z) satisfy the conditions which can be expressed
in terms of the Wronskians constructed with these functions,

Wrif(2)] =1 Wr[f(9)]=1, (27)

and are formulated via the independent (chiral) screening functions s;(z) and $,(2),
1 < i < n, entering the general solution (2.3) as the nested integrals (4.9), in our
A,-case with i; =5 All other Toda ficlds exp(—®;),j > 1, are written in terms
of exp(—®;) by the formulas

exp(=®;) =4,, (28)

and hence

exp(—@;) = > det,(f) - det,(f) (29)
/

Here the sum runs over all the /" order minors det, (/) and det;( /) constituted by
the first / rows of the matrices (¢)® /' and ((:')3}74, respectively, 4, is the j™ order

. . . A4=B . .
principal minor of the matrix ¢'¢ exp (—®;) Recall that such minors satisfies very
important relation
Ay - 4

(210)
7

oC log 4, = ,
which is used in what follows

To have a more precise picture of what we are going to do in the general
case, let us reproduce here some basic steps leading to the W, -geometry We
mainly follow (sec footnote 4) the paper [1], but supply some additional formu-
las needed for understanding the quadratic relations of the Pliicker type which are
absent there First introduce the relevant notations, see e.g. [12, 13]. Let &), be the set
of orthonormal vectors in a # 4 1 Euclidean space €, - €, = 0,4 | < p,g = n+1,
which parametrize the positive and negative roots £(¢), —€,), | < p < g < n+1,

of 4, The vectors 7; = ¢, — €, are a set of simple roots. Denote by /,, | < i < n,
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the fundamental weights of A,, /; is cqual to e - i27+]’ ¢,/(n+ 1). The cor-
responding highest weight state |/,) is defined by the conditions

hilz) = 0,

)y E_|2)=0 forall | £/ < n, 2110

and normalization (4,]4,) = 1; moreover, £_;[/;) =0 for all j#+i In accordance
with this definition, the whole representation space of the /™ fundamental represen-
tation consists of all the vectors |4, 4y), =E 4, - E_4|4), 1 =4 =n0=
p=N—1N = (”IH), with nonzero norm In what follows we use the fermionic
realization of the elements of A4, in which the Cartan and Chevalley generators are

written as

ho=5/b,— bl 51, = b E;=bb, 1<ign+l  (212)

Here b, and b; are fermionic opcrators satisfying the standard anticommutation
relations

[bpa b([]‘\» - [bp’ q ]+ - O [‘7!7’b ] /7‘1 >

and there exists a vacuum state |0), such that 5,/0) =0 forall 1 < p < n+ 1, and,
correspondingly, for the dual state <0Ib+ =0 In this, the i particle state, which

is the highest weight state of the i™ fundamental representation of A, is obtained
from the vacuum (cyclic) vector by the action of the raising operators, namely
|2) =0o"b" b7|0), and, respectively, (7| = (0]p; b, 0,

1 11—

Now, lct us consider the coset space %11 associated with the /™ fundamental
representation of 4, It is quite clear that here the vector space of 4, is splitted into

the semi-direct sum % = %1115 %'} of the subalgebra %! which is the stabiliser of
the highest weight state |/,),

(ﬁhf] ={h, jFi, E s, g < p=iandqgzi+l Es o,p<gq}, (213)
and the complement
G = {h, E ¢ 6.q <i and p=i+1} (2 14)

In these notations the coset %'l is constructed by exponentiation of the linear span
of 4 l, namely

Gl %) = S AP o v 100, (2 15)
Ay <4< <4,
where
Q =1,(b/ b, =0} 0,1)+ 3 i oto, (2 16)

ISg=<i+1=psn+l

Every finite dimensional irreducible representation of 4, (and hence all the funda-
mental ones) is contained in a skew product of the finitc number of copies of the
1*' fundamental irreducible representation This is why we may obtain all funda-
mental representations in this way In practice, the calculation of the coordinates
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Al;?_ 1, goes in two steps. First one may introduce quantities noted Xy with
1 £ p < n defined by

n+l
eore™ = ST xl At for 4 < i, (217)

A=1

and (2 15) gives

3 Ay poh pp 10y = S A YTILALTp o) (218)
1y, A,

Bi<By< <B,

Thus the coordinates AL’] 1, of the ™ fundamental- representation space are the
antisymmetrized combinations of the products X /A x=Td— - ylilldr However,
for the sake of brevity, we conventionally call the quantities X174 coordinates also.

The explicit relation for the coordinates &, xb) of the coset %!l and the coordi-
nates X1/ defined on the i/ fundamental representation space, is obtained by the
straightforward computation using the simple formula

n+l
ipre® = S oy fora <, (219)
B=4
where
; sinh et —1
'l = e, “Eli = \,w[ﬂlm ”5[;]1‘ i XI/)L” i+2=sp=ntl,
1
(220)
and for4 <i,A<B=<iandi+2 < p < n+1,
Mo 0. O e T I (BN 1 221
Uy = L Mb"4 = Yisra = 7o Nra Hpa = Ypa- (
1
Then we come to the following parametrization of the coordinates X" entering
(215),
XUty for 4 =0, XU =0 ford <i-1; (2.22)
and for o < I, .
XA =l for A =i 1, X7 =1, (2.23)

Xt =0 for 1 SA<i— 1 A+u

With these coordinates, representation (2 15) leads to the corresponding Kahler po-
tential .71/ of the manifold ¢U/!

A = log AP = log [0 X" XUV Xt xltjo) (224)
Here
xlr = ;X”h“{‘pj’ X‘vl/]7 = ZI: bA, AT = 4 Z ) A{[q/]] ~A,bji—, b:]|0>
A1 < <4,

Note that, in fact, formula (2.24), on account of the aforementioned identification of
the Kéhler potentials .# [/l with the Toda ficlds @,, which is discussed below, gives
a different representation of the tau-function for (2 2) than those from [4] Namely,
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it is morc adequate to the skew-product structure of the fundamental representation
space

The relation (2.18) between the coordinates A[ﬂ 4, of the i" fundamental repre-
sentation space, and the parameters X[*4 immediately gives the quadratic relations

Yoo A o A =0 1S4 < <Ay St (225)
«)

that defines Pliicker quadrics, and the same is true for /_1[;? 4, Here the sum runs
over all inequivalent permutations o of the integers i,i + 1,...,2i, on account of the
antisymmetricity of A[ﬁ 4, under permutations of the indices 4;, ,4;, and 0, is
the parity of the permutation . Note that the system of quadrics (2 25) comes, in
accordance with the contraction procedure given in [7], from equating to zero the

skew-product of the i-vector AN a :/im[0>, and the vector ~~A", which in

turn is obtained from /i[[] under the action of (i — 1) annihilation operators .
Indeed, one can be convinced that the metric which arises from such a Kéahler
potential (2.24), constructed with the coordinates X[/4 and X UP4 55 invariant
under their transformation by an arbitrary j x j matrix from GL(j,C), as well as
relations (2 25) In particular, for the case of the 1% fundamental representation
of A,, the corresponding complex projective target space is defined as the quo-
tient of the space C"*' by the equivalence rescaling X ~Y, if X* = Y4p(Y). and

X' = )7Ap‘()7), with arbitrary chiral functions p(Y) and j(Y), the metric, invariant
under this rescaling, is the Fubini—Study metric corresponding to the Kéhler potential
A= 1 0 X!

On the W, -surface #) = —@;, and on the associated surfaces the Kihler
potentials also coincide, up to the sign, with the corresponding 4,-Toda fields which
are given by the r.h.s. of expressions (29). So, as we have already mentioned, a
relevant object for the description of the W, -geometry of C"—target manifolds
with a positive curvature form is the Pliicker embeddings of the Grassmannians

Gr(n+ 1|k) in the projective spaces, ¥r(n+ 1k) = cp) 1 this, we identify
XUt gnd ¥ With the embedding functions in (2 6) on account of condition
(27), and, in general, putting

[1]2. 4

XUt = grmtpa o gl F (2.26)
leads to the aforementioned equalities between the Kahler potentials and the
A,-Toda fields [1] (up to a minus sign) Then, the known Pliicker representation for
the pseudo-metrics a’&”f on X, specified by the corresponding Kahler potentials, see

e g [7], is written in terms of these fields as

d9?

éexp 2Py + 20 — Py )dzdE

%exp 2 (Z Kj‘;qb,) dz dz (227)
j=1

where Kl’: is the Cartan matrix of the algebra 4,
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In distinction to the case of the Lie algebra 4,, a similar study of Wg-geometry
of the Toda systems for other simple Lie algebras requires a modification of the
standard Pliicker embedding The point is that the number of independent screening
functions s,(z) and §;(z) determining the general solution (2 3) of the corresponding
Toda systems is always 2n, while the number of functions f“(z) and fA(2) is, in
general, much more, even for the representations of 4 of minimal dimension For
example, the relations @, = &, for the Toda ficlds of A4, leads for n = 2s to
the solutions corresponding to the series B, for n = (2s — 1) — to those of Ci,
and in terms of the screening functions this equating means that s,(z) = s,_;.1(2)
and §;(Z) = §,_,.1(Z) Moreover, due to the known relation between the orders of
the functionally independent characteristic integrals for the Toda systems, in other
words the W -elements, and those of the Casimir operators of the corresponding Lie
algebras ¢, the mentioned difference is also quite natural.

3. The Target Spaces as Group-Orbits of Fundamental Weights: The Case of D,

3 1 Fermionic reulizations Let us first recall some properties of the Lie algebra
D, se¢ e g. [12, 13], and its fermionic realization The roots are of the form

d==+e¢ ¢, withl <i<j=<n, 31

in the n-dimensional space spanned by the orthonormal vectors ¢, The elements of
D, can be realized using 2n fermionic operators by;, j =1, ,»n, which satisfy the
relations

[b/: bm]+ - [bf, 7;;]* = O> [blv b:;]+ = (Sl.m, -n = [a m=n, (3 2)
as
Eglng/ = 7fb:tj—b;j?_,-, E_g,ig/ :E;,:Fe, = ?i/blubt,bq:/, (3.3)

and for the Cartan generators

h=H —H_,, i=1. ,n—1,
hn — [{n—l + Hn; Hl - 77 D, — bi—[!?,, (3 4)
A set of simple positive roots is T; = ¢€; — €1, i =1, .., n—1,and T, = €, + €,

Let E4; be the corresponding Chevalley clements One has

E; = brbﬂ.—l - p:;_1b—17 E_;= b:_]pz - bi,bftfl (35)
fori=1, ,n—1, and
Eu = -9+ lbfn - 9;9‘11+lv E—n - bi”bn—l - binf] Py (3 6)

n—

The fundamental weights are

- J - 1 . . .
)v/:;gka kZn—2, /Jn :§<Z el\‘en>a lp = ? (3 7)
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As is well-known [12], the first n — 2 fundamental representations are of the same
nature —in contrast with the last two ones. Their weight vectors have integer com-
ponents as Eqs. (3 7) show They are immediately realized in the Fock space of the
fermionic operators just introduced as follows The state

py=b,  b710), 1= p=n-2, (38)

satisfy the highest weight condition (2 11) The state |0) is the usual vacuum state
with zero occupation numbers, such that

b;10), —n<1<n (3.9)

How can we get the last two representations? The trick is to introduce the
operators

¢ = —}Emwt,), i = (6] +0-0),
d; = ;%(b/ -t ), dj = i—li(b,+ —b_y), 121 =<n; (310)
which satisfy, according to (3 2),
lenenls = lefepls =0, [erepls = O1m
[didy] = [df.d)] =0, [did,], = 0mm,
lendn), = [¢f.d}], =0, lendy], =0 (3.11)

These ncw operators give us two other realizations of the algebra D, by introducing

(12) a2
FC ‘e = c c, E~€, e, = CCh
12y _ + (12) +
EE,—E/ =c/ ¢, £ Lo, =€) Chn
(1L,2) __ 7y(12) (1'2) 4(12) (12) (12)
h, = H, ~H oy Y =H, )+ H
1
H'Y —cte - -, (3 12)
2
~(12) ~(12)
Ea+(7, :d'- d/-, E_(;ﬁ_(y/ :d/dl,
~(172) . ~(12) 4
Ea_tyl:d[ d/, Efcy'#,g,:d/d],
=(172) ~(12) ~(12) T2 502 ~(12)
hl ‘H HH] ° hn _HH—I +H11 s
~(12) 1
H, =dd, — = (3.13)
2
For later use we note that a straightforward calculation gives
g g
(12) ~(12) a2y, 502
Eigie =E;, 1z +Ey s e H;=H, +H, . (3 14)
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After this Bogolubov type transformation, the new vacuum state noted |0)! 2 which
is annihilated by the operators ¢; and d;, is given by

02 =pt b 0), o)D) =400 =0. (3 15)

n

Using either of the above two sets we can construct the last two highest weight
vectors Consider, for instance the c-oscillators One easily verifies that the states

; (12 . 12

g1y =c¢' | e [0y, |Z,) = ¢ -cf)o)t ), (3 16)

n—1

satisfy the highest-weight equations
E,(l 2)|/l,,> =0, hfl 2)[/1,,> =0.p p=n—1Lmn (317)

The generators (3 3), (3 4) commute with the fermionic number!!

=3 00, (3 18)

I=—n

and a representation with weight % ,, with p < »n — 2 is realized in the space with
a fixed number (p) of fermions Thus we call it a bosonic representation On the
contrary, the operators of the realization (3.12) or (3.13) do not commute with |
We call them fermionic representations

The Fock space we are considering allows us to realize every fundamental repre-
sentation in the same Hilbert space This is instrumental for the coming discussions
since the Toda equations and the corresponding infinitesimal Pliicker formulac do
in fact connect these different representations, so that they will be most naturally
understood in the Fock space of the » operators Moreover, this Fock space con-
tains additional highest weight vectors which will be very useful as well First, the
fermionic fundamental representations are rcalized twice, since we may also use for-
mulae similar to (3 17), obtained after replacing ¢- by d-oscillators We shall denote

these states by }I,,_]> and |Z,) (cf eg [12]) Second, there are other states analo-

gous to (3 8) They are given by o7 | »/|0), b,  b;|0), and 7 b 9/]|0)
These are highest-weight states since it follows from (3.5), and (3 6) that they
arc annihilated by E,, for i =1, ., n. The corresponding highest weights are
given by ‘
h: b,r,‘;l b? \0> - (51,n—1 + 5i.11)b;,] . bT|O> B
ho,  bTI0) = 20,,b,  57[0),
hlbiub;—l bHO> = 2(51#71?/: 7?‘0>

Comparing with (3 7), onc sees that their weights are 2, | + 4,, 2/,, and 2/,_1,
respectively Thus we write

|t 4 2y = 20, b, ]0), [22,) =b;  p7]0),

%2;-/z~l> = b, o0 blv‘o> (319)

—n’n—1

""In this formula and in the following, summations from —n to # do not include zero
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The representations generated by these highest-weight states are irreducible, but
not fundamental We shall see how they fit in the general scheme of Toda so-
lutions, where they come out naturally in the fermionic derivation of Toda solu-
tions Last we not—this will be useful later on—that there is another realization of
the fundamental highest weight vectors of the bosonic type Indeed, it is easy to

sec that
[H,, b 4]1=0, (3.20)

so that there is another highest weight state

lip)y =0t , 00, 5 bIo0 b7(0) (321)
with the same highest weight as [/,), that is 4, = Z_, From the viewpoint of the
fermionic operators, a transition from |4_,) to |4,) is equivalent to the exchange
of »; with p™ ~Indced, we have

bilip) =0, 1=

IIA

b b/’/A‘}7> :0’] > ps OI'j é *1»

bl =0, 1

IIA
S~

S p 0l =0.> poorj £ -1 (322)

32 The target spaces associated with bosonic representations For any given
highest-weight vector |z,), we split the Lie algebra D, into two parts.

D, =4/ gy (323)

/.p) invariant, it forms a Lie algebra The symbol f&&f’]

The one called fﬁh”] leaves
denotes the orthogonal complement The corresponding coset, denoted %171, is gen-
erated by exponentiating its linear span The mathematical properties of these cosets
are re-derived in Appendix A using the present fermionic realization Next we de-
scribe the geometrical properties of these cosets

321 The coset space associated with 7y Following the method just described,
and according to Appendix A, this space is parametrized by!?

n
e Pr|0>, with Q; = Z ()(/‘»E,g]_wgA +x_ i E_s-¢).,
k=2

_ - _ n
<O‘ble*h‘|h|e~!?|, with Q) = Z (,{‘/\»Egl +é i',/\»Egl —& ) (324)
k=2

where ry, Ky and x4, X4 are group parameters that will give a special parametriza-
tion of the coset After some computations, one derives that

ePole™ = by + 30 Y xub), — ( Zx/‘»x;k> AN (325)
=2

k=2e=%£1

2Fo1 D, we exponentiate the Cartan generator /1, sepatately so that the explicit formulae do not
become too complicated (see the appendix)
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with similar equations for the K and X coordinates It is convenient to write

SMAp0) = Y x'0).
—n=AZn, A£0
(ETSREEEED SRR (I F (3 26)
—n=A=n A+0
where
n
X' = &M, X = e Y xx g, X2 = eFhx s,
k=2

Xik:Xik,k> 2,

- - - n _ - -
Xl _ em’ X I —e /\}Z T Xepe X:i:2 — e:Fhlxi2,
k=2

Xt =3, k>2. (3.27)

The functions X, X“ satisfy the quadratic equations

SXxt=0, YXX T=0 (328)
A A

In this cquation and in the following, the sums over 4 run from —n to n, with 0
excluded. It is convenient to introduce the following notation

X=X, X=3X',. (329)
A A

It is natural to define a Kihler metric on %'l derived from the Kihler potential

A X, X)) = In[{0]p1e™ P e 1M e 5 H0)] = In[(0[XX[0)] (3.30)
which has an obvious group invariance Together with condition (3.28), this com-
pletes the definition of the manifold %', It may be understood as a submanifold of

CP?>=" Indeed, the Kihler potential coincides with the one of Fubini-Study, and
the quadratic constraints are invariant under the rescalings

X1 = Xpx), X XX, (331)

that leave the points of CP?'~! invariant. The manifold %! is thus a quadric in
CP2/1—]

Choose coordinates such that X' = X' = 1. Then we can solve the constraint
(3 28), obtaining

Xix 1 X '=-y Xxix1, (332)
A=2 A=2

X t=-

and the Kahler potential becomes

_ n - _ n noo_ - =
ADXX)Y = In[1+ S (XX +x X))+ ( ZXBXB> (ZXBX_BH
A=2 B=2 B=2

(3.33)

This is the equivalent of the Fubini—Study metric for the present case
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322 The coset space associated with generic bosonic fundamental highest yweight
The discussion is very close to the above. The manifold %!?! is parametrized by

e"”h”egpl/ip> _ E X[pj p-Ap X[}’] 1A, bj,, b;;—l ’0> s
, A

Ay »

Uple™Pre ™t = 5= (0lpy, by XIPAPA o lILA D (334)
VI

where we have let

ZX[p]xA b; = X[p]y, — er\,,h,,eQ,,‘p;refr\'ph,,e—Qp ,
A

/\7[})]7 _ e—r\',)h,,e—Q,, bie)\",,h/,eQ,) (3 35)

i

Z)?[/)J 7, A bj
A

The natural Kahler potential

a1 = ln[(/lp|e_Q"e"‘"”"e""h"eQ”

i)l (336)
takes the form of Kobayashi—-Nomizu
_W‘[/J](X[p],/\?[m) _ 1n[(0|/\_’["]1 xlelp=1xlplp ylolp ylolp=1 ylpll 0)]. (3.37)

The precise connection between the coordinates X, X and the group parameters is
given in the appendix, where it is also shown that the coordinates X, and X satisfy
the quadratic relations,

S XAy plh—4 =
24/\'4/)] 2 AYIPIf—4 — 0,

lIA
S
1A
IIA

p1=p=p (3.38)

The origin of these relations is that there are less group parameters than coordinates
X and X A compact proof of these identities goes as follows!® Due to the special
form of the gencrators of D,, which is displayed in (3.34)—(3 4), there exists a
symmetry which we call charge conjugation, and denote by a superscript ¢ It is
defined by

(I?jA 0108 b)) = (biAA bl bs o) (339)
and relations (3.34)—(3.4) show that
“ore, = —Exaze, h = —h; (3 40)

The origin of this charge conjugation is the orthogonality of D, It transforms the
first line of (3 35) into

ZX[p] o, A btA _ echhl,eQ,,b_ae—x,}hpe—Ql, ,
A

so that

(0lp—,;10) = (0

e’(I’/1I7eQI’ b“xefgl’e_7"/’/1/’6"'1711176917 b?f’eQP O> — ZX[.U] lsAX[,D] p.—4
A

13 We tieat the cootdinates X The coordinates X could obviously be discussed similatly
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Since, obviously (0[b—,?;|0) =0, relations (3 38) follows This fact completes'?
the definition of the manifold %!#! Next we show that it is a submanifold of the
usual Grassmannian manifold Gr(2n — 1|p). In general, Gr(2n — 1| p) is the set of
(2n — 1) x p matrices .7, with the equivalence relation 7, ~ p.7,, where p is
an arbitrary p X p matrix, that is the generalization of (3 31), which corresponds
to p =1 The geometrical meaning of this equivalence is well known' given .7,
one defines hyperplanes in CP*'~' by equations of the form Z4(1) = 7 "1,
The equivalence relations is equivalent to linear transformations of the parameters
t, Thus the Grassmannian describes the geometrical hyperplane which should not
depend upon their parametrizations In our case the coordinates are X[?1%4 and
XTPE=4 1t is well known that the metric derived from the Kihler potential (3 37)
is invariant under the transformation

xlpled p()([/)])?f xlplh. ‘1’ /\7[/)1%/1— N /7()2“)])7;/\7“7] g (3.41)
Morcover, it is easy to see that, if X[71%4 satisfies condition (3 38), this is also
true for 37, p7 X171 Thus these conditions define a quadric in the Grassmannian
Gr(2n — 1| p)

323 The three additional coset spaces 1t is obvious that the previous description
of the cosets extends to the representations with the highest vectors [/,—1 + 4,),
127,), and |22,_1) (see definitions (3 19)) without any problem The first two cases
are direct extensions of the formulae given for |7,) with p < n—1 The last one
is obtained from the calculation for |2/,_;), by exchanging everywhere b, with
b_, Some details are given in the appendix Always using similar notations, we
introduce

X[/,l/ _ elv,/z,eQ, b’-}—e—Q,e—l\',h,jX[/V]/ _ el\‘,h,e!), b,e_g’e”""h’ , (3 42)

N4 [/](XIZI’/\?P]) — ln[<0|/\7w] xlAp xldp,  y Al 0)]. (3.43)
The same reasoning as above shows that one has the quadratic conditions

o xlrd =4 = o (3.44)
A

These Kéhler potentials take the Kobayashi—-Nomizu form. They will appear naturally
in connection with the explicit solution of the D,-Toda equations The formulac just
given define manifolds ! for 2 =/, + /,, 2 =2/, and /. = 2/,_.

33 The case of the two fermionic fundamental representations As already re-
called, these two fundamental representations are of a completely different nature
[12] While the n — 2 first ones have dimensions (2”), p = n—2, they have di-

p
mension 2"~" We make usc of the realization (3 12), the highest weight states are
given by (3 16) This being established, the discussion proceeds exactly as before

14 Obviously, the coordinates X717 and X717 1 satisfy, n addition, Pliicker type telations similat
to (225) We shall not dwell on this aspect
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The coordinates are given by
el\,,h'p' z)eQ‘p' 2’|/~~p> — /\V/[/’] I]X[IJ] p-1 /\;[/J] 1 JO> ’

~[plo p ol _oly a0 . .
X = ¢ ol eQﬁ cje Q, e [N Z(X[p}LAc; _,’_X[])]A 4C4),
A>0

</"ple_l\_phl"’ l)e_g}‘lj 2 _ <0‘)?[[)] 17)?'[,)] p—1 X[p}l ,

X B - 12 5012 B U R ) = 5 by b —
X7 = oty "o T e o= e, T = Z(X“’]f‘ch + Xlne ‘4cj), (345)
1>0

for x < p, p=n—1, and p=n As before there are again quadratic constraints
which may be derived by writing

D o) S LI B X L vIply ~Ip1p
e;,,h,, QQ” [C+ C?},—]+€ Q, e Kol :0:[X X

o

].

This gives again relations (3.38), now with p =n — 1 and p = n The natural Kéhler
potential, that is (3 36) for p =n — 1, n, is given by

AT R0y = np(ol 1P . o= gl plolr glele=t gty 3 46

A priori it is different from the Kobayashi-Nomizu form, since the operators X, and

X involve both creation and annihilation operators. We shall spell out the connection
below This completes' the definition of the manifolds €17, for p =n — 1, n

34 Connection between Kdihler potentials The last three coset spaces just dis-
cussed are not associated with fundamental representations We now show that they
can be re-expressed in terms of the potential associated with the last two fundamen-
tal highest weights This, of course, is due to the fact that their highest weights are
lincar combinations of 7,_; and 4, The present fermionic method gives a quick
derivation of this fact Indeed, we already mentioned that the fermionic fundamental
representations are realized twice, once in terms of the c-oscillators (3.12), and once
in terms of the d-oscillators (3 13) Using formulas (3 10), one sees that

C+ CTCZ';:— dT|O>(1/2) — i’l(‘l)I’(’1+1)"2|2/Av,,> ,

n

¢y ("?.dlj— dH0>(l Y= " _1)”(’7+l) 2/\/5(';~11—1 + )~/1> -+ V—(nfl) + 2—11)) b

n—1

cidy dij0)t R =Tl =1y DR, ) (3.47)

.t
¢ n—1

n—1

where the state |4_(,—1)+ /4—,) 1s defined by the obvious generalization of (3 21)
The formulae just written are clearly consistent with (3 14) Now, we may re-derive
the expressions (3 43) of the Kahler potentials .# “! with 2 = 4,_ + /,, 2 = 2/,
and 2 = 2/,_, using the Lh s of the last equations together with (3.13). In this way,
the calculations involving the ¢ and ¢ operators become completely separated Each
of them is entirely specified by the group properties of the fermionic fundamental
representations which do not depend upon of the realization chosen Moreover, the

'3 Hete also theie are additional quadiatic 1clations simila to (2 25)



282 J-L Gervais, MV Saveliev

dimensions of the manifolds involved coincide, so that there are natural mappings
between them. It is then casy to conclude that the Kéhler potentials are related by

//[7/,,(/\/11 [n) — 2//1({\/!1 n),
J/[/,,,]+/.,,,\](X[/1],Xv[n]) _ (1] (X (1] X n] )+ / n—1] (X n] n )
//[2/,,,]]()([/17]]’/\7[117[]) — ZKW[nfl](X[/z 1] /\'/n 1] ) (3 48)

These relations will be important later on

4. Generalized Pliicker Embeddings for D,

4 | Definitions Let us introduce the following definitions which will be motivated
by the forthcoming discussions.

Definition 1. D,— W-surfaces The W surfaces associated with the Lie alyebra D,
are two dimensional surfaces X" in €\ defined by the equations

X =iz, XM= 11(2), (4.1)

where {7(z) and f'(Z) satisfy the quadratic differential relations

Z f(ll)/l(z) f(h)iA(Z) = (5qu~l(5b.n—] 5

A>0

Z f(a)A(E) f(b)~A(2) - 5((./7—15/),/1—1 s fOI‘ 0<ab<n-1 (42)

A>0

In the last formula, and hereafter, upper indices in between round parentheses denote
the order of derivatives in z or Z For a = b = 0 the conditions just written are, of
course, necessary for X' to be a submanifold of ¢! (see (3 28)) The additional
conditions will be needed for consistency with the following.

Definition 2. Associated surfaces Given any D,—W-surfaces, in the sense of
Definition 1, it is convenient to introduce a family of surfaces X'P) in @21
p =2, .ndefined by the equations

p . f(p ])4(2) pnf” I]A( )

[n—114

L I R (43)
where
n 114 — (¢)4 [n—114 __
Z(@ Yaigf A4 >0, A =0, 4<0,
(n—1]4 =—1 Z(q)A =[n—1]4
JJH _Z(@ )H—quq , 4>0, f” =0, 4<0, (44)
q

@/u/ = Z f(li)Af(f/)—‘i’ @ , = Z f(l) 4}f(fl) 4 0< pog < n— 1. (4 5)

A>0 1>0
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The definition of f and f} is such that

=[n—1]4

24: f‘[!nfu,q/[p]ﬂ _ Z‘:fn Flol=4 — S pon (46)

In view of relations (4.2), it follows that (4 3) are compatible with conditions (3 38),
and X1 € 67 as the definition claims As usual, the geometrical interpretation
of (43) should be that a point of X!P! represents the osculating hyperplane with
contact of order p — 1 at the point X'V = £4(z), XM = f4(z) of 2111 Conditions
(4 2) precisely ensure that X(”! has such a contact with the quadric of equations
S, XX =0, 3, X1X 4 =0, which defines X' as a submanifold of CP?'~'.
Thus we shall consider the definition just given as the one of the generalized Pliicker
embedding associated with D,. The above definition makes sense at generic points
of the W-surface where @ and O are invertible matrices

42 Phlicker embedding from Toda dynamics The main aim of the present sub-
section is the derivation of the following

Theorem 1. Associated with any solution of the D,-Todu equations, there exist u
D, W-surface and a family of associated surfaces as introduced by Definitions 1
and 2, where f and f are given by
—E = _ =4

A= F, fA=eF, 4.7)

Fl=1, F? = (1), FC=(1,2, k—=1), k<n,

F™"=(1,2, ,n—2,n),
F" = 1,2, n—2n—1,n)— (1.2, .n—2,nn—1)

Fl=1y- L2, on—2n—tnn—2, 1)
+(1,2, ,n—2nn—1,n-2, 1)), [ <n-—1 (48)

The last equation uses the following compact notation for the repeated integrals
over screening functions
z Y| AV
(ir in. i) = [dxis,(x)) [ dxas,(x2) [ dxs,(x)), (49)
20 <0 0

and the anti-holomorphic parts are given by similar expressions

Proof. We have to show that the functions ! defined by formulas (4 7) obey
conditions (4 2) Using the explicit realization (3 4), (3 5), it is easy to verify that

M@)o M(z) ' =Y Fl(z)p, = F(z), (4 10)
A

where F* is given by (4 8) According to (2 4) one has,
d(M(z)o M~ (2))/dz = M(z)[L, b, IM ~'(z), L=>skE_, (411)
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Together with (3.5) this gives for | < k < n—1,
M(z)o[ M~ (z) = D4F , (412)

where we introduced the notation

po L4 1 d 1d

= ——, k=2, D=1 413
Y ospo1dzsy_2dz sy dz = ! ( )

By the charge conjugation (3 39), the differential equation for M (z) becomes dM ¢ /dz
= ‘(27:1 s,(z)E_; )M, so that M© = M~" This was cxpected sincc we are dealing
with the orthogonal algebra After charge conjugation, (4 12) becomes

M(z)b_ M(z)"" = DyFS, where F* =Y F'b_ (4.14)
A

The method for deriving quadratic relations is to consider
(0|M(z)o M~ (2)M(z)p; M~ (2)]0) = (0|b_4b, [0) = 0.
One re-expresses the Lhs. using (4 12) and (4.14) This gives
SSDFY2)DIFz)=0, 1<k<l<n-—1. (4 15)
A

It follows from (4.7) that
D/\F4 = eé‘*é‘*‘f(/‘_”" + lower order derivatives, k < n—2;
Dy (F' = evtomimomz p=24 4 ower order derivatives (4.16)
Combining the last two formulae, one concludes

ST fO Ny =0 for0 < a. b <n—2 (4.17)
4
The case k = n — 1 is different, since (4.11) gives

M@E)iM )+ M)t M7 (),

DNF —n
Sp—1

DFC = M(z)o_ M~ '(z) + —"M(z)o,M ' (z). (418)
Sp—1

(O|DyFD,F|0) = 20, §Sn/Sn—1
Making use of (4.16), together with the equation
D,F! = e =01 1 Jower order derivatives , (4 19)
one obtains

> fOAy [y =06,,0, 0<k<n-—1

A>0

This completes the proof that (4 7) and (4 8) define embedding functions / that
obey conditions (4.2). The case of f is similar [J
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A direct consequence of the fermionic method we are using is the

Corollary 1. Kdhler potentials from Todu fields The intrinsic metric of the surface
PV defined by the above theorem, is derivable from the Kdihler potential equal
to-®, p=1 ,n

Proof  Consider, first, the representation with highest-weight vector »,, 5 |0) for
I < p < n—2 Making use of (4 12), one concludes that
p—1
M(z)2, b0y = T s/ 30 F Dhmtny o STFNR0) . (4 20)
=1 4p—1 Ay

It is well-known that the inverse of the Cartan matrix is expressible in terms of the
fundamental weights; (K1), = 7, /,. Using (3.7), and substituting (4.7) for /4,
one finds finally that

e M(2)py, b0y = £ fUro),
e ol oM (R = (o f (421)
According to (2 3), (2.4), and (3.37), this gives the desired relation
AWNf D D) =~ (2, 7) (422)

Next we consider the associated surfaces in %7, for p = n —2 Of course, this
part makes use of the fermionic realization in terms of the c-fermionic operators
(sce (312)) A calculation similar to the one that leads to (4 10) gives

Mz, M(z) ' = Y (FU2) e + F ' (2) ea) = F(z) (423)
A>0

Since one has,

d(M(z)ef M~ (2))/dz = M(2)[&, ¢] IM ' (2), & =S"sE

it follows that, for k < n — 2,
M(z)e; M~ (z) = Dy F (4.24)

In agreement with (4 7), we let

f(z)Ee_f‘F(z), (4 25)
obtaining
D F = ek TSk f(k_l) + lower derivative terms, fork < n—2, (4.26)
and, thereof,
M)t o102 = & T A R0 ok <02 (427)

So far, this is much likc what was discussed in the previous case For k =n — 1,
the calculation is again similar, but the expression of /, | is different, and one
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finds
M(Z)C+ M*l(z) _ D,,;lﬁ‘ _ eén*in—l*s"u—zf(”

-2) .
S + lower derivative terms ,

v(in—2)

MG, et =entanif 7 floy (428)

n—1
The orthogonality conditions (4 2) can be re-derived using the c-operators They
come out very simply from the obvious relations
[M(z)c,\,*Mfl(z), M(z)c,‘Mﬁl(z)]A; =0, (4.29)
and from the counterpart of (4 18), that is,
d(M(z)e; M~ '(2))/dz = s, \Mc, M~ + s,Mc,M "

n—1
This gives the equation

Sn

Me; M~ = D,F — Me,M ™! (4.30)

Sn—1
that will be useful below. Next consider the case of the associated surface in "~
The embedding is very similar to the case p < n — 2, since one only makes use
of conditions (42) for p < n—2, and ¢ < n — 2, which are homogeneous. Note,
however, that formula (4 28) involves the factor exp(&, + ¢, 1), instead of the fac-
tor exp(&, 1) that would be the direct generalization of the bosonic representation
case Thus one finds

% [”7”(/1, - f'(n‘Z), f, , /7-(”72)) = (P, 1(z2.2)+ &+ C_:,,) (431)
Finally let us discuss the associated surface in €1 According to (4 30),

[M(2)e; M~ (2), M(z)e, M} (2)]. =0

Sn Sn

Me,M ™!

MCHMilaDn[:ﬁ -

Sp—1 Sp—1

- Dnﬁ -

Thus, by keeping the second term, onec arrives at an homogencous relation Com-
paring with (4 6), one concludes that
Me,M ™ = f‘l“"” s> /’*”7”’164 (4.32)
‘ A>0
The fact that the last formula involves only annihilation operators is a direct con-
sequence of the explicit realization (3 12) It is easily seen that the second term of
(4 30) drops out when one computes the gencralization of (4 27) for k =n One
gets
Mc!

n

(.I- ‘O>(| 2) — (32:” /7'(17* 1) /V‘(l)flo>(l 2) (4.33)

Thus we have

, (n—2 n— [n—1 7 F(01—2) Fl1— =[n—1
VAL A 1>7f|[‘1 l’/’ , [ fon 1),/5” ])

=AU ST ) = (@ D) G ) (434)

The outcome of the preceding discussion is that the Kihler potentials of X”1 coin-
cide with —@,, up to an irrelevant re-definition — that do not change the Riemannian
metric This terminates the proof [
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43 Todu fields from D,—W-surfaces In this subsection we establish the following
converse to Theorem 1 and Corollary 1

Theorem 2. Toda solution from Phicker embeddings The Kdhler potentials of any
D,—W-surface introduced by Definition 1 and of its associated surfaces introduced
by Definition 2, may be written as

AT f) = 0z D), p a1,
AN SO ) = (@@ ) G+ ),
ALY = (@ D) G 1) (439)
where @, are solutions of the D,-Toda equations

Proof At this point it is useful to recall the expression of the Cartan matrix, which
is the same as for 4,, except in the following lower right 3 x 3 corner

~1 2 0 (4 36)
1 0 2

First we re-derive the Toda equation for p = n— 3 directly from the fermionic
expressions obtained by substituting (4 1) in the Kahler potential (3 37), that is,

= (oI f STt o) (437)
By explicit computations, one finds
e 2add, = (0] e o)
% (0 f f(pr)f(p—l)f(p)f(p—2) - £10)
—<Olf f(/kz)f(p)f(p) f(p—Z) 710)
<Ol Fefe o),

and, thercof, applying Wick’s theorem,

00®y = =M (O - J LI flo)(0lf - R o)

According to the form of the Cartan matrix for D,, this coincides with Toda cqua-
tions for p < n — 3 Consider, now the case p =n — 2 Clearly the derivation just
recalled works in the same way, but now gives fermionic expressions that arc gen-
eralizations of expression (4 37) Thus we introduce

Apy = (O Jo2772 1oy,
Ay = (O[f et flo). (438)

Now we show how they are related with the additional bosonic coset spaces dis-
cussed in Subsect 32.3 Since ¢V~ and €V—1" 1 (resp. 41, and €1*11) have
the same dimension, formulas (4 3) taken for p =n — 1, and p = n, also define
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associated surfaces in %1#~17~1 and %1*]. First, extending the preceding deriva-
tion, one immediately sees that

Apy = e bt S o 4 G I My 4 2 = e P L (439)
On the other hand, and making use of (4.30), one concludes that
- . -1 . a(E L E Y m s (am—] )
A, = e*2(“"*‘T*”*')<2/.,,_1|M M|2/,1) +e 2(Sn J“")<2/L”|M M|24,) .

Ay =e P e P (4.40)

Combining the D,-Toda equations with the relations satisfied by 4, and 4, (thanks
to Wick’s theorem), we find that we should have

(‘;(’_}(pn‘z _ ez(Pu-z*‘pu;I*‘Pu» [ - ez‘pnfl_(p'w"'d)/nw,,,] ,
so that
d)/,ﬁ»},,,,\ - ¢1171 + <pn (4’ 41)
Moreover,
~3 .3 sy 20, 20, 20,  —P, =D,
(7545,1”%”71 = 8(’)(¢U~[ + (pn) =e h(e te ') =e n=l KO
so that
e—q)z/,, — e*z‘pu—] + 6724),, . (442)

Expressions (4 41) and (4.42) are immediate consequences of (4 39) and (4 40), in
view of the relationship (3.48) between Kéhler potentials [

As a preparation for the coming subsection, let us note that, due to the connection
between Kéhler potentials and Toda fields just established, it follows from the Toda

cquations that the intrinsic metric tensor J,p] of X171 is given by

[

g = —odw, = exp (Z K <P,> (443)

4 4 Infinitesimal Phicker formulae Extending the discussion of [1], we next show
that the connection with Toda dynamics immediately leads to the

Theorem 3. Infinitesimal Pliicker formulae. At the regular points of the embed-
ding, the family of scalar curvatures are related by

R(p) (p Z K;?],,)ng) (4 44)

Proof  This is derived by computing the curvature

= —00In <exp (}j K qﬁ,)) D (4.45)
]

R%

no—~
=~
O
wos
>~

=

3]

m
Ry
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5. General Formulation

The consideration of the W-geometry of the Toda systems associated with the al-
gebras C, and B, follows exactly the same direction as the D,-case, and is even
simpler Before discussing the main steps of the construction for an arbitrary simple
classical Lic algebra ¢, let us recall briefly some information about these two series,
see ¢ g [12], and their fermionic realizations

For the algebra C, the roots are of the form &= +2¢,, 1 < p < n, £¢,+
é,, p<gq, and the elements of C, can be realized using 2n fermionic operators
b+ ,. The simple (positive) roots arc @; = & — €1, | < i < n—1, and 7, = 2¢),
the corresponding fundamental weights are S = Zl</<ié}, 1 < i < n, all n funda-

mental representations are of the same nature, and have the dimensions (2,.") (™)
Their weight vectors have integer components and are realized in the Fock space
with the highest weight states |;) = 7, 710), 1 <1 < n, satisfying (2 11) with
the cyclic vacuum vector [0), b,|0) =0 forall p=1, .n

For the algebra B, the roots are ¥ = £¢,, 1 < p <n, &, £, 1 £ p<g =
n, and the root vectors corresponding to these roots are realized in terms o
2n+ 1 fermionic operators 74, 1 < p < n, and by, the simple roots are 7;
é;—¢41,1 £i <n-1, and 7, = ¢,, the corresponding fundamental weights are
Zi= D<€yl =i=n—1, and - %ZIS/S,Iéj. Here only the first n — 1
fundamental representations have the weight vectors with the integer components,
and the highest weight states |4,) = b/  5/]0), 1 <i < n—1, have the dimen-
sions (2”[.“), while the last one is spinorial, its dimension is 2" All the reasonings
given in the previous section for the D,-case work precisely in the same way, with
the relevant minor modification, here, besides ), 1 i < n—1, there are two
other highest states b, »7[0) and b7 0" | 57[0).

With these words and some algebra, one arrives at the analogous conclusions
as for the D,-case, concerning the rclation between the Kahler potentials of the
corresponding %l-manifolds and the Toda fields satisfying (2.2) with K being the
Cartan matrix of the algebra C, or B,, etc Let us only mention that the reconstruc-
tion formulas (2 8) and (2.9) take place for all 1 < j < n for C, series, for B, it
is valid for j < n — 1, while e 2% = 4,.

It is natural to decouple the construction in two steps First, let us parametrize the
cosets of G for all representations of 4 = Lie G with the highest weights Z,, p =

s}

1, ,n, by exponentiating the linear span of the quotient 4/ (ﬁh’ﬂ As we have already
said, for all simple non-exceptional Lie algebras we use the fermionic realization
of their elements, and the number of the creation b} (annihilation b,) operators is
equal to the dimension of the Euclidean space whose coordinates parametrize the
positive and negative roots of ¥. Namely, for nonexceptional representations of %
we have

(()»[PJ eQn /p> — eE, FPIr! i;'p> = eZ,, 7 P) 2] b+ brt0> (5.1)
= 3 xp- 4 xlplp=Ld,— ylpllA *?; . ‘7;'11 |0) (52)
A}A ./1,,

Here |0) is the vacuum cyclic vector, by action on which of the creation operators
», | one obtains the highest weight %, state |4,), Q, is expanded over the

clements .Z.” of %lf], the series in (52) gives a decomposition over all vectors
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bjp 2,10) =14, A;) of the p" fundamental representation space. For the case
of the exceptional fundamental representations (the last one for B, and the last two
ones for D,), the meaning of the vacuum vector |0) and a fermionic realization of
the elements of the algebra is different than those for nonexceptional representations,
and formula (5 2) is modified, see above

The space (9’[1’], as an algebraic manifold, is parametrized by independent coordi-

nates X", 1 < a < dim ?ﬁ[f] = N,, in the space ?T, dual to the space %[l’], with
the following elements the Cartan generator /,, and the root vectors corresponding

to the root string /7., . 4l?! containing the simple root 7, = o!”!. At the same
g N, g p p =9

time, the coset %71 = G/th | as a group manifold, is parametrized by the coordi-

nates X#1*1 in the space dual to the space G/G‘[\p] corresponding, in addition to

th

those of 47!, the double highest weight @, of the p™ fundamental representation,
1 g P yt p

and all the differences 2w, — 2! which do not coincide with the roots from the
root string defined above. (Of course, for the series 4, the set of the clements of
%[f] and those in the rhs of (5.1) are in one-to-one correspondence.) By this rea-
son, already on this step, one comes to the homogeneous quadratic relations for the
coordinates X177 5o to deal only with the independent coordinates of the cosets
Thus we arrive at a realization of the cosets in terms of the coordinates which sat-
isfy the relations corresponding to some algebraic curves and surfaces However, on
the different coscts (for different values of p), the coordinates X[71%4 and Xlr»4
clearly are different, and are not connected yet. And, of course, they satisfy their
own quadratic relations also separately, the origin of the relations has been explained
above Finally, define the Kéhler potential .2 1P)(X[P) X121y of a %[} in accordance
with (52) as an appropriate scalar product in the space of the p™ fundamental
representation, and recall again that, up to now, the potentials for different mani-
folds !#! are defined independently

The given reasonings clarify the origin of the quadratic relations from the purely
Lie algebraic point of view At the same time, in the differential geometry language,
the necessity of these relations for the case of an arbitrary simple Lic algebra ¥ is
still the decomposability of a matrix representative of the modified Pliicker image
of @!P! (for the corresponding algebra %) in the relevant subspace of the projective
space Here, of course, one takes into account the specific structure of the repre-
sentation space vectors for this or that simple Lie algebra However, it seems to us
clearer to formulate the relations in question not for the right coordinates A;’lj 1 A,

of the manifold, but directly in terms of the X[I’J"“”s, as it has been done in the

previous section for the D,-case, the same is for the series B, and C,

In fact, the homogencous space 6!*) is a flag manifold (or a parabolic space);
and since we deal with G being a connected complex algebraic group, the alge-
braic manifold %!”! naturally is a projective and simply connected manifold The
set of the flag manifolds %71 which we consider here, realizes the cosets associ-
ated with the fundamental representations of %, and is defined by the corresponding
parabolic subalgebras of %, or, up to a local isomorphism, by its Z-gradations The
relevant reconstruction procedure looks as follows, sece e.g. [14] Up to a transfor-
mation from the inner automorphisms group Int 4 = Ad (G), a Z-gradation of
% can be given by the element H from the Cartan subalgebra # of 4, namely,
Gy =1{7 €9 [H,7]=mZ}, such that 7;,(h) = m, are nonnegative integers for
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all 1 < i < n It is clear that

{gm|m€Z - él710=yf S @ gy 5
2E4,

with

Am = A,,,(T[,], 77[1\) - a4 = Z qiT, € A Z qm; =m p,

1<i=n I=i1<n

and, moreover, these subspaces %,,x € A, arc invariant with respect to 4, Here
by m,, .,m, we denote such simple roots which correspond to nonzero values
of m, In accordance with this gradation of 4, 4 =&  _ _ %,, the subalgebra
P = @ogmgn %, and the opposite to it (under the reflection o — —z) 2~ =
Dy<, <, G—m. are the Lie algebras of parabolic subgroups P* of the Lie group G
For the case s = 1 these subgroups are the maximal nonsemisimple subgroups of
G, and just this case corresponds to the flag manifolds %'7!, p = i;, which realize
the cosets we are looking for

On the second step, let us now identify the Kahler potentials 7 171X/ Xr1)
with the Toda fields satisfying the equations of motion, just by setting

e

;“/?> = Meizf/ h(k 1), logss, ‘).p> s

cf (2.3), on the corresponding W4 —and associated surfaces Here arises the first
nontrivial point With this identification, the coordinates +7! for different values of
p are not already independent, and are constructed in terms of the same screening

functions s; So, one should get convinced in the following two statements

i) The functions f* = X entering %' do satisfy the corresponding quadratic
relations, in other words these relations do not contradict the nested structure (4 9)
of f1

ii) The functions f(P=D4 = X711 p > 1 entering 47, lead to the Toda ficlds
@, determined by formulas (2 3) via the screening functions, and satisfy the same
quadratic relations as above

In the previous section we have proved these statements for the D,-case by a
direct verification, for B, and C, series it can be shown in a similar way So, the
relations in question are identically satisfied on the class of the solutions to the Toda
system, when the coordinates X!7)%* are expressed via the screening functions as
the nested integrals (4.9), i ¢. on the corresponding W -surfaces

Of course, our discussion of the quadratic relations concerns only a part of
the problem We have the cosets 4!”) which, in general, are submanifolds of the
projective spaces The holomorphic (antiholomorphic) blocks entering the Kahler
potentials under their identification with the Toda fields ®;(z, z) given by formula
(23), are related to the nested integral structure of the nilpotent elements M (M)
written in terms of the screening functions,

M - Z Z (i\» "ﬂilll)E—i,,, E*l] ] (53)
m=11=n. .1,5n

where (i1, ,i,) is the compact notation (49) for the corresponding repeated
integrals
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Just this representation automatically takes into account the fact that the functions
/* are not independent, and are parametrized by exactly n number of independent
screening functions s; The embedding functions f*(z) (f(%)) which define the
corresponding Wy —and associated surfaces just satisfy the necessary quadratic rela-
tions thanks to their nested structure One can move in the opposite direction and
observe that the identification of the Toda fields with the Kahler potentials for the
associated surfaces in %171 gives that the embedding functions f4(z) (f%(2)) and
their derivatives of the corresponding order, coincide with the coordinates Xlplrd
cf with (2 26), and provides the necessary relations And, morcover, the Kdhler po-
tentials of the manifolds (/! satisfy the system of partial differential equations (2 2)

Finally, the second part of formula (2 27) for the case of a simple Lic algcbra ¢
endowed with the principal gradation, takes, on account of the equations of motion
(2 2), the form

497 = %exp2 (ZKA.,¢,> dzdz = %exp2p, dz dz . (54)
j=1

The curvature form of the pseudo-metrics d-% appears as

—icdpy = > Kyd o7 (55)
/

Then we naturally come to the following concerning a generalization for an arbitrary
simple Lie algebra % of the global Plicker formula

Conjecture 1. Global Phicker formula'® For an arbitrary simple Lie algebra 4,
with degrees dy, on a W-surface of genus g, with total ramification numbers [,
one has

n
29 —2— P+ 2> Kiyd, = 0 (56)
j=1

In accordance with an interpretation given in [1], W -surfaces for the case of
A, are instantons of the associated nonlinear g-model, and in turn are described
by the solutions of the cylindrically symmetric self-dual Yang—Mills equations, for
which the action coincides, up to an inessential numerical factor, with the topological
charge (or Pontryagin index, or instanton number) Q; of this configuration The same
reasonings work also for the cylindrically symmetric self-dual fields associated with
an arbitrary simple Lie algebra % which, in accordance with [4], satisfy the Toda
system of equations (2 2) Here there is also an explicit expression for the topolog-
ical charge density, which provides, with the help of the Gauss—Bonnet formula, a
bridge between the infinitesimal (5.5) and the global (5 6) Pliicker type formulas In
other words, formula (5.6) gives a relation between the genus of a Wy -manifold and
its topological characteristics Oy = dy Moreover, since the cylindrically symmetric
instantons for % constitute a subclass of 2r-parametric solutions of (2 2) regular on
the one-point compactification of R* and with finite action (or topological charge),
a justification of these requirements by imposing the corresponding boundary con-
ditions on the Toda fields, leads to the evident relation between the ramification
indices f3; and the degrees my of the singularities of the functions exp2p, in the

16 See note added in proof
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r.hs of (54), i = Z'/.'Zl K, m, With such a standpoint, the integers m; are noth-
ing but the integration constants entering the parametrization s,(z) = ¢, exp(m,z),
5,(2) = ¢, exp(m;z) of the arbitrary screening functions s;(z) and $;(z2), 1 < i < n,
which determine the general solutions (2 3) of the Toda system (2.2).
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A. Appendix: Group Properties for D,

A1 The bosonic representations Let us determine %‘[’p] and ?9’[1)] at once for | <

p = n—2, where, according to (3.7), |2,) = b,5, | p/[0) Letuscall (. the

nilpotent Lie algebra generated by the step operators with positive roots It is casy
to see that (f?h"] is given by

(thl =1 - {hlsi:# p} 5 {Efe-f‘r(’—'/{sx)ﬁ § P} 5

{E ga.l>k>pt AE 10,1 >k> p} (A1)

These generators may be reorganized as follows
rg"[lﬂJ = {E(;7+(7/“d,ﬂ < p} ALz 46,2 = pk>pt AEs_s,2 = pk> p},

{hoo £ p—i{E 6,2<P = p} AEe .2 <P = p},
{hisk > pt A{E g -¢.1>k>pt AL g.a:1>k> p},
{Eg—e;, 1>k > pt {Es 6,1 >k> p} (A2)

The first line generates a nilpotent algebra denoted . | ’Em of dimension 2p(n — p) +
p(p—1)/2=2np — p(3p+1)/2 The next line clearly generates 4,_,, which has
dimension (p* — 1) The remaining lines generate D,_ ,, of dimension (n — p)(2n —
2p —1). The dimension of {45‘1’] is therefore 2np — p(3p+ 1)/2+ p* — 1+ (n —
p)2n —2p — 1), that is, 2n> —n — 2np +3p*/2 + p/2 — 1

Next, this coset is parametrized by exponentiating

G = {h)} AE ¢ a.7 < pok>py AE ¢ 5.2 < p k> p},

(E o a0 << p) (A3)
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correctly gives n(2n — 1) which is the dimension of D,

and

A2 Explicit parametrization of 67! for bosonic representations We treat the

-1 N - . 4
generic case 1 < p < n—2, where |7,) =5,
is parametrized by!® e"»refrb 5

= S E

I>p, )= p

The coset parameters are X,

2, 10), with

g +XVE s )+ %
ls,<o=sp
PP and u[f;]

first fundamental representation, one compuies (for o < p)

erple

Thus we obtain

=by+ 3

[p]
Z U, p—

p=fi>y

\”/‘b +<

DB BE e A

2/\>p1 =+],<p

k>p,e=+£1

1

pzo>f

(P}E
- =0,

>

e/\,,/l,ye§2,,]/~v/)> _ Z X[p] p. 4,,X[/7] p—1.A4, X[p] LA bj‘” ‘77\ '0> ,
1A,
where for | < o < 1 << p,and k> p,

xtrnb — dyp, for o, f<p,

Xt — xtnlhr — e"/’(sp B

-1 > (x[p Iy 4 ');),w itp>p>u
k>p.e=+

—e”"’% > (X(/A) jYé[f Py e s pl; itf=p p>a
h>p.e==£
1 .
iz —% > (.\'{ /) — u/; " ifa>p
h>pe=+
| [pl7 _[P1f P
2 Z (Xz:/" xé:/\ )’ if o = /}:':p
k>p,e==+

—i, ) W Leip Ly

—e vy 3 (g ifo=p=p

k>p.:::i
ylplnkpel) eﬁl’x[ﬂ]/wl ylplrtk Ylip/‘] k>ptl
""For p =1 this is actually 2n — 1 which coincides with the dimension of D, B,_;

'8 Here again we leave aside the bar components which ate similar

»,10) According to (A 3), LV

(A4)

Turning the same crank as for the

[r] +
uy z) 2 4

(A5)

(A6)

(AT)
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It is casy to see that the coordinates X[7/** satisfy the polynomial conditions,

IIA
R

lIA
[IA
=
[IA

ZX[/}] 7. 4X[.17] fo—1 0, 1 P P (A 8)
A

This explicit computation gives a parametrization such that for 1 < 4 < p, and
l=4=p
xtr=d—5 (A9)

With this parametrization, we may easily solve the constraints (3 37), and write (for
0=uf = p)
Xl =B xlplfo—2 — _ i xlplzAxlpl b —1 , (A 10)

A=p+1

I\

. . S[pla.Ad -
so that the independent components are X!P1=%4 gV 4 1> 511 and

XLl —p 7X[p]/f,4y’ X[pJﬂ-—/f _X{/)]/f-—*/

A 3 The three additional bosonic representations The previous description of the
cosets extends to the representations generated by [4,—1 + Z4), |2/,), and [24,1)
without any problem The first two cases are direct extensions of the formulae given
for 7, with p < n—1 The last one is obtained from the calculation for 2/,_;, by
exchanging everywhere b, with »_, Using similar notations, we introduce

R Sa—i+ sl B L/ nrt7aly B
Q/wlf!J"/w - Z (x/[v ! ! E*é’ +ej, +'\—n E_(,'v_g”)

J=n—1.

[Zn—1+74]
+ 2 ug U E g g,

12, <0<n—1
2
inn = Z l{['.(/)”]Efij —(7» k)
1< <6<n
0 L2l g B [2/""’JE o
2/ Z X —é ¢, + Z u,s —&—c) s
J=n—1. 1<, <osn—1
O L+ — _
X[/]I — el\,/l,e_), ?’ e .Q,e l\,/l, (A 11)

A4 The fermionic representations The corresponding coset manifolds are studied

. . N (i2) (12)y
in the same way as above They are parametrized by e""» e |7.), where

(r2)y _ [n—1]; (1 2) [n—1] (1 2)
0 = Y al ] Eﬂ;% + Z u.y Ekéﬂ;ﬁ ,
; ' 1=, <d=n—1 ’

12 n] (1 2)
ol =y e (A 12)

. —c —e,
1=£,<09o
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