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Abstract: The present paper describes the ^-geometry of the Abelian finite non-
periodic (conformal) Toda systems associated with the B, C and D series of the
simple Lie algebras endowed with the canonical gradation. The principal tool here
is a generalization of the classical Plucker embedding of the ^ί-case to the flag
manifolds associated with the fundamental representations of Bll9 Cn and D,u and
a direct proof that the corresponding Kahler potentials satisfy the system of two-
dimensional finite non-periodic (conformal) Toda equations It is shown that the
^-geometry of the type mentioned above coincide with the differential geometry of
special holomorphic (W) surfaces in target spaces which are submanifolds (quadrics)
of CPN with appropriate choices of TV In addition, these ^-surfaces are defined to
satisfy quadratic holomorphic differential conditions that ensure consistency of the
generalized Plucker embedding These conditions are automatically fulfilled when
Toda equations hold

1. Introduction

A notion of ^-geometry of CP^-target manifolds associated with integrable sys-
tems, recently invented in [1] for the case of An-Abelian Toda system (see also
[2]) seems to be a very important tool for solvable field theories as geometri-
cal structures behind W-algebras, as well as for algebraic and differential geome-
tries themselves In particular, such a geometrical picture should be rather essential
in the gauge fields formulation of various models of the two-dimensional grav-
ity, as well as their generalizations for higher dimensions On the same footing as
^-algebras, being the algebras of the characteristic integrals-conserved currents-
for the corresponding nonlinear systems, guarantee, under appropriate conditions,
the integrability property for these systems and give their classification, a descrip-
tion of their ^-geometry is equivalent, in a sense, to a classification scheme of

1 On leave of absence from the Institute for High Eneigy Physics, 142284, Protvino, Moscow region,
Russia

2 Unite Propie du Centie National de la Recheiche Scientifique, associee a ΓEcole Normale Superieure
et a ΓUniversite de Paris-Sud
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the corresponding Kahler manifolds 3 It was shown in [1] that the Kahler potentials
of the intrinsic metrics induced on the corresponding ^-surfaces coincide with the
^ / rToda fields In what follows we prove that this fact takes place also for the
^-surfaces associated with all other classical (non-exceptional) simple Lie algebras
^ and the corresponding ^-Toda fields, and can be realized explicitly (In fact,
we have conjectured this statement already several years ago, but only now have a
proof for that ) We believe that this notion is relevant for a wide class of integrable
dynamical systems as a geometrical counterpart of PF-algebras.

For the readers who are not familiarized with the notions ^-algebra and
^-geometry, at least in the meaning which will be used in our paper, let us recall
it in a few words

By An- ^-geometry we mean the geometry of the CP/? PF-surface of ref [1]
which are two-dimensional manifolds Σ supplied with a complex structure, and an
embedding into CP" such that half of the coordinates X^, 1 ^ A ^ n. + 1, of the en-
veloping space holomorphically depends on a local coordinate z of £, XA — fA(z),

while the other half, X , are anti-holomorphic functions X = fA(z) In other words,
in the language of algebraic geometry, we speak here, on account of the appropriate
reality condition, about holomorphic curves in the corresponding projective target
space CP" Note that we call them surface, instead, on account of their real di-
mension This is more appropriate for applications to conformal models and string
theories The corresponding ^-surface is called WA,,-surface, it is related to the
first fundamental representation of An, and there are associated surfaces related to
the other fundamental representations of An. As shown in ref. [1], and as we shall
recall below, the WA,,- a n d associated surfaces correspond to the classical extrin-
sic geometry of the curves in CP" having to deal with the Plύcker image of the

Grassmannians ^r{n + 1| A:) in CP' ^ ) " ' .
Since the corresponding complex projective target space is defined as the quo-

tient of the space C/7+1 by the equivalence lifting (local rescaling of the coordinates),
it immediately follows from the given definition for the WA,, -surface, that these holo-
morphic (anti-holomorphic) functions are solutions of some homogeneous ordinary
differential equation of the (n + 1 ) ΐh order,

with nonzero4 coefficients Wa (Wy) In writing these equations we made use of
the fact that the Wronskians Wr [/(z)] and Wr [/(z)] constructed with the func-
tions fA(z) and / (z) do not vanish at regular points of Σ, and one can divide by
them In other words, here we deal with the osculating hyperplanes to the generic
ίF-surfaces. Note also in this context that the linear system of the Plύcker quadrics
which provides the decomposability property of the Plucker image, is automatically
satisfied on the class of the solutions to (1 1)

One of the main points of this paper is to define some submanifolds in C P \ with
appropriate /V, which are target spaces for the Jf^-surfaces relevant for the other

3 Some classification of the manifolds associated, in terms of the corresponding embedding problem
(Gauss-Codazzi and Ricci equations), with the Toda systems, and an attempt of the geometrical formu-
lation of the integiability criteria has been given in [3] Howevei, it provides only some geneial links, in
particular with the diagonalisability of the corresponding 3rd fundamental form, and is too complicated
foi conciete conclusions

4 In this papei, we do not considei singulai points of W-suifaces This may be done stiaightforwaidly
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complex simple Lie algebras r§. These spaces are specified by quadratic conditions
whose origin is as follows Now the set of the indices α in the sum in the r h s of
(11), for which the coefficients Wy_ φ 0 and Wy_ φ 0, coincides with the values of the
exponents of the algebra ^ The vanishing of the corresponding coefficient functions
in the series in the r h s in (11) leads to the set of the quadratic relations on the
embedding functions jA(z) (f(z)) and their derivatives up to the (n - l) t h order;
and these local conditions on the functions ensures consistency of the generalized
Plϋcker embedding described in the present paper It happens that the corresponding
Kahler manifolds in ^-geometry are ultimately related to the Toda fields, being
described by the equations of the two-dimensional finite nonperiodic Toda system
which, fortunately, are exactly solvable [4].

In accordance with [5], see also [6], the results of the Toda theory provide
a realization of the £f-algebras in terms of the polynomials constructed with the
corresponding Toda fields, more exactly via their derivatives. By ^-algebra we
mean [5] an algebra with the defining relations

{W.Az),Wβ(z')} = Σ-KfiiW)^0^ -z\)
a

just for the coefficient functions entering (11), which realize the corresponding in-
finitesimal ^-transformation of the functions fA and fA Here ^ « are polynomials
of the Wy's and their derivatives over spatial variable z\ in two-dimensional space-
time {z,z} = {(ZQ ± Z I )/2} with the metric5 g\\ = —cjn — 1, the Poisson brackets
are taken for equal time value, ZQ = zf

0 Moreover, such objects as the elements WΊ

with values in the ring of gauge invariant differential polynomials, are quite well
known in the integrable systems business, being in fact local characteristic inte-
grals for the corresponding system of the partial differential equations, the existence
oϊ these integrals provides integrability of the system So, the theory of integrable
systems is a natural place where Lie group-algebraic and differential and algebraic
geometry aspects are intersected as the fF-algebra & ^-geometry

The relevant instrument for our description is a modification of the Plϋcker em-
bedding for all classical series of the simple Lie algebras Recall that the standard
Plucker embedding is formulated for the y4/;-case, see e g. [7], and results in the
infinitesimal and global Plϋcker formulas. Note that the statement which general-
izes the infinitesimal Plucker formula (related to the canonical distribution) for an
arbitrary simple Lie algebra ^, has been conjectured in [8] and then proved in [9],
see also [10], without any connection with integrable systems, ^-geometry, and all
that In [11], using the relevant differential geometry setting, while without any ref-
erence to a coordinate representation of the corresponding flag manifolds associated
with the Abelian Toda system, there was also obtained the generalized infinitesimal
Plucker formula for an arbitrary simple Lie algebra c§. These flag manifolds are the
quotient spaces G/P with P being the maximal nonsemisimple parabolic subgroups
of G, 'g = Lie G

As we will show, the relevant ^-manifolds in our approach are related to the
target manifolds of integrable systems gauged by a semi-direct product of a nilpotent
and semisimple subgroups of Lie rS In other words, the Kahler manifolds in question
arise as parabolic spaces for a simple Lie group G whose coordinates satisfy some
homogeneous equations quadratic in the coordinates Similar to those in the yl,rcase,
these coordinates are some minors of a matrix representative of the corresponding

3 O n e m a y a l s o define z as a c o m p l e x v a i i a b l e T h e n g\\ — CJ22 = 1
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cosets, and they are submitted to homogeneous quadratic equations. However, only
a part of these equations are quadrics of exactly the Plucker type,6 while the other
ones are caused by the specific features of such algebras as the orthogonal algebras
In general, the Toda fields are related with (minors of) determinants Thus a natural
tool is to perform skew products of representations, hence we shall use fermionic
operators, see below. For An, one can obtain all finite dimensional irreducible rep-
resentations by skew products of a finite number of copies of the first fundamental
one As we will see, this is related with the fact that, since the Dynkin diagram is
a simple line,- the derivation of the Toda equation goes rather smoothly from the
first root to the last For other algebras, the situation is more complicated Now,
skew products of the first fundamental representation are not enough One should
also include the last one for Bn, and the last two for Dn. These representations are
of a different nature, and their highest weights have half integer components In
the Dynkin diagram they correspond to non-generic points with branching where
the derivation of Toda equations is much more subtle All these difficulties will be
overcome in the ensuing discussion The study of the problem for the orthogonal
algebras already contains7 seemingly all peculiarities and "underwater stones" that
are naturally absent in the case of An Thus we believe that our picture is truly
general

To clarify the principal difference in the formulation of the problem in question
for the simple Lie algebras other than An, we shall first recall some results for the
Λ?-case, mainly following8 ref. [1], and complete them by some reasonings leading
ίo the Plucker quadratic relations As already emphasized, and in distinction to the
case of the Lie algebra An, a similar study of ^-geometry of the Toda systems
for other simple Lie algebras is not so direct if one wishes to realize the program
in the coordinate basis explicitly

Note that an important instrument of our consideration will be fermionic realiza-
tions of the elements of the classical Lie algebras, similar to the one which has been
efficiently used in [1] for an investigation of the ^-geometry of the ^/7-Abelian Toda
systems. The main advantage of this realization, apart from its technical simplicity,
is that it allows to interpolate between different fundamental representations, and
relate their basis vectors This is extremely suitable for a solution of the problem
under consideration, where skew products of representations are the key

We give an explicit formulation of a relevant modification of the Plucker map-
ping for the manifolds associated with the fundamental representations of an arbitrary
classical Lie algebra ^, and a direct proof that the corresponding Kahler potentials
satisfy the system of partial differential equations of the Toda type. In general, we
believe9 that every integrable system is naturally associated with the corresponding
Kahler manifold-that means with the relevant group G and its gauging - which in
turn is determined by the invariance subgroup for the chosen representation space
Here the manifold is defined by the gradation of the Lie algebra rS and the grading
spectrum of the corresponding component of the Maurer-Cartan 1-form which re-
sults in the nonlinear systems in question So, the algebraic counterparts of the

6 Recall that just the system of the Plίickei quadrics piovides the condition of decomposability of a
multivectoi in the coπesponding complex piojective space, and hence defines the Plϋckei image in it [7]

7 The case of C,, is much simplei
8 Part of this discussion aheady appealed in the preprint version of the second article of lef [1] It

was removed fiom the piinted veision in ordei to shorten the article and satisfy the editoi's lequest
9 This was also hypothesized in the fiist article of lef [1]
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given ^-manifold are the Lie algebra, its gradation, and the grading spectrum
of the connections. Note also that, as we have understood from discussions with
M Kontsevich and Yu I Manin, our consideration of the nonlinear Toda type sys-
tems as holomorphic curves in the corresponding protective spaces, seems to be
closely related to variations of the Hodge structures in the spirit of Ph A Griffiths.

2. Abelian Toda Systems, and W-An-Geometry

Consider a finite-dimensional complex simple Lie algebra (S = r3 of rank /?, with
the following defining relations

\hjh\ = 0, [h,9E±J] = ±K?E±h [£+„£-/] = <5ιΛ ( 2 ! )

for its Cartan {/?,} and Chevalley {E±ι} elements, 1 ^ ί ^ n, and Kf/ being the
Cartan matrix of c§ Let c§ be endowed with the canonical gradation,

mCL

for which C#o = {hi} is Abelian, and {$±\ = {E±t} Then, in accordance with the
group-algebraic approach [4],10 the zero-curvature condition

[dldz + A+,dldz+AJ] = 0

for the connection components A±(z, z) taking values in the subspaces ^o θ ^ ± i , re-
spectively, results in the partial differential equations describing the two-dimensional
finite nonperiodic Toda system

cdΦ, = - exp p f, 1 ^ i ^ π, Pι = £ K'fφ, , (2.2)

e = d/dz, c ΞΞ c/cz The general solution to this system is written, in one of the
equivalent forms, as follows Associated with each fundamental representation - with
highest weight /.^-there exists a Toda field Φ/v defined by

\λk)e-^E)-^iz\ (2 3)

where

dz / = 1 dz / = 1

ξk(z) = J2{(KrorΛ)kl\nsj{z\ ξk(z)=Σa^Jr])kj\ns/{z) (2 4)

The n functions Sj{z) and s/(z) which are arbitary will be called screening func-
tions, since they are the classical analogues of the Coulomb-gas operators They
determine the general solution of the Goursat (boundary) value problem for (2 3)

The matrix element (λk \M M\λk) in the rh s of (2 3), is in fact, the tau-function

1 0Hcie and in what follows, the lesults concerning the Toda theory aie given following [4]
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for system (2.2), associated with the highest weight vector matrix element of the
/cth fundamental representation of rS with the highest state |/^)

For later use, we note that one can consider the same formulae as above, but
for irreducible representations which are not fundamental By definition of the fun-
damental weights, any highest weight is of the form λ = ΣkVk^k> where v̂  are
nonnegative integers Then the generalization of (2 3) and (2 4) is

)M(z)\λ) (2.5)

The proof of this equality is earned out by taking the corresponding powers of (2 3)
This automatically constructs_ the highest weight vector with highest weight /, on
which the action of M and M can be derived solely from the Lie group theory.

For the case of the y4/rToda system, all the Toda fields exp( —Φ7), 1 ^ ^ H,
are expressed via the first one, exp( —Φj) which can be written as

Λ A (2 6)

Here the functions fΛ(z) and / (f) satisfy the conditions which can be expressed
in terms of the Wronskians constructed with these functions,

W r [ f t z ) ] = l , W r [ Λ z ) ] = l , (2 7)

and are formulated via the independent (ehiral) screening functions Sj(z) and st(z),
1 ^ / ^ n, entering the general solution (2.3) as the nested integrals (4.9), in our
An-case with is =s All other Toda fields exp( — Φ7 ), j > 1, are written in terms
of exp(-Φi) by the formulas

exp(-Φ, ) = Δn (2 8)

and hence

exp(-Φ / ) = Σ;det / (/) det//) (2 9)
/

Here the sum runs over all the / h order minors det ;(/) and dety (/) constituted by

the first / rows of the matrices {d)B fi and (c)B f , respectively, Af is the yth order
—R

principal minor of the matrix cAd exp(-Φj) Recall that such minors satisfies very
important relation

d~d\ogΔl^
Λnl' Δi~X , (2 10)

which is used in what follows
To have a more precise picture of what we are going to do in the general

case, let us reproduce here some basic steps leading to the W4n -geometry We
mainly follow (see footnote 4) the paper [1], but supply some additional formu-
las needed for understanding the quadratic relations of the Plύcker type which are
absent there First introduce the relevant notations, see e.g. [12, 13]. Let ep be the set
of orthonormal vectors in a n + 1 Euclidean space ep eq = δpq, 1 ^ / 7 , ^ ^ / 7 + 1 ,
which parametrize the positive and negative roots ±(ep — eq\ 1 ^p<q^n-\-\,
of An The vectors π7 = e, — eι+\ are a set of simple roots. Denote by /,, 1 ^ / ^ /?,
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the fundamental weights of An, /,/ is equal to Σ)-\ e, - iΣ"t\ ^//(n + O The cor-

responding highest weight state |Λ;) is defined by the conditions

hj\λt) = <5/7-|/,), £+,|Λ) = 0 for all 1 ^ j ^ n ,

/I,) = 1; moreover, £_/|/, ) = 0 for all

(2 11)

In accordanceand normalization
with this definition, the whole representation space of the zth fundamental represen-
tation consists of all the vectors \A A\)1 = E_A /), 1 g A ^ «, 0 ^

p ^ Nj — I, Nj = (n~^]), with nonzero norm In what follows we use the fermionic
realization of the elements of An, in which the Cartan and Chevalley generators are
written as

K = b+b, - b++
i = b

,
(2 12)

Here b^ and b+ are fermionic operators satisfying the standard anticommutation
relations

,t>

and there exists a vacuum state |0), such that bp|0) = 0 for all 1 ^ /? ^ n + 1, and,

correspondingly, for the dual state (0|b^ = 0 In this, the zth particle state, which

is the highest weight state of the zth fundamental representation of An, is obtained

from the vacuum (cyclic) vector by the action of the raising operators, namely

and, respectively, = (0 | i? i

Now, let us consider the coset space c£^ associated with the ith fundamental

representation of An It is quite clear that here the vector space of An is splitted into

the semi-direct sum rS — 'έrϊ) t+J ̂  of the subalgebra rSP which is the stabiliser of

the highest weight state

ή ' ] = {hn / + /, £ _ e - , ^ , ί ^ /? ^ i and 9 ^ i + 1, £e-,_(?-;

and the complement

¥ 2 = { h , , E ^ p + C r r q ^ U a n d p ^ / + 1 }

< q} , (2 13)

(2 14)

In these notations the coset r ^^ is constructed by exponentiation of the linear span

of # [ ] , namely

Σ (2 15)

where
(2 16)

1 ^ < g r ^ 1 ^p^/? + l

Eveiy finite dimensional iiτeducible representation of A, (and hence all the funda-
mental ones) is contained in a skew product of the finite number of copies of the
1st fundamental irreducible representation This is why we may obtain all funda-
mental representations in this way In practice, the calculation of the coordinates
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A i A goes in two steps. First one may introduce quantities noted χ\-P^*Ai>9 with
1 ύ P = n defined by

//-Hi

eΩ'^e~Ω' = Σ X[il*'Ab~4 for A <L i, (2 17)
A = \

and (2 15) gives

Y Λ[R Rut bt\O) = y X [ I ] L A I X[i]hA]K b ΐ | 0 ) ( 2 1 8 )
B\ <B2< <B, 4U ,A,

Thus the coordinates ΛA 4 of the /ΐh fundamental-representation space are the
antisymmetrized combinations of the products X^ι^A'X^'~l'A'-] χW*M However,
for the sake of brevity, we conventionally call the quantities X^y-A coordinates also.

The explicit relation for the coordinates ς/5 Xp\ of the coset {Φ1^ and the coordi-
nates χW*'A defined on the /th fundamental representation space, is obtained by the
straightforward computation using the simple formula

n+ί

eΩ'\>+

4e~Ωι = Σ "B^B f o r A = ι ' ( 2 1 9 )
B=A

where

/ ι

(2 20)
and for A < /, A < B ^ z, and i + 2 ^ >̂ ̂  n + 1,

;/ 1 7/ 0 77 γ ;/ γ r ? ? Π
UA4 — [> UB4-υ, Ui+\A~ ~̂  X,+ 1.4> UpA—χpM' \ZZ[)

Then we come to the following parametrization of the coordinates X^y-4 entering
(2 15),

X[ί]u = 1$ for A ^ U X[i]ιA = 0 for A ^ / - 1 (2.22)

and for α < /,
χW*<A = u [ ι l f o r A ^ i + U X { I W J - 1 , (2.23)

χ[i]y.,A = Q for I <^A < ^ i - l , AφOC

With these coordinates, representation (2 15) leads to the corresponding Kahler po-
tential Jf[/1 of the manifold ^ [ / ] ,

j f [ / ] = log | |/l [ / ] | | 2 Ξlog [(0|XC/]1 XC / ] /X [ / ] / XL/]1 |0)] (224)

Here

χlήy = ΣXll^49^ X[/]* = Σ ^ [ / ] M ^ , /l [ / ] Ξ Σ Λψ A b+ b|JO) .
A A A\< <A, U * ' '

Note that, in fact, formula (2.24), on account of the aforementioned identification of
the Kahler potentials Jf^^ with the Toda fields Φ7, which is discussed below, gives
a different representation of the tau-function for (2 2) than those from [4] Namely,
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it is more adequate to the skew-product structure of the fundamental representation
space

The relation (2.18) between the coordinates ΛA A of the zth fundamental repre-

sentation space, and the parameters χW*>A immediately gives the quadratic relations

YδωΛ[ι} A A Λ['] . = 0, \ < Aλ < <A2i<n+\, ( 2 2 5 )
c)

that defines Plϋcker quadrics, and the same is true for ΛAu ^ Here the sum runs
over all inequivalent permutations OJ of the integers /, / + 1,..., 2/, on account of the
antisymmetricity of AA A under permutations of the indices Au 9Ah and δω is
the parity of the permutation ω. Note that the system of quadrics (2 25) comes, in
accordance with the contraction procedure given in [7], from equating to zero the

skew-product of the /-vector A , Λ^ =Λ |0), and the vector ~^ι~^Λ , which in

turn is obtained from A under the action of (/ — 1) annihilation operators b.
Indeed, one can be convinced that the metric which arises from such a Kahler

potential (2.24), constructed with the coordinates X^^A and X ' , is invariant
under their transformation by an arbitrary j xj matrix from GL(j\ C), as well as
relations (2 25) In particular, for the case of the 1st fundamental representation
of An, the corresponding complex protective target space is defined as the quo-
tient of the space C'?+1 by the equivalence rescaling X — Y, if XA = YAp(Y), and
— A - A - - —

X — Y β(Y), with arbitrary chiral functions p{Y) and β(Y)9 the metric, invariant
under this rescaling, is the Fubini-Study metric corresponding to the Kahler potential

On the WAΠ-surface J f^ = — Φ\, and on the associated surfaces the Kahler
potentials also coincide, up to the sign, with the corresponding An-Ύoά& fields which
are given by the r.h.s. of expressions (2 9). So, as we have already mentioned, a
relevant object for the description of the WAn-geometry of C"-target manifolds
with a positive curvature form is the Plύcker embeddings of the Grassmannians

Ήr(n + 11 k) in the projective spaces, rSr{n + 11 k) => CP^ k ' ~x. In this, we identify

χU]UA a n c j χ - vt\\h the embedding functions in (2 6) on account of condition

(2 7), and, in general, putting

χ[i]y,4 = d,-l fA^ χ\.ΦA = p*-l JA ( 2 2 6 )

leads to the aforementioned equalities between the Kahler potentials and the
Λ?-Toda fields [1] (up to a minus sign) Then, the known Plucker representation for
the pseudo-metrics d£f\ on Σ, specified by the corresponding Kahler potentials, see
eg [7], is written in terms of these fields as

fK^'φΛ dzdz, (2 27)

where AT •" is the Cartan matrix of the algebra An
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In distinction to the case of the Lie algebra A,Ί9 a similar study of JfVgeometry
of the Toda systems for other simple Lie algebras requires a modification of the
standard Plϋcker embedding The point is that the number of independent screening
functions st(z) and iv(z) determining the general solution (2 3) of the corresponding
Toda systems is always 2n, while the number of functions fA(z) and fA(z) is, in
general, much more, even for the representations of ^ of minimal dimension For
example, the relations Φ, = Φn-j+\ for the Toda fields of An leads for n = 2s to
the solutions corresponding to the series Bs, for n = (2s — 1) - to those of Cs,
and in terms of the screening functions this equating means that st(z) = sn^i+\(z)
and £/(£) = J,,_/fi(z) Moreover, due to the known relation between the orders of
the functionally independent characteristic integrals for the Toda systems, in other
words the ^-elements, and those of the Casimir operators of the corresponding Lie
algebras Ĉ , the mentioned difference is also quite natural.

3. The Target Spaces as Group-Orbits of Fundamental Weights: The Case of Dn

3 1 Fermionic realizations Let us first recall some properties of the Lie algebra
D/2, see eg. [12, 13], and its fermionic realization The roots are of the form

α = ±e, ± ep with l ^ / < j ^ i , (3 1)

in the /i-dimensional space spanned by the orthonormal vectors eι The elements of
Dn can be realized using In fermionic operators \?±h j = 1, ,«, which satisfy the
relations

[t>/, U + = [t>Γ> b+]+ = 0, [!?/, b+]+ = όLm, -n g /, m g « , (3 2)

as

Ee^e, = K b±y ~ ^ - i , E^ι±i) = EJ^ = \?^ bf - bί, \?TJ , (3.3)

and for the Cartan generators

/ * , = / / , - / / , + ! , z = l, . ,n-l,

hn = //„_, + Hn\ H, = b > 7 - bί.b-, (3 4)

A set of simple positive roots is π, = e { — eι+\, i = 1, .. ,n — 1, and πn = en-\ + en

Let E±i be the coiτesponding Chevalley elements One has

Ei = b^b/+i - b ΐ ^ b . , , E-i = bz

+

+1b? - bΐ fb_ f_i (3 5)

for / = 1, ,/7 — 1, and

En = K-&~n - K^-n + U £-„ = b±n\>n-\ ~ ^-n+λK (3 6)

The fundamental weights are

λ ι = Σ 3t> k ^ n-2, λ n - \ = - \ Σ e k - e n ) , λn = Σ — . (3 7)
1 2 V 1 / 1 Z
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As is well-known [12], the first n — 2 fundamental representations are of the same
nature-in contrast with the last two ones. Their weight vectors have integer com-
ponents as Eqs. (3 7) show They are immediately realized in the Fock space of the
fermionie operators just introduced as follows The state

bf|0), 1 ^ p ^ n-2, (3 8)

satisfy the highest weight condition (2 11) The state |0) is the usual vacuum state
with zero occupation numbers, such that

b/|0>, -n ^ I ^ n (3.9)

How can we get the last two representations? The trick is to introduce the
operators

(3 10)

Q =

d, Ξ

which satisfy,

= —τ=(t?/ -h
v 2

1

Ϊ\/2

according

[dι,dm] +

[cι,dm] +

These new operators give

E

A ! ' 2 ) =

^ )

to (3

= [

—

—

Λ "/

2),

us two other

,(1 2)

= " / '
2) __ H(\

1 +

~ y/ϊ ' +

" — 1 (\?+

~~ /v/2

= 0, [ c / , ^

= 0, [J/,.

= 0, [c/,6

realizations of

E{λl) -
— e, -e,

E _g ^g = c

,h

b_,

4]

C].

the

,+ .n
'/ '

. <

= ^/,w ,

+

 = ^/,w

algebra

- H(l'2)

(3.11)

(3 12)

A ί " 2 » = ^ i 2 ) - ί ; , 2 ) , /ίs,i2)=/?:,_?+//:,l2),

/7ί 1 2 ) =rf, + ύf,-^ (3.13)

For later use we note that a straightforward calculation gives

E±W, = ̂ L, + Ϊ^U H' = H? 2) + "{ ^ (3 14)
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After this Bogolubov type transformation, the new vacuum state noted |0)(1 2) which
is annihilated by the operators c\ and d\, is given by

|0) ( l ' 2 ) = bί,, b+,|0), c / | 0 ) ( 1 2 ) = ί / / | 0 ) ( 1 2 ) = 0 . (3 15)

Using either of the above two sets we can construct the last two highest weight
vectors Consider, for instance the c-oscillators One easily verifies that the states

c + | 0 ) ( 1 2 \ (3 16)

satisfy the highest-weight equationss

j-i( 1 2 ) ^ \ r\ 7 ( 1 2 ) Λ \ C 1 /O 1 *"7 \

E) λp) = 0, h) ' λp) = oup, p = n - 1, n (3 17)

The generators (3 3), (3 4) commute with the fermionie number11

,\ F Ξ Σ b+b/, (3 18)

and a representation with weight λp, with p <; n - 2 is realized in the space with
a fixed number (p) of fermions Thus we call it a bosonic representation On the
contrary, the operators of the realization (3.12) or (3.13) do not commute with _ I F

We call them fermionie representations
The Fock space we are considering allows us to realize every fundamental repre-

sentation in the same Hubert space This is instrumental for the coming discussions
since the Toda equations and the corresponding infinitesimal Plucker formulae do
in fact connect these different representations, so that they will be most naturally
understood in the Fock space of the b operators Moreover, this Fock space con-
tains additional highest weight vectors which will be very useful as well First, the
fermionie fundamental representations are realized twice, since we may also use for-
mulae similar to (3 17), obtained after replacing c- by ^-oscillators We shall denote
these states by |Λ,7_I) and \λn) (c f e g [12]) Second, there are other states analo-
gous to (3 8) They are given by b+_, b+|0), b+ b+|0), and bί.b+.j b,f |0)
These are highest-weight states since it follows from (3.5), and (3 6) that they
are annihilated by El9 for / = 1, .,«. The corresponding highest weights are
given by

U = 2<5f,,I_1b,r b+

Comparing with (3 7), one sees that their weights are λn-\ + Λ/7, 2/,7, and 2Λ,7_I,
respectively Thus we write

^ ,

(3 19)

1 In this foimula and in the following, summations from —π to n do not include zeio
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The representations generated by these highest-weight states are irreducible, but
not fundamental We shall see how they fit in the general scheme of Toda so-
lutions, where they come out naturally in the fermionic derivation of Toda solu-
tions Last we not-this will be useful later on-that there is another realization of
the fundamental highest weight vectors of the bosonic type Indeed, it is easy to
see that

Ή , b*b_*] = O, (3.20)

so that there is another highest weight state

\>-p) = ^.p-y-p-2 b-ΛT b+|0) (3 21)

with the same highest weight as \λp), that is λp — λ-p From the viewpoint of the
fermionic operators, a transition from \λ-p) to 1/̂ ) is equivalent to the exchange
of ί?/ with b i ; Indeed, we have

\>ΐ\λp) = 0, l g ^ A \>,\λp) =0,j> p , o r / g - 1 ,

ϊ-,\k-P) = 0 , 1 g / g p , \>t,\λ-p) =0,j> p , o r j ^ - l ( 3 2 2 )

3 2 The target spaces associated with bosonic representations F o r a n y g i v e n
highest-weight vector \λp)9 we split the Lie algebra Dn into two parts.

Dn =<ή(Att($[f] (3 23)

The one called ^f leaves \λp) invariant, it forms a Lie algebra The symbol ^f

denotes the orthogonal complement The corresponding coset, denoted ^p\ is gen-
erated by exponentiating its linear span The mathematical properties of these cosets
are re-derived in Appendix A using the present fermionic realization Next we de-
scribe the geometrical properties of these cosets

3 2 1 The coset space associated with λ\ Following the method just described,
and according to Appendix A, this space is parametrized by12

eK]hle^\?+\0), with Ω, = £ (xkE^+ek +x-kE-iλ-?k),
k=2

(0\\>xe-*^e-Ω\ with Ω, = £ (xkEeΛ+?k + x _ A ^ _ ^ ) , (3 24)
k-=2

where κ\, κ\ and x±^ x±/( are group parameters that will give a special parametriza-
tion of the coset After some computations, one derives that

eΩ^U~Ω] = K + Σ Σ ^Kk - (£w-k) b-i , (3 25)

1 2Foi Dn we exponentiate the Cartan geneiator hp sepaiately so that the explicit formulae do not
become too complicated (see the appendix)
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with similar equations for the R and x coordinates It is convenient to write

e K l Λ l e Ω l bf |0) = Σ ^ ^ | 0 > ,
-n^A^n,A=¥0

(0\\?}e~Rιhιe-ύ] = Σ {O\ΪAXA', (3 26)
—n-^A-^iu ΛφO

where

X1 = eh\ X~ι=-e-κ>£xkX-k, X^ = e^x±2,

k=2

X±k = X±k, k > 2 ,

Xλ = e*\ X~x = -e'^Σ XkX-k, X±2 = e^x±2,
k=2

X±k = ~x±kΛ> 2. (3.27)

The functions XΛ, XA satisfy the quadratic equations

ΣxAx~~A = o, ΣxAx~4 = ° ( 3 2 8 )
A A

In this equation and in the following, the sums over A run from —n to n, with 0
excluded. It is convenient to introduce the following notation*

A (3 29)
A

It is natural to define a Kahler metric on ̂ Π derived from the Kahler potential

(ι\ ό h h Ω ^ )] (3.30)

which has an obvious group invariance Together with condition (3.28), this com-
pletes the definition of the manifold r^]\ It may be understood as a submanifold of
CP2n~ι Indeed, the Kahler potential coincides with the one of Fubini-Study, and
the quadratic constraints are invariant under the rescalings

XA ^XAp(X\ XA ->XAp{X), (3 31)

that leave the points of CP2ll~ι invariant. The manifold ^ ^ is thus a quadric in
r^pln— 1

Choose coordinates such that X1 = X1 = 1. Then we can solve the constraint
(3 28), obtaining

X~x =-ΣXΛX~A, X~] =-ΣXAX~A , (3 32)
A=2 A=2

and the Kahler potential becomes

;/ί{λ\x,X) = in ~ x Σ.xE

(3.33)

This is the equivalent of the Fubini-Study metric for the present case
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3 2 2 The coset space associated with generic bosonic fundamental highest weight
The discussion is very close to the above. The manifold ^ ^ is parametrized by

eκ»h"eΩ»\λp) = Σ

p

 A ι , (3 34)
A u ,Ap

where we have let

y"χ[p]^A^ Ξ χ[p\y. _ ehphPeΩp^ + e-κphPe-Ωp ^

A

ΣX[p]*'AK = X[p]y = e-*»h"e-ύrKe*phpeύ» (3 35)
A

The natural Kahler potential

X[p] = inKλple-^e-^^e^pe^lλp)] (3 36)

takes the form of Kobayashi-Nomizu

,r[p\X[p]

9X
[p]) = \n[(0\X[p]] χίPλP-\χ[p]pχ[p\PX[p]p-\ . χW\0)]. (3.37)

The precise connection between the coordinates X, X and the group parameters is
given in the appendix, where it is also shown that the coordinates X, and X satisfy
the quadratic relations,

9

] < x < p, [ < β < p (3.38)
*>AχwP>-A = o, ~ " "

The origin of these relations is that there are less group parameters than coordinates
X and X A compact proof of these identities goes as follows13 Due to the special
form of the generators of D)U which is displayed in (3.34)-(3 4), there exists a
symmetry which we call charge conjugation, and denote by a superscript c It is
defined by

oχ KM bSl)' = (b^ λ \>+-Ay-Bl ^-Blr, 0 39)

and relations (3.34)-(3.4) show that

E±s^ = ~E±e,^, lfi=-h, (3 40)

The origin of this charge conjugation is the orthogonality of Dn It transforms the
first line of (3 35) into

so that

1 3 We tieat the cooidinates X The cooidinates X could obviously be discussed similaily
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Since, obviously (O|b_αbί|0) = 0, relations (3 38) follows This fact completes14

the definition of the manifold ^/>] Next we show that it is a submanifold of the
usual Grassmannian manifold Gr(2n — \\p). In general, Gr(2n — \\p) is the set of
(2/? — 1) x p matrices 3Fp with the equivalence relation .ψp ~ p#"/;, where p is
an arbitrary p x p matrix, that is the generalization of (3 31), which corresponds
to p = 1 The geometrical meaning of this equivalence is well known1 given JFp,
one defines hyperplanes in CP2n~λ by equations of the form ZA(t) = ^2y^

ypAty_
The equivalence relations is equivalent to linear transformations of the parameters
ty_ Thus the Grassmannian describes the geometrical hyperplane which should not
depend upon their parametrizations In our case the coordinates are χίPΪy >A

9 and
χ\p]y-Λ j t j s w e ] | ^ n o w n that the metric derived from the Kahler potential (3 37)
is invariant under the transformation

XIP\^Λ ^ p(χWγβχlP\β-\ χlp\*J -^ p(χMyβX
[pWA (3.41)

Moreover, it is easy to see that, if χί^y~A satisfies condition (3 38), this is also
true for ΣβP}^1^^4- Thus these conditions define a quadric in the Grassmannian
Gr(ln~ \\p)

3 2 3 The three additional eoset spaces It is obvious that the previous description
of the cosets extends to the representations with the highest vectors \λn-\ +/.„),
2/,,,), and \2λn-\) (see definitions (3 19)) without any problem The first two cases

are direct extensions of the formulae given for \λp) with p ^ n — 1 The last one
is obtained from the calculation for |2Λ / ?_I), by exchanging everywhere \?n with
\?-n Some details are given in the appendix Always using similar notations, we
introduce

χ[,\, = eκ,h,ea, b+e-to,e-κ<h^χW> = efΛeΩ< ^e-n,e-*,h, 9 (3 42)

Jί[/\X[;iX[/]) = ln[(0 |X [ Λ j l χWp>χWp> / W i | 0^j # ( 3 > 4 3 )

The same reasoning as above shows that one has the quadratic conditions

These Kahler potentials take the Kobayashi-Nomizu form. They will appear naturally
in connection with the explicit solution of the D/?-Toda equations The formulae just
given define manifolds (β^ for λ = λn-\ + λn, λ = 2λn, and λ = 2λn-\.

3 3 The case of the two jermίonic fundamental representations As already re-
called, these two fundamental representations are of a completely different nature
[12] While the n — 2 first ones have dimensions ( "), p ^ n — 2, they have di-
mension 2n~x We make use of the realization (3 12), the highest weight states are
given by (3 16) This being established, the discussion proceeds exactly as before

1 4 Obviously, the cooidinates X^-^7-4 and X^^7-4 satisfy, in addition, Pluckei type lelations similai
to (2 25) We shall not dwell on this aspect
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The coordinates are given by

X{p]7 = e^ V " 1]

= e*plϊ(ι>2)e^p ^cye~®(p ^e~Γ<i)lK 2) = V (χίpl α Ac\ -f X^ α ~Ac+), (3 4 5 )

for α ^ /?, p — n — 1, and p — n As before there are again quadratic constraints
which may be derived by writing

Ml V,12'[ci,c;]+e-Q(; \-'-"'''21 = 0 = [Xlp]J,XipΉ!].

This gives again relations (3.38), now with p — n — 1 and p — n The natural Kahler
potential, that is (3 36) for p = n — 1, n, is given by

A priori it is different from the Kobayashi-Nomizu form, since the operators X, and

X involve both creation and annihilation operators. We shall spell out the connection
below This completes15 the definition of the manifolds c^p\ for p = n — 1, n

3 4 Connection between Kahler potentials The last three coset spaces just dis-
cussed are not associated with fundamental representations We now show that they
can be re-expressed in terms of the potential associated with the last two fundamen-
tal highest weights This, of course, is due to the fact that their highest weights are
linear combinations of λn-\ and λn The present fermionic method gives a quick
derivation of this fact Indeed, we already mentioned that the fermionic fundamental
representations are realized twice, once in terms of the c-oscillators (3.12), and once
in terms of the J-oscillators (3 13) Using formulas (3 10), one sees that

2 ) = /"(-i)"("+1)/V2(μ,,-i +;,,) + μ_(Λ_, ,

cn

+_, c+dU < |0) ( l 2 > = /"-1(-l)"<"-')/2|2;.,,_1), (3.47)

where the state |/_(/?_ij + /__„) is defined by the obvious generalization of (3 21)
The formulae just written are clearly consistent with (3 14) Now, we may re-derive
the expressions (3 43) of the Kahler potentials Jί^ with / = λn-\ + λn, λ = 2λn,
and λ = 2λn-\, using the l.h s of the last equations together with (3.13). In this way,
the calculations involving the c and d operators become completely separated Each
of them is entirely specified by the group properties of the fermionic fundamental
representations which do not depend upon of the realization chosen Moreover, the

' Heie also theic arc additional quadiatic lelations similai to (2 25)



282 J -L Gervais, M V Saveliev

dimensions of the manifolds involved coincide, so that there are natural mappings
between them. It is then easy to conclude that the Kahler potentials are related by

jrί'»-ι+'">-i\χi»\χW) = ,yΛn\x[n\x{n]) + jf [n

y /[2/,-,] ( x[^i]^[/?-i] ) = 2rf[n-]](X["-]\X[n-l]) (3 48)

These relations will be important later on

4. Generalized Plϋcker Embeddings for Dn

4 I Definitions Let us introduce the following definitions which will be motivated
by the forthcoming discussions.

Definition 1. Dn—W-surfaces The W surfaces associated with the Lie algebra Dn

are two dimensional surfaces Σ^ in ^ ^ defined by the equations

f\z), X™ = f\z), (4.1)

where f'\z) and f4(z) satisfy the quadratic differential relations

A>0

Σ f{a)A{ϊ) f(h)~A{z) = δa,n-^h,n-\ , M 0 g a, b £ Π - 1 (4 2)
A>0

In the last fonnula, and hereafter, upper indices in between round parentheses denote
the order of derivatives in z or z For a = b = 0 the conditions just written are, of
course, necessary for Σ^ to be a submanifold of ^ ^ (see (3 28)) The additional
conditions will be needed for consistency with the following.

Definition 2. Associated surfaces Given any Dn—W-surf aces, in the sense of
Definition 1, it is convenient to introduce a family of surfaces Σ^ in ^ \
p — 2, , n defined by the equations

=p"-^(z)-δp.nf;
i]\z), (43)

where

f^-^ = Σ(Θ-ι)n-ulf
icl)4, A>0, f\'~l]A = 0 , A < 0 ,

Θpq = Σ f(")A/Ul)~A, Θpq EΞ Σ f{p)4f{q)-\ 0^p,q^n-l. ( 4 5 )
A>0 4>0
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The definition of /y and f^ is such that

Σ Λ»-Wf[p]-Λ = Σ / l « - ^ / l , ] - , = δpn_{ ( 4 6 )

A A

In view of relations (4.2), it follows that (4 3) are compatible with conditions (3 38),
and Σ^ G c^p\ as the definition claims As usual, the geometrical interpretation
of (4 3) should be that a point of Σ^ represents the osculating hyperplane with
contact of order p - 1 at the point X[l]A = fA(z), X[l]A = fA(z) of Z [ 1 ] Conditions
(4 2) precisely ensure that Σ^p^ has such a contact with the quadric of equations
ΣAX

ΛX~A = 0, ΣAX
AX~A = 0, which defines Σ^J a s a submanifold of CP 2 " " 1 .

Thus we shall consider the definition just given as the one of the generalized Plucker
embedding associated with Dπ. The above definition makes sense at generic points
of the ^-surface where Θ and Θ are invertible matrices

4 2 Plucker embedding from Toda dynamics The main aim of the present sub-
section is the derivation of the following

Theorem 1. Associated with any solution of the Dn-Toda equations, there exist a
Dπ W-surjace and a family of associated surfaces as introduced by Definitions 1
and 2, where f and f are given by

fA=e~ςιFA, fA=e~^F\ (4.7)

F~n = ( 1 , 2 , , « - 2 , w ) ,

F~"+ι = - ( 1 , 2 , ,/? - 2 , w - l , w ) - ( 1 , 2 , , n - 2 , n , n - 1)

( f [ \ , 2 , ,n-29n- l , / 7 , / ? - 2 , , / )

+ ( 1 , 2 , , n - 2 , n , n - l , « - 2 , , / ) ] , l < n - \ ( 4 8 )

The last equation uses the following compact notation for the repeated integrals
over screening functions

(z"i,/2,. ,/,) = Jdx\slι(x\)f dx2sl2(x2) f dx,sh(x,), (49)

and the anti-holomorphic parts cue given by similar expressions

Proof. We have to show that the functions f4 defined by formulas (4 7) obey
conditions (4 2) Using the explicit realization (3 4), (3 5), it is easy to verify that

Γ] Λ { z ) \ > + = F ( z ) , ( 4 1 0 )
A

where F4 is given by (4 8) According to (2 4) one has,

\?^M-\z))/dz = M(z)[L, \?^}M~\z\ L = ΣsιE-ι ( 4
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Together with (3.5) this gives for 1 ^ k ^ n — 1,

M(z)\?^M-](z) = DkF , (4 12)

where we introduced the notation

DAΞ-L4-L£ ! £ , ^ 2 ; ^ = ! (4 13)
5Λ_i dz Sk-2 dz s\ dz

By the charge conjugation (3 39), the differential equation for M{z) becomes dMc jdz
— —(J]' = 1 S/(z)E-/)Mc, so that Mc — M~ι This was expected since we are dealing
with the orthogonal algebra After charge conjugation, (4 12) becomes

M(z)\?_kM(zyι = DkF
c, where Fc = YJF

A\?_A (4.14)
A

The method for deriving quadratic relations is to consider

(0\M(z)\?_kM-\z)M(z)\?+M-\z)\0) = (O|b_*b+|O) - 0 .

One re-expresses the l.h s. using (4 12) and (4.14) This gives

ΣDkF
A(z)DtF-A(z) = 0, 1 ^ k < I ^ n - 1 . (4 15)

A

It follows from (4.7) that

DkF
4 = gCA-a-iya-i).i + lower order derivatives, k ^ n - 2

Dn-ιF4 = ee"+ξ"-ι~ξ"-2 f{"-2)A + lower order derivatives (4.16)

Combining the last two formulae, one concludes

Σf{a)A(z) f { h ) ~ \ z ) = 0 for 0 ^ a, b ^ n - 2 (4.17)
A

The case k — n — 1 is different, since (4.11) gives

DnF = M(z)\?+M~\z)+ —M(z)\?tnM-](z),
sn—\

DnF
c = M(z)b_ / /M- 1(z)+^^M(z)b,M- 1(z), (4 18)

sfl~ι

(Q\DkF
cDnF\0) =2δ,asn/sn-τ

Making use of (4.16), together with the equation

DnF
A = e

ξn~ξ"-χ f("-])4 + lower order derivatives , (4 19)

one obtains

Σ fia)\z) f{"-])-A(z) = δa,n-u 0 S k ύ n - 1
A>0

This completes the proof that (4 7) and (4 8) define embedding functions / that
obey conditions (4.2). The case of / is similar D



if-Geometiy of Toda Systems 285

A direct consequence of the fermionic method we are using is the

Corollary 1. Kάhler potentials from Toda fields The intrinsic metric of the surface
Σ^1^ defined by the above theorem, is derivable from the Kάhler potential equal
to-Φp, p=\, ,n

Proof Consider, first, the representation with highest-weight vector b+ b|~|0) for
1 ^ P ^ n — 2 Making use of (4 12), one concludes that

M(z)^ b+|0) = π V ' Σ F^-^^-bJ , Σ^bjJO) (4 20)

It is well-known that the inverse of the Cartan matrix is expressible in terms of the
fundamental weights; (KSDn)~λ)η = λl9λj. Using (3.7), and substituting (4.7) for fA,
one finds finally that

\>PM~\z) = (O\ff{]) f(p~l) (4.21)

According to (2 3), (2.4), and (3.37), this gives the desired relation

,f(p-]\f, ,f(p-λ)) = -Φp(z,z) (4 22)

Next we consider the associated surfaces in c^p\ for p ^ n — 2 Of course, this
part makes use of the fermionic realization in terms of the c-fermionic operators
(see (3 12)) A calculation similar to the one that leads to (4 10) gives

M(z)c+M(z)-1 = £ {FΛ(z)c+

A+F-A{z)cA) = F{z) (4 23)
A>0

Since one has,

it follows that, for k ^ n — 2,

M{z)c£M~\z) = DkF (4.24)

In agreement with (4 7), we let

f(z) = e-ξ'F(z), (4 25)

obtaining

D/,F = eCk~Ck~ι f ' + lower derivative terms, for k ^ n — 2 , (4.26)

and, thereof,

M { z Y l c ^ \ 0 ) ( V 2 ) = eξkfik'l) / ( 1 ) / | 0 ) ( 1 2 ) , f o r k ^ n - 2 (4 27)

So far, this is much like what was discussed in the previous case For k = n - 1,
the calculation is again similar, but the expression of /,„_! is different, and one
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finds

M(z)c^_ιM~\z) = Dn_\F = e^+Cn-\-Cn-2j- ^ i o w e r derivative terms ,

A/(z)cπ

+_, c+|0><12> = e - + £ - / ("~ 2 ) / ( " / f 0 ) ( l 2 ) . (4 28)

The orthogonality conditions (4 2) can be re-derived using the c-operators They
come out very simply from the obvious relations

[M(z)c+M-\z\ M{z)cJM-\z)}+ = 0, (4.29)

and from the counterpart oϊ (4 18), that is,

d{M(z)c+_λM-\z))ldz = sn-λMclιM-χ + snMcnM~λ .

This gives the equation

Mc+M~] = DnF - —McnM~] (4.30)
sn-\

that will be useful below. Next consider the case of the associated surface in ^ " ~ 1 J

The embedding is very similar to the case p ^ n — 2, since one only makes use
of conditions (4 2) for p 5Ξ n — 2, and q :§ n — 2, which are homogeneous. Note,
however, that formula (4 28) involves the factor cxp(ξπ + ς,,_i), instead of the fac-
tor exp(c,?_i) that would be the direct generalization of the bosonic representation
case Thus one finds

•Jί[n-χXί, ,/ ( "" 2 ) , Λ , / ( / ' - 2 ) ) - - ( Φ / ? - i ( z , f ) + c/? + c"/2) (4 31)

Finally let us discuss the associated surface in c€^ According to (4 30),

4M-\zl M(Z)C^M~](Z)]+ = 0

DnF ~ —McnM~\DnF ~ —McnM~x

sn-\ Sn-\

Thus, by keeping the second term, one arrives at an homogeneous relation Com-
paring with (4 6), one concludes that

McπM~] = fίΓ]] = Σ flΓ]]4C4 (4.32)

The fact that the last formula involves only annihilation operators is a direct con-
sequence of the explicit realization (3 12) It is easily seen that the second term of
(4 30) drops out when one computes the generalization of (4 27) for k = n One
gets

Λ/c+ c+|0) ( 1 2 ) = e>t»f<n-]) / ( 1 ) / | 0 ) ( 1 2) (4.33)

Thus we have

j fL / ? ](/ j-in-2) j(n-\) _ Λn-\] 7 Άn-2) ?{n-1) _ Λ"~ Π \

= .#[n\f9 , f{"-ι\ /", , f{»-Λ)) = -(Φn(z, z) + ξn + ξn) (4 34)

The outcome of the preceding discussion is that the Kahler potentials of Σ^ coin-
cide with —Φp, up to an irrelevant re-definition - that do not change the Riemannian
metric This terminates the proof D
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4 3 Toda fields from Dn- W-surfaces In this subsection we establish the following

converse to Theorem 1 and Corollary 1

Theorem 2. Toda solution from Plύcker embeddings The Kάhler potentials of any

Dn-W-surface introduced by Definition 1 and of its associated surfaces introduced

by Definition 2, may be written as

JΓ[p\f, ,f{p-]\f, ,f(p-])) = -Φp(z,z\ p ^ n - l ,

X[n](f, , / ( / I " 2 ) , / , . . , / ( / I " 2 ) ) = - ( Φ Λ ( z , z ) + &, + ! „ ) , (4 35)

where Φp are solutions of the Dn-Toda equations

Proof At this point it is useful to recall the expression of the Cartan matrix, which

is the same as for Aιu except in the following lower right 3 x 3 comer

(4 36)

First we re-derive the Toda equation for p ^ n — 3 directly from the fermionic

expressions obtained by substituting (4 1) in the Kahler potential (3 37), that is,

(4 37)

By explicit computations, one finds

e~2Φ"cdΦp= {0\f f(P-2)f(p)f(P-\)fU>-2) . ^

x<0[/

-(01/

x ( 0 | / /=(/>-Dy(P-i) / - | 0 ) ,

and, thereof, applying Wick's theorem,

ddΦp = -e2φ'{O\f

According to the form of the Cartan matrix for Dn, this coincides with Toda equa-

tions for p ^ n — 3 Consider, now the case p = n — 2 Clearly the derivation just

recalled works in the same way, but now gives fermionic expressions that are gen-

eralizations of expression (4 37) Thus we introduce

Δ n - λ = {0\f / > - 2 > / < " - 2 > f \ Q ) ,

Δn = <0|/ /( ' '- ')/<»-') f\Q) . (4 38)

Now we show how they are related with the additional bosonic coset spaces dis-

cussed in Subsect 3 2.3 Since (έΛ"~]\ and %l'-'+'Λ (resp. %ι"\ and r#f2;»') have

the same dimension, formulas (4 3) taken for p = n — 1, and p = n, also define
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associated surfaces in ̂ λ»-^λ"\ and ^2λ"\ First, extending the preceding deriva-
tion, one immediately sees that

An-\ = (?~(c"~1+ς""f"ζ"-1+ς")(/,„_! + λn\M M|Λ,,_I + / Λ ) Ξe '^ 1 1 " ' " - 1 . (4.39)

On the other hand, and making use of (4.30), one concludes that

An = e - 2 ^ ' - 1 ^ ' ' - ' ^ ^ ,

An = e~Φl'»-ι +e~φ2'» (4.40)

Combining the D,7-Toda equations with the relations satisfied by An-\ and An (thanks
to Wick's theorem), we find that we should have

ddΦn-2 = e

2Φ"-l-φn-*-φ»-l-φ» =e

2Φ»-l-φn-*-φ<»+<n-l ^

so that

#/„ + /.„-! = Φπ-\ +Φn (4 41)

Moreover,

so that

Expressions (4 41) and (4.42) are immediate consequences of (4 39) and (4 40), in
view of the relationship (3.48) between Kahler potentials D

As a preparation for the coming subsection, let us note that, due to the connection
between Kahler potentials and Toda fields just established, it follows from the Toda
equations that the intrinsic metric tensor gp} of Σ^ is given by

y\P= = -PdΦp = exp ΣK{£n) Φ, (4 43)

4 4 Infinitesimal Plύcker formulae Extending the discussion of [1], we next show
that the connection with Toda dynamics immediately leads to the

Theorem 3. Infinitesimal Plϋcker formulae. At the regular points oj the embed-
ding, the family of scalar curvatures are related by

(4 44)

Proof This is derived by computing the curvature

Vf \/9zΊ = Sdlngκ;i = -dd\n exp ^K]^ Φί . D (4.45)
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5. General Formulation

The consideration of the ^-geometry of the Toda systems associated with the al-
gebras Cn and Bn follows exactly the same direction as the /)/2-case, and is even
simpler Before discussing the main steps of the construction for an arbitrary simple
classical Lie algebra ^, let us recall briefly some information about these two series,
see eg [12], and their fermionic realizations

For the algebra Cn the roots are of the form α = ±2ep, 1 :§ p ^ n, ±<ζ; ±
eq, p <q, and the elements of Cn can be realized using In fermionic operators
\?±p. The simple (positive) roots are π, = e\ — eiΛ\, 1 ^ ί ^ n — 1, and πn = 2en,
the corresponding fundamental weights are /,/ = Σi<7</^/> 1 = ι = n > a ^ n funda-
mental representations are of the same nature, and have the dimensions ( ") — (/?

2)
Their weight vectors have integer components, and are realized in the Fock space
with the highest weight states |/,, ) = b,+ b^ |0), 1 ^ i ^ n, satisfying (2 11) with
the cyclic vacuum vector |0), bp\0) = 0 for all p — 1, ,n

For the algebra Bn the roots are α = ±ep, 1 ^ p ^ /?, ± ζ , ± ? ,̂ 1 ^ p <q ^
n, and the root vectors corresponding to these roots are realized in terms of
2/? + 1 fermionic operators b±/;, 1 ^ p ^ /?, and bo, the simple roots are π, =
βi — e^\9 \ ^ i ^ n — I, and πw = en, the coiτesponding fundamental weights are

λ, = Σ\<j<i£/> 1 = ι = n — 1> an<^ ^ = i Σ i < / </7̂ / H e r e only the first n - 1
fundamental representations have the weight vectors with the integer components,
and the highest weight states \λι) = b7

+ b^O), 1 ^ / ^ n — 1, have the dimen-
sions (2/?

z

+1), while the last one is spinorial, its dimension is 2Π All the reasonings
given in the previous section for the Z)/rcase work precisely in the same way, with
the relevant minor modification, here, besides \λt), 1 g / ^ n — 1, there are two
other highest states b+ b^|0) and b+1b+_] b+|0).

With these words and some algebra, one arrives at the analogous conclusions
as for the A,-case, concerning the relation between the Kahler potentials of the
corresponding r^l-manifolds and the Toda fields satisfying (2.2) with K being the
Cartan matrix of the algebra Cn or Bn, etc Let us only mention that the reconstruc-
tion formulas (2 8) and (2.9) take place for all 1 ^ j ^ n for Cn series, for Bn it
is valid for j ^ n — 1, while e~2φ" = Δn.

It is natural to decouple the construction in two steps First, let us parametrize the
cosets of G for all representations of ^ = Lie G with the highest weights λp, p —
1, ,/?, by exponentiating the linear span of the quotient ^/^fl As we have already
said, for all simple non-exceptional Lie algebras we use the fermionic realization
of their elements, and the number of the creation bj (annihilation \?A) operators is
equal to the dimension of the Euclidean space whose coordinates parametrize the
positive and negative roots of Ĉ . Namely, for nonexceptional representations of ^
we have

W * ^ W , > Ξ * Σ β ^Hl>]K bί"|0> (5.1)

χ>A"-* X^XM^A b + | 0 ) (5 2)
A u .Ap

 P

Here |0) is the vacuum cyclic vector, by action on which of the creation operators
b+ b^ one obtains the highest weight λp state |Λ / ;), ΩP is expanded over the

elements <Ψa of ^f, the series in ( 5 2 ) gives a decomposition over all vectors
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bj b^ 10) = \Ap A\) of the p{h fundamental representation space. For the case
of the exceptional fundamental representations (the last one for Bn, and the last two
ones for Dn), the meaning of the vacuum vector |0) and a fermionic realization of
the elements of the algebra is different than those for nonexeeptional representations,
and formula (5 2) is modified, see above

The space ^f\ as an algebraic manifold, is parametrized by independent coordi-

nates x[p\ 1 ^ a ^ dim Φ^} = Np, in the space Φl[\ dual to the space ^[[\ with

the following elements* the Cartan generator hp, and the root vectors corresponding

imple root πp

g p,
to the root string cq ,. , cc^ containing the simple root πp = cc\ . At the same

time, the coset c€^ = G/Glp\ as a group manifold, is parametrized by the coordi-

nates χ[p^4 in the space dual to the space G/Gf corresponding, in addition to

those of {§[_ , the double highest weight ωp of the pth fundamental representation,

and all the differences 2OJP — %j which do not coincide with the roots from the
root string defined above. (Of course, for the series An the set of the elements of
Ήf and those in the r h s of (5.1) are in one-to-one correspondence.) By this rea-
son, already on this step, one comes to the homogeneous quadratic relations for the
coordinates X^y-Λ ^ so to deal only with the independent coordinates of the cosets
Thus we arrive at a realization of the cosets in terms of the coordinates which sat-
isfy the relations corresponding to some algebraic curves and surfaces However, on
the different cosets (for different values of p), the coordinates X^^y-A and χίP&A

clearly are different, and are not connected yet. And, of course, they satisfy their
own quadratic relations also separately, the origin of the relations has been explained
above Finally, define the Kahler potential f/ί[p](X[p\X^) of a cέ[p] in accordance
with (5 2) as an appropriate scalar product in the space of the pth fundamental
representation, and recall again that, up to now, the potentials for different mani-
folds (β^ are defined independently

The given reasonings clarify the origin of the quadratic relations from the purely
Lie algebraic point of view At the same time, in the differential geometry language,
the necessity of these relations for the case of an arbitrary simple Lie algebra Ή is
still the decomposability of a matrix representative of the modified Pliicker image
of r^p] (for the corresponding algebra {§) in the relevant subspace of the projective
space Here, of course, one takes into account the specific structure of the repre-
sentation space vectors for this or that simple Lie algebra However, it seems to us
clearer to formulate the relations in question not for the right coordinates Λf i

of the manifold, but directly in terms of the χίp^A/1 s, as it has been done in the
previous section for the £>,rcase, the same is for the series Bn and Cn

In fact, the homogeneous space C6^ is a flag manifold (or a parabolic space);
and since we deal with G being a connected complex algebraic group, the alge-
braic manifold c(6^ naturally is a projective and simply connected manifold The
set of the flag manifolds C6^p^ which we consider here, realizes the cosets associ-
ated with the fundamental representations of Ĉ , and is defined by the corresponding
parabolic subalgebras of ^, or, up to a local isomorphism, by its Z-gradations The
relevant reconstruction procedure looks as follows, see e.g. [14] Up to a transfor-
mation from the inner automorphisms group Int ^ = Ad (G), a Z-gradation of
Ή can be given by the element H from the Cartan subalgebra J/f of ^, namely,

such that π/(/?) = mι are nonnegative integers for
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all \ ^ i ^ n It is clear that

with

Δm = Λm(πlχ, , π/s) = I α = Σ #/π> £ Δ Σ <lιmi = /72 f '
[ 1̂ /̂ /7 l^/^» J

and, moreover, these subspaces ^ α , α E zlm, are invariant with respect to ^o Here
by π/]5 ,π/s we denote such simple roots which coiτespond to nonzero values
of m, In accordance with this gradation of ^, ^ = φ _ / I < w < w ^ w , the subalgebra
# + = 0o<ff!</,^H)5 a n d the opposite to it (under the reflection α —•> —α) ?^~ —
θϋ<m</ί^-'»' a r e l n e L ^ e algebras of parabolic subgroups P± of the Lie group G
For the case s = 1 these subgroups are the maximal nonsemisimple subgroups of
G, and just this case corresponds to the flag manifolds ^p\ p = i\, which realize
the cosets we are looking for

On the second step, let us now identify the Kahler potentials .
with the Toda fields satisfying the equations of motion, just by setting

cf (2.3), on the corresponding Wy-and associated surfaces Here arises the first
nontrivial point With this identification, the coordinates xj for different values of
p are not already independent, and are constructed in terms of the same screening
functions Sj So, one should get convinced in the following two statements

i) The functions fA — X^λ >A entering CΦ-X^ do satisfy the corresponding quadratic
relations, in other words these relations do not contradict the nested structure (4 9)
o f / '

ii) The functions fp~^A = χli^-\ p > 1, entering <gίp\ lead to the Toda fields
Φp determined by formulas (2 3) via the screening functions, and satisfy the same
quadratic relations as above

In the previous section we have proved these statements for the Z7;?-case by a
direct verification, for Bn and Cn series it can be shown in a similar way So, the
relations in question are identically satisfied on the class of the solutions to the Toda
system, when the coordinates X^y-A are expressed via the screening functions as
the nested integrals (4.9), i e. on the corresponding FF-surfaces

Of course, our discussion of the quadratic relations concerns only a part of
the problem We have the cosets (^1^ which, in general, are submanifolds of the
projective spaces The holomorphic (antiholomorphic) blocks entering the Kahler
potentials under their identification with the Toda fields Φ/(z, z) given by formula
(2 3), are related to the nested integral structure of the nilpotent elements M (M)
written in terms of the screening functions,

M=Σ Σ (iu ^Jm)E-im E-tι, (53)

where (?Ί, Jm) is the compact notation (4 9) for the corresponding repeated
integrals
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Just this representation automatically takes into account the fact that the functions
fΛ are not independent, and are parametrized by exactly n_ number of independent
screening functions Sj The embedding functions fA(z) (fA(z)) which define the
corresponding Wy-and associated surfaces just satisfy the necessary quadratic rela-
tions thanks to their nested structure One can move in the opposite direction and
observe that the identification of the Toda fields with the Kahler potentials for the
associated surfaces in cβ^ gives that the embedding functions fA(z) (f'4(z)) and
their derivatives of the corresponding order, coincide with the coordinates χ[ri*A

9

cf with (2 26), and provides the necessary relations And, moreover, the Kahler po-
tentials of the manifolds ^^] satisfy the system of partial differential equations (2 2)

Finally, the second part of formula (2 27) for the case of a simple Lie algebra '§
endowed with the principal gradation, takes, on account of the equations of motion
(2 2), the form

= l- exp 2 ( Σ κkiφι 1 d z dz = \ e x P 2Pi d z d z ( 5 4 )
2 V 1 ) 2

The curvature form of the pseudo-metrics dίf2 appears as

-ic'cpk = ΣKkjd.V] (5 5)
/

Then we naturally come to the following concerning a generalization for an arbitrary
simple Lie algebra r§ of the global Plϋcker formula

Conjecture 1. Global Plύcker formula1 b For an arbitrary simple Lie algebra {S,
with degrees J/v, on a W-surfaee of genus g, with total ramification numbers β^,
one has

2g-2-βk+2ΣKk/d,=0 (5 6)

In accordance with an interpretation given in [1], ^-surfaces for the case of
Aπ are instantons of the associated nonlinear σ-model, and in turn are described
by the solutions of the cylindrically symmetric self-dual Yang-Mills equations, for
which the action coincides, up to an inessential numerical factor, with the topological
charge (or Pontryagin index, or instanton number) Qk of this configuration The same
reasonings work also for the cylindrically symmetric self-dual fields associated with
an arbitrary simple Lie algebra ^ which, in accordance with [4], satisfy the Toda
system of equations (2 2) Here there is also an explicit expression for the topolog-
ical charge density, which provides, with the help of the Gauss-Bonnet formula, a
bridge between the infinitesimal (5.5) and the global (5 6) Plύcker type formulas In
other words, formula (5.6) gives a relation between the genus of a ^-manifold and
its topological characteristics Qk — dj{ Moreover, since the cylindrically symmetric
instantons for rS constitute a subclass of 2/--parametric solutions of (2 2) regular on
the one-point compactification of R4 and with finite action (or topological charge),
a justification of these requirements by imposing the corresponding boundary con-
ditions on the Toda fields, leads to the evident relation between the ramification
indices β/v and the degrees m^ of the singularities of the functions exp2p7 in the

1 6 Sec note added in pi oof
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r.h.s of (5 4), βj = X^L] Kijίiίj With such a standpoint, the integers m/{ are noth-
ing but the integration constants entering the parametrization st(z) = cι exp(m,z),

Λ"(Z) = cι exp(m/f) of the arbitrary screening functions sv(z) and Sj(z), 1 ^ / ^ /?,
which determine the general solutions (2 3) of the Toda system (2.2).
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A. Appendix: Group Properties for Dn

A 1 The bosonic representations Let us determine ^ , and ^f at once for 1 ^

p ^ n - 2, where, according to (3.7), \λp) = b+b+__} b^"|0) Let us call J + the

nilpotent Lie algebra generated by the step operators with positive roots It is easy

to see that ^β is given by

{E_.?k_Sι, l>k>p}, {E_eΛ+el, !>k>p} ( A 1)

These generators m a y be reorganized as follows

{/z79α ^ p-\};{E-?y+el,z<β ^ p},{Ecr^r*<β ^ p) ,

{hk;k > p) , {E.eΛ-el, l>k>p), {E_,k + r /; / > k> p} ,

{Eik-tn !>k> p}9 {EeΛ+?n l>k> p} (A.2)

The first line generates a nilpotent algebra denoted , I + of dimension 2p(n — p) +
p(p — l)/2 = 2np — p(3p + l)/2 The next line clearly generates Ap-\9 which has
dimension (p2 — 1) The remaining lines generate Dn-p, of dimension (n — p)(2n —
2p — 1). The dimension of {S , is therefore 2np — p(3p + l)/2 + p2 — 1 + (/? —

p)(2n -2p - 1), that is, 2n2 - n - 2np + 3/?2/2 + p/2 - 1
Next, this coset is parametrized by exponentiating

# / ] = {h,,} , {E-?J+?ί ,OL^p,k>p), {E.Sy-ek ,OL^p,k>p},

{E-e-,-e-r,x £ β £ p} (A3)
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The dimension is 2np — p(3p + l ) /2 + 1 17 Adding the dimensions of ($f and
{S^ correctly gives n(2n — 1) which is the dimension of Dn

A 2 Explicit parametrization oj (€^ for bosonic representations We treat the

generic case 1 ^ p ^ n — 2, where \λp) = b 7̂ b^~|0) According to ( A 3 ) , ^^

is parametrized by 1 8 eh<)hpeΩ>}\?^p b | | 0 ) , with

(A 4)
l>p, ^ p 1 ^ / < d ̂  /;

The coset parameters are xj,7 , x j' and w ,̂  Turning the same crank as for the

first fundamental representation, one computes (for α < p)

Σ
k>p,ι-±\

- Σ

— Σ
z k>p.ι:=±\ ^

Thus we obtain

eh>ihpeΩ»\λp)=

(A 5)

(A 6)

where for 1 ^ α ^ /?, 1 ^ /i ^ /?, and k > p,

X[p]yjj = δy,ju for x,

I Σ
k>p, r=±

\ Σ (
k>p,ι:=±

\ Σ

[ 4 , if β = p,p> a

Xr,k

k>p.r.=±

ifα =

y-^ k > p + { ( A 7 )

]/ For p — 1 this is actually In - 1 which coincides with the dimension of A; Bn—\
1 8Heie again we leave aside the bai components which aie similai
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It is easy to see that the coordinates X^ y~4 satisfy the polynomial conditions,

4χ[p]β,-4 = 0 ? \^<χSp,lύβύP (A 8)
A

This explicit computation gives a parametrization such that for 1 ^ A g p, and
1 ^ A ^ p,

X[p]**A =$y.,4 (A 9)

With this parametrization, we may easily solve the constraints (3 37), and write (for
0 g x,β ^ p),

n

χ[p\y-.-β _^χ[p}ίi-y- _ _ y^ χ[p]y-,Aχ[p\β,-4 (A 10)
A = pi\

s o t h a t t h e i n d e p e n d e n t c o m p o n e n t s a r e χ M 7 - ± A

9 X P A , A , A ^ / ? + l , a n d

A 3 The three additional bosonic representations The previous description of the
cosets extends to the representations generated by \λn-\ +/»), |2//?), and \2λn-\)
without any problem The first two cases are direct extensions of the formulae given
for / / ; with p rg n — 1 The last one is obtained from the calculation for 2//?_i, by
exchanging everywhere \?n with b_/2 Using similar notations, we introduce

i ^ / i + / — Z \x

π E e + e - T λ

n ^—e—e)

= Σ
1 < < δ < n

y4 4 Γ/?e fermionic representations The coiTesponding coset manifolds are studied

in the same way as above They are parametrized by eKphp eQ>> \λp), where

2) _ ^ [ ; ? - l ] ; F ( l 2)

2) = Σ uZ^-c-e, ( A 1 2 )
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