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Abstract. Let k:Y — X be an embedding of compact complex manifolds. Bismut
and Lebeau have calculated the Quillen norm of the canonical isomorphism identifying
the determinant of the cohomology of a holomorphic vector bundle over Y and the
determinant of the cohomology of a resolution by a complex of holomorphic vector
bundles over X. The purpose of this paper is to show that the formula of Bismut-
Lebeau can be viewed as an equivariant intersection formula over the loop space of
the considered manifolds, in the presence of an infinite dimensional excess normal
bundle. This excess normal bundle is responsible for the appearance of the additive
genus R of Gillet and Soulé in the formula of Bismut and Lebeau.
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The purpose of this paper is to exhibit certain remarkable relations of Quillen metrics
on the determinant of the cohomology to equivariant Arakelov theory on certain infi-
nite dimensional manifolds. In particular, we will show that the result of Bismut and
Lebeau [BL1, 2] describing the behaviour of Quillen metrics under complex embed-
dings can be viewed as a formal consequence of an intersection formula on the loop
space of the considered manifold, in the presence of an infinite dimensional excess
normal bundle. This intersection formula was first established in a finite dimensional
context in a previous paper [B2].

Let us briefly recall the formalism of [B2]. Let (LX,w™¥) be a compact Kihler
manifold, with Kihler form w”X. Let K be a holomorphic Killing vector field on
LX.

Set

Ok =0+ igon,
Ox = 0+igao, 0.1)
X ={z € LX;K(z)=0}.

Let Nx/rx be the normal bundle to X in LX. Then Nx,r x is naturally equipped
with a metric gN X/LX  Let Kcpa (Nx /LX> gN X/LX') be the Chern-Weil representative
of the equivariant Euler class of Nx,rx associated to the holomorphic Hermitian
connection on (Nx,rx, gNx/Lx),

In [B8], we constructed a K-invariant current & S,rx on LX, whose wave front
set is included in Ny, /Lx,r> and is such that

550 _
o < Suux = 1=K (N x, g™/ b 0.2)

Equation (0.2) refines on the localization formulas in equivariant cohomology of
Berline-Vergne [BeV], which themselves extend related formulas of Bott [Bo].

Let (LE, g"F) be a K -equivariant holomorphic Hermitian vector bundle over LX
and let r be a K-invariant holomorphic section of LE. Set

LY ={z € LX;r(z) =0} (0.3)

Assume that LY is a complex submanifold of LX. In [B2], we constructed a K-

invariant current X&"X(LE, g*¥), whose wave front set is included in N7y,  g.
such that 5.5
i e X(LE,g"F) = by — Xenu(LE, g"F). (0.4)

The current X&6EX(LE, g%F) is in fact an equivariant Euler-Green current, and its
construction is similar to the construction of non-equivariant Euler-Green currents in

[BGS5].
Set
Y=LYnX. (0.5)
Let V TLXy o 1 bundl
= € S norma. .
(o} TLYYIY + Tle c € €XCes undaie

In [B2, Theorems 3.2 and 3.4], we established a formula relating currents on LX,
LY, X, and Y, which is a sort of generalized height pairing formula for the cycles
X and LY. In general, this formula reflects the impossibility of forming the product
of the currents XS ,x and K&LX(LE, g"F). The contribution of the excess normal
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I
bundle N to the formula appears in the form of a rather mysterious additive genus
KR evaluated on N.

Let (M, g™™) be a compact oriented even dimensional spin manifold. Let LM be
the loop space of M, i.e. the set of smooth maps s € S| = R/Z — z; € M. The
metric g7M lifts naturally to a metric g7“™ on TLM. Let K be the Killing vector
field which generates the natural action of S; on LM, by change of the origin. Then M
embeds into LM as the zero set of K. In [A], Atiyah and Witten made the fundamental
observation that the McKean-Singer formula for the index of the Dirac operator acting
on spinors could be written formally as the integral over LM of a K-equivariantly
closed form on LM. By applying formally the localization formulas of Bott [Bo],
Berline-Vergne [BeV] in this infinite dimensional situation, they obtained the right
index formula of Atiyah-Singer [AS]. This observation was extended in [B4] to the
case of twisted spin complexes. In [B6], a new proof of the localization formulas of
[Bo, BeV] was given, which reproduced in a finite dimensional context the “fantastic
cancellations” in local index theory. The geometric origin of such cancellations, and
their relation to equivariant cohomology was thus established, at least formally. These
considerations have been at the origin of subsequent developments, which include the
local families index theorem of [B5, B6].

Let now (X,w™) be a compact complex Kihler manifold, and let (£, h¢) be a
holomorphic Hermitian vector bundle on X. Let A(§) = (det H(X, £))~! be the inverse
of the determinant of the cohomology of £, and let || |5 be the Quillen metric [Q2,
BGS3] on the line A(§). The metric || |[x¢) is the product of the L, metric on A(§)
(which is obtained by identifying H(X, &) to the corresponding harmonic forms on
X) by the Ray-Singer analytic torsion of the Dolbeault complex for £ [RSi].

Let LX be the loop space of X, let K be the vector field generating the natural
action of S; on LX. The Kzhler form w lifts to the Kihler form wX of LX, and K
is now a holomorphic Killing vector field. It was observed in [B8] that the logarithm
of the Ray-Singer analytic torsion of ¢ could be expressed formally as a normalized
integral over LX of the current .S, x paired to the lift to LX of the Chern character
form for ¢ ® (det TX)!/2, which was constructed in [B4]. As explained in [B8], this
formal analogy was crucial in understanding the generalized anomaly formulas for
Quillen metric [BGS3, Sect. 1h]. One of the merits of this approach is that it expresses
the logarithm of the Ray-Singer analytic torsion — which is a global invariant of the
manifold X — as the formal integral of a local geometrically meaningful current over
LX.

Letnow k:Y — X be an embedding of complex manifolds, let 7 be a holomorphic
vector bundle on Y, and let (§,v) be a holomorphic complex of vector bundles
over X, which provides a resolution of the sheaf kx% (n). By a construction of
Grothendieck-Knudsen-Mumford [KMu], we know that the line A~'(n) ® A(€) has a
nonzero canonical section o. When Kéahler metrics are introduced on TX, TY, &, 7,
Bismut and Lebeau [BL1,2] calculated the Quillen norm ||o{|y-1¢;gx)» in terms of
Bott-Chern currents on X, Y in the sense of Bismut-Gillet-Soulé [BGS4] and also of
the additive genus R of Gillet-Soulé [GS3] associated to the power series

_ 20(—n) =1 z"
R@) =) ( o 213 ;) (=m =, (0.6)

n>1
n odd

where ((s) is the Riemann zeta function. The additive genus R appears in Gillet-Soulé
[GS3] in their calculation of the analytic torsion of P™(C). The genus R reappears in
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a completely different way in Bismut [B7], in a calculation of the generalized analytic
torsion forms of a short exact sequence of vector bundles. By putting together the
results of [BGS1-5, GS1-3, BL1,2], Gillet and Soulé have then established their
conjectured Riemann-Roch-Grothendieck formula in Arakelov theory [GS4, 5].

Let (E, g¥) be a holomorphic Hermitian vector bundle on X, let 7 be a holo-
morphic section on X which exactly vanishes on Y, such that dryy : Ny, x — Ejy
identifies Ny,x and Ejy. Let n be a holomorphic vector bundle on X. Then the
Koszul complex (AE* ® 0, i,) provides a resolution of the sheaf ix G (M)y).

The purpose of this paper is to show that formally, the formula of Bismut-Lebeau
[BL1,2] which calculates L0g(||cr||%\_l (y ONAE* o> €N be viewed as a consequence

of the intersection formula established in our previous paper [B2]. In particular the
genus R of Gillet and Soulé is an infinite dimensional version of the genus ¥ R of
[B2] described before.

The application of the result of [BL2] to the problem considered in [BL1, 2] gives
the exact answer. Maddeningly enough, also the intermediary steps in the proofs
of Bismut [B2] and Bismut-Lebeau [BL2] are strictly similar. Of course there are
many more technical difficulties in [BL2], which are handled by operator theoretic
techniques. Nevertheless the comparison with [B2] gives a geometric interpretation
to the difficulties in the proof of [BL2]. Namely LY and X are not transversal in
LX; there is an excess normal bundle IV, which is exactly the bundle of loops in the
fibres of Ny, x whose integral vanishes. The impossibility of forming the product of
currents over LX whose wave front sets are included in Ny, yp and N3,/ x p is
ultimately responsible for the appearance of the genus R. Equivalently, one could say
that the main result of [BL2] is in part the solution of a hard problem of microlocal
analysis in infinite dimensions, and this in the worst possible conditions, i.e. in the
case where the excess normal bundle is of infinite dimension.

In retrospect, a whole class of rigorous results concerning finite dimensional Bott-
Chern currents [B3, BGS4, 5] and Quillen metrics [BGS1, 3, BL1, 2] may appear as
the shadow of infinitely more complex and richer properties of Bott-Chern currents
over loop spaces, whose only disadvantage is that they are ill-defined. Similarly, the
remarkable compatibility properties verified by Bott-Chern currents [BGS5] become
tautological once their formal relation to currents on loop spaces is understood. The
prototype of such a compatibility results is in fact the result of Bismut-Lebeau [BL1, 2]
itself.

To moderate the somewhat romantic view expressed before, let us also say that
all these analogies remain formal, and that they only provide us with a guide to,
say, the proof of the main result of [BL2] and not with the proof itself. Certain
key objects which appear in the construction of Quillen metrics are invisible in the
functional integration formalism, and still play a key role in [BL2]: among these
invisible objects, the cohomology groups themselves. .. . This is why, in this paper,
we have been very careful in distinguishing “formal” results from rigorous results,
although even formal results may have proofs.

This paper is organized as follows. In Sect. 1, we introduce the loop space for-
malism, and we show how certain well-defined Bott-Chern currents on a complex
manifold X may be viewed as generalized restrictions to X of K-equivariant Bott-
Chern currents on LX. In Sect.2, we briefly recall the construction of the Quillen
metric on the determinant of the cohomology [Q2, BGS3], and we formulate the
problem considered in Bismut-Lebeau [BL1,2]. Finally, in Sect. 3, we IT'lake a short
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parallel between the result and proofs of [BL2] and [B2], which leads us in particular
to a formal proof of the main result of [BL1,2].

In the whole paper, we use the formalism of Mathai-Quillen [MQ], and also the
results and notation of the companion paper [B2].

I. Bott-Chern Currents in Finite Dimensions
and Euler-Green Currents in Infinite Dimensions

The purpose of this section is to show that certain well-defined Bott-Chern currents
on finite dimensional complex manifolds can be viewed formally as “restrictions” to
the manifold of equivariant Euler-Green currents on the corresponding loop spaces.
In particular we relate the lack of local integrability of these well-defined Bott-Chern
currents to the presence of an infinite dimensional excess normal bundle. The results
of this section are only mildly formal.

The Bott-Chern currents have been rigorously constructed on finite dimensional
manifolds by Bismut-Gillet-Soulé [BGS4]. Euler-Green currents have been con-
structed in [BGS5] on finjte dimensional manifolds, and equivariant Euler-Green cur-
rents on fimite dimensional manifolds were constructed in (B2).

This section is organized as follows. In a), we introduce the loop space formalism.
In b), we express certain well-defined currents over a finite dimensional complex
manifold in terms of ill-defined currents on the corresponding loop space.

a) Complex Embeddings and Loop Spaces. Let X be a compact complex manifold.
Let J7X be the complex structure on the real tangent bundle Tr X .

Let LX be the set of smooth maps ¢t € S} = R/Z — z; € X. LX will be called
the loop space of X.

If x € LX, we identify the real tangent space (TRLX); with the vector space
of smooth sections ¢t € $; — U; € (TrX)z,. The complex structure J7X induces
the obvious complex structure JTLX U e (TrLX) — JTXU € Tr LX. One easily
verifies that the complex structure J7ZX is integrable. Then LX can be considered as
a complex manifold. 1f z € LX, the complex tangent space T;LX can be identified
with the vector space of smooth maps t € S} — U; € Ty, X

If z € X, we identify z with the constant loop ¢t € S; — z. Then X is a complex
submanifold of LX. Let f be the embedding X — LX.

For s € §1, x € LX, set (ksz); = xsy¢. Then (ks)ses, i a group of diffeomor-
phisms of LX. Its generating vector field K is given by

dl't
K = —. 1.1
()¢ 7 1.1
Clearly, K is a holomorphic vector field on LX. Also
X ={z e LX;K(z)=0}. (1.2)

Let g7X be a Hermitian metric on T'X such that (X, g7%) is a Kéhler manifold.
Let {,)7x be the corresponding Hermitian product on 7'X. Let w* be the Kihler
form

U,V € TrX — w*(U,V) = (U I XV)rx . (1.3)

Ifze LX,if U,V € (IrRLX),, set

1
/ Us, Vi, x dt. (1.4)
0
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Then (1.4) defines a Hermitian product g7ZX on T'LX. The manifold (LX, g7tX)

is still Kahler. The corresponding Kihler form w’X is given by
1
UV eTRLX —» "X U, V)= / wy (U, Va)dt . (1.5)
0

Of course the metric g7%X induces the metric g7 on T'X, and wX is the restric-

tion of wXX to X. Moreover the vector field K is a Killing vector field with respect
to the metric 71X,

Let E be a holomorphic vector bundle on X. We assume that dim £ < dim X.
Let r be a holomorphic section of E over X. Set

Y ={z € X;r(z) =0}. (1.6)

We assume that for any y € Y, the linear map dr(y):Ty X — E, has maximal rank
dim(F). Thus Y is a complex submanifold of X.

Let k be the embedding Y — X. Let Ny,x be the normal bundle to Y in X.
Then dr: Ny,x — Ejy is an identification of holomorphic vector bundles over Y.

The vector bundle TY inherits the metric g7 from the metric g7X. The corre-
sponding Kihler form w¥ on Y is the restriction to Y of wX. The manifold (Y, g7Y)
is also a Kéhler manifold.

By identifying Ny, x with the orthogonal bundle to TY in T Xy, Ny,x inherits
a metric g"Y/X .

Let g¥ be a Hermitian metric on E. We make the assumption that the identification
driy :Ny,x — E also identifies the metrics. One verifies easily that there exists a
metric g¥ on E such that this assumption is verified.

Let s be the section of Eg, s = r + 7. Let VZ be the holomorphic Hermitian
connection on (E, g¥). Let LE be the set of smooth maps ¢t € S; = R/Z — e; € E.
Then LFE is a vector bundle over LX. If x € LX, the fibre (LE), is the set of
e € LE such that if s € Sy, e; € E;,. By proceeding as before, we see that LE can
be considered formally as a holomorphic vector bundle on LX. If e, €’ € (LE),, set

1

/et,et Edt. .7
£

0

Then g“F is a Hermitian metric on LE. Let VXF be the holomorphic Hermitian
convention on (LE,g~F). One verifies easily that if € LX, e € LE, if U €
(To LX), then

(ViFe) = Ve . (1.8)

If s€ S, ee LE, set
(kEBe), = esys - (1.9)

Then (kLE)sesl is a group of holomorphic unitary isomorphisms of LE, which lifts
the group (ks)ses, to LE. Let KLF be the vector field on LE which generates the
group (kZF),cs,. The vector field KZF lifts K to LE.

We now use the notation of [B2, Sect. 2c)]. Namely let J LE be the horizontal part
of KLF with respect to the connection VZF. The tensor JLF is then a skew-adjoint
section of End(LF).
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E

D
Take x € LX, e € (LE);. Let D be the covariant differentiation operator along

the loop t — z; with respect to the connection VE. One verifies easily that

LEe

D
LE
(J""e) = Di
The section r of E lifts to a section of LE over LX. In fact if x € LX, for any ¢,
rz, € LE;,. We still denote by r this section of LE over LX. Similarly the section
s =r+ 7 of Er over X extends to a section of LEg over LX. Of course r, s are
KLE jnvariant sections of LE, LEg.
Let LY be the loop space of Y. Clearly

LY ={z € LX;r, = 0}. (1.11)

(1.10)

Also
Y=LYNX. (1.12)

If y € LY, the normal bundle (Npy, x)y can be identified with LNy, x, i.e. with
the set of smooth maps ¢t € S; — n; € Ny, x, with ny € (Ny/x)y,. If y € LY, the
map dry:Npy/rx,y — (LE)Ly, is an identification of holomorphic vector bundles
over LY.

Similarly if y € Y, let Ny be the set of smooth maps t € S; — 7y € Ny,x,

1
such that [ 7i.dt = 0. Then we have an identification of holomorphic vector bundles
overY 0

Nry/Lxy = Ny/x ® N. (1.13)

b) Accumulating Evidence: Some Finite Dimensional Formulas.

1) Evaluation of ¥ Cml (V. X/LX) gN X/LX), Take x € X. Then one easily verifies that

(Nx/Lx)z can be identified with the set of smooth maps ¢t € S; — U; € T, X such
1

that [ Updt = 0. Also N, x/Lx inherits the obviously L, metric gNX/LX constructed
0
in (1.7). If U € Nx,px, then

au
JNx/ixpr = 22 1.14
7 (1.14)
The eigenvalues of JNX/LX are obviously given by 2ikm(k € Z*). Therefore at
least formally, Ny, x splits holomorphically as a countable direct sum indexed by
k € Z*,

Nx;x =P TX. (1.15)
kez*

Also the splitting (1.15) identifies the metrics. On the k™ copy of TX, JNX/LX acts
by multiplication by 2¢km.

Let V7X be the holomorphic Hermitian connection on (T'X, g7%X), and let RTX
be its curvature. Similarly let VVX/LX be the holomorphic Hermitian connection on
(NX/LX,gNX/LX) and let RNX/LX be its curvature.

Set

KRNx/ix — jNx/Lx 4 RNx/Lx | (1.16)
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By [B2, Eq.(1.16)], we have the identity

K 1 N 1
Cnax(Nx/Lx,97 /1) = KRNAIx N
e - R
2
Using (1.15), we get the formal formula
1
K ~1 N
N L gNX/LX) = . 1.17
Cmax( X/LX»9 ) H* ( ik + RTX) ( )
kez" det| — ———
24w
Equivalently
_ 1 1
K e (Nxnx, g X/0x) = (1.18)

+oo dim X 4o (RTX)Z :
k2 ~ 2
(1;[ k ) 1;[ det (1 + Ry )

Let A be the complex Hirzebruch polynomial. Namely if B is a (g, ¢) matrix, set

. B/2
AB) = det [—sinh( B/ 2)] . (1.19)
Recall that .
sinh(z/2) 17 z?
=] e (14 35m) (120)

Let C be the infinite constant
+00
c=[[. (1.21)
1

From (1.17)—(1.21), we deduce the following result.

Proposition 1.1. One has the formal identity of forms on X

Kol (Nx/px, g X/Ex) = 0~ 4mX A(RTX) . (1.22)

max
The identity (1.22) is used in a crucial way by Atiyah and Witten [A] to show that

formally, one can derive the index theorem for the Dirac operator acting on spinors
from a localization formula from LX to X in equivariant cohomology.

2. Evaluation of X cux(LE x, g P1x) on X. Let RE be the curvature of VZ and let
RLE be the curvature of VEE. Then if K RLF = JLE 4 RLE we have the identity
of forms on LX

KRLE )

1.2
24w (1.23)

K coan(LE, g7F) = det < _

The eigenvalues of JZF acting on LE|x are given by 2ikm(k € Z). By proceeding
as in (1.17)-(1.21), we get the identity of forms on X

. dim E
F* B emax(LE, g*F) = (%) det(eRF/2 — ¢ RP/2) (1.24)
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E

24
to (E, g¥). Let AE* be the exterior algebra of E*. The metric g¥ induces a metric
gE" on AE*. Set

Let ch(E, g®) = Tr [exp ( )] be the Chern character form on X associated

dim E
ch(AE*,g"E") = 3 (—1)P ch(APE*, g""F"). (1.25)
0

Let ¢ be the algebra homomorphism from A®*"T¥ X into itself which to w €
A?P(T X) associates (2im)Pw € A*P(T X).
Then one has the easy formula

ch(AE*, g"B") = pdet(1 — eR") (1.26)

From (1.24), (1.26), we deduce the following result.

Proposition 1.2. One has the formal identity of forms on X

Tr[RE)
2

dim E
K e (LE|x, g F1%) = (57) o' ch(AE*, g"F" ) e~ (1.27)
(8

3. Evaluation of f*s* Kcp(LE, g"F) on X. By proceeding as in (1.22)—(1.24), we
get the identity of forms on X

. dim E Eoomi By
f*s* Ker(LE, g"P) = i© 9 det [ 5 _ -
2m ob
* Y2 . Bl
S exp{ “T(—z— + (R” 4+ 27bJ*)~ )}] . (1.28)
b=0

The exterior algebra AE* is a c(Eg)-Clifford module. If e € Eg, let &(e) denote
the corresponding Clifford multiplication operator. If €' € E, let ¢ be the element
in E* corresponding to €’ by the metric g¥. Then if e € E, € € E, we have the
identities

&e) = V2i.; e)=—V2e* A .

Let A7 be the superconnection on AE* in the sense of Quillen [Q1],

Ap = VAE" L /TV—1 % . (1.29)

Let Ny be the number operator of AE*, i.e. Ny acts on AP(E*) by multiplication
by p. By [B3, Egs. (3.142), (3.143), (4.21) and (4.22)], we know that

Trs [Ny exp(—A%)] = g—b [det(l — exp(RE + b))

2
s* exp{ - T(% + (RE — biJE)‘l) H . (1.30)
b=0

Using (1.28)—(1.30), we get the following result.
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Proposition 1.3. The following formal equality of forms on X holds

f*s* Ker(LE, g*F)

dim E .
E
= (£> 2mi Tr, [(NH - dm; )exp(—AzT)J e V2THRE] (g 37

271
4. Evaluation of KeX(LE, g"F). Let k be the embedding Y — X. The complex

(AE*ip):0 » ASEE* LS AE*=C -0
ir ip
dim E

provides a resolution of the sheaf kx(% . Moreover AE* = @ APE™ is naturally
0

equipped with a Hermitian metric gAZ". Therefore, by [BGS4], we can construct the
associated current TX (AE*, g2E") on X. This current was also described in [B1,
Sect. 11)].

If B is a (q, g) matrix, set

A—1v a aA_
Td(B)=det(]—e—B>’ (A 1) (B)za[A 1(B+b)]b=0. (132)
N Tr[RNY/x]
Recall that ¢;(Ny/x,g Y/%) = — —i

In view of [B3, Theorem 3.2], or of [B2, Theorem 2.18] and (1.30), we are entitled
to set the following definition.

Definition 1.4. For s € C, 0 < Re(s) < 1, let RX(AE*, g"F") be the current on X

E) exp(—Ai)]

N N; _
+ (A7 (Nyyx, g™V1x) e /2 Nvixo9 Y”‘)aY) du. (1.33)

+00
RX(AE*, g"F") (s) = % / uS'l(so[Trs (NH _ dim
0

Then R¥X(AE*, g"E") (s) extends to a holomorphic function of s € C near s = 0.

Definition 1.5. Set
TX(AE*, g"F") = 0 RX<AE*,gAE )(0). (1.34)

Let P be the set of sums of currents on X of type (p,p) whose wave front set
in included in N}",‘ /XR? and let Pf,(  be the set of currents o € P{i( such that there
exist currents 3, v on X whose wave front set is included in N;'ﬁ /X R? for which
a =906+ dy.

We identify X to the zero section of E. Recall that the current &(F, g¥), which lies

in PX, was constructed in [BGSS Sect. 3f). It is of complex type (dim £ —1,dim E —
1). The pulled-back current s*&(E, g¥) on X is well defined, and lies in PX
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Theorem 1.6. The current TX(AE*, gAE") lies in P{. Moreover the following iden-
tity of current holds

TX(AE*, g"F") = TX(AE*,¢g"F") in P¥/P}°. (1.35)
Also, B R

TX(AE*, g"F") = Td"\(E, ¢®) s*&(E,g®) in PEP)°. (1.36)

Proof. To construct the current TX(AE*, g4E"), one should essentially replace in

dim £
(1.33) Ny — m by Ng. By using [B3, Theorems 2.4 and 3.2], (1.35) follows.
The identity (1.36) is a consequence of (1.35) and of [BGSS, Theorem 3.17]. O

Remark 1.7. By [BGS4, Sect.3], the current TX (AE*, gE") is in general not lo-
cally integrable near Y. The singularity of TX(AE*, g4E") is described in [BGS4,
Theorems 3.3 and 3.4].

Recall that when X and LX are finite dimensional, the current X&X(LE, g*F)
was constructed in [B2, Sects. 2e) and 2f)].

Using [B2, Definition 2.19] and from Proposition 1.3, we get the following formal
result.

Theorem 1.8. The following formal identity of currents on X holds

C dim E . .

KeX(LE, g"P) = (2—> 2mip™ (TX(AE*, "By e /2TRE . (137)
i

Identity (1.37) is of fundamental interest. In fact, by a direct study similar to

what is done in [BGS4, Sect.3] for the current TX(AE*, gE"), we see that in

general the current TX (AE*, g4F") is not locally integrable. More precisely, we find

that near Y, if Z is a coordinate normal to Y in X, TX(AE*, g2E") behaves like
1 1

|Z Py /x - |Z[pdmE"

On the other hand, if we apply formally the results of [B2, Sects.2e) and 2f)] to
the current XX (LE, g*F), we find that KX (LE, g*F) is not locally integrable on
X, and, more precisely, that the current X&X(LE, g'’F) also behaves near Y like

1 LE

)

ZanE = 2P That the formal singularity of the current X&X(LE, g

near Y coincides with the singularity of the current in the right-hand side of (1.37)
near Y is now a tautological consequence of (1.37).

In [B2, Remark 2.23], if LX was instead a finite dimensional manifold, the fact
that the current KX (LE, g*F) is not locally integrable near Y is essentially related
to the non-transversality of LY and X in LX, and more precisely to the presence
of a nonzero excess normal bundle N. At least formally, we have given a simple
reformulation of a result on the well-defined current 7X(AE*, gF*) on X in terms
of the geometry of the infinite dimensional manifold LX.

II. Quillen Metrics and Resolutions

In this short section, we briefly construct the Quillen metrics on the determinant of
the cohomology, and we also describe the problem which is solved in Bismut-Lebeau
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[BL1,2]. We make the same assumptions as in Sect. 1. We also use the notation of
Sect. 1.

a) The Quillen Metric on the Inverse of the Determinant of the Cohomology. To sim-
plify the arguments which follow, we will assume that 7Tgx X and ER are spin vector
bundles. By [H], we know that it is equivalent to assume that the line bundles det 7'X
and det E have square roots (det 7X)!/2 and (det E)!/2. Observe that on Y,

detTY = (detTX))y ® (det E)y' . .1

Therefore TrY is also a spin vector bundle.
Let ¢ be a holomorphic vector bundle on X. Let h¢ be a Hermitian metric on .
Let A(€) be the complex line
dim X

M) = @) (det H(X, &)

=0

)i+1

2.2)

Let H be the vector space of smooth sections of A(T*®DX) ® ¢ over X. For
0 < p < dim X, let HP? be the vector space of smooth sections of AP(T*®VX) ® &.

Then
dim X

H= @ HP . (2.3)
p=0

Let N‘)f be the number operator of H. Then Nif acts on HP by multiplication by p.
Let dux be the volume form on X associated to the metric 7. We equip H with
the Hermitian product

d
aaﬂ S H — <a716> = /(a)ﬂ>gAT*(0,1)X®h§ (2—:_)}(;11(:_; . (24)

X

Let 8% be the Dolbeault operator acting on H, and let 8%~ be its formal adjoint
with respect to the Hermitian product (2.4). The Laplacian % is given by

0% = 6% + 6%, 2.5)
dim X
The operator 0% preserves the splitting H = € HP.

0
By Hodge theory, we know that we have an identification of Z-graded vector
spaces
H(X,¢) = Ker[OX]. (2.6)

As a vector subspace of H, Ker((1X) inherits a Hermitian product from the Hermitian
product (2.4). Using (2.2), (2.6), we may equip the line A(§) with the corresponding
Hermitian metric, which we denote | |x).
Let P be the orthogonal projection operator from H on Ker(OX). Set P+ = 1—P.
The vector space H being Z-graded is also Z, graded. Let Tr be the corresponding
supertrace in the sense of Quillen [Q1], which is evaluated on trace class elements of
End(H).

Definition 2.1. For s € C, Re(s) > dim X, set

0% (s) = — Tr, [(N{f - dinle) (DX)‘SPL] . 2.7
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By Seeley [Se], Gi(s) extends to a function which is holomorphic near s = 0.
Note that classically
Tr,[(O%)*PY)1=0. (2.8)

dim X
The introduction in (2.7) of the factor — m21 is essentially done for aesthetic
reasons.

Clearly, for s € C, Re(s) > dim X, we have the identity

+00
_ dim X
05 (s) = ~ 7o 5! T, KN{/‘ - )exp(—tDX)Pl} dt. (29
0
Definition 2.2. The Quillen metric || ||x¢) on the line A(§) is defined by the formula
1 065%
= - =—==(0) . 2.10
Hlxe HA(&)eXP{ 5 55 ¢ )} (2.10)
1 96%

The factor exp { —
complex (H, ) [RSi].

b) Quillen Metrics and Resolutions. Recall that k denotes the embedding ¥ — X.
Let i be a holomorphic Hermitian vector bundle on X. Let a be the restriction map
Ox (M) — kxCy(ny). On X we have the exact sequence of sheaves

0— @X(AdlmE(E*)@)n) 1—7 ﬁk(/ldimE_l(E*)@'r])

3 s (O)} is called the Ray-Singer analytic torsion of the

— ...i—>@;<(n)—a>k*@(n|y)_>o. 2.11)

Forp € N, 0 < p < dim E, APE* ® n is a holomorphic vector bundle on X. Let
MAPE* ® n) be the corresponding inverse determinant line of the cohomology of
Ox (AP E* ® i), which we construct as before.

Set
dim E

MAE* @) = (X AAPE* @) . (2.12)
p=0

Also npy is a holomorphic vector bundle on Y. Let A(ny) be the associated inverse
determinant line of the cohomology of @ (n).

By a well-known construction of Grothendieck-Knudsen-Mumford [KMu], the
lines A(AE* ® n) and A(nyy) are canonically isomorphic. Let o be the canonical
nonzero section of A~ (y) ® MAE™ @n) which defines this canonical isomorphism.
Of course ¢ depends explicitly on the section r of E.

Let g” be a Hermitian metric on 7. The vector bundles TX, APE* @ n(0 < p <
dim E) on X, and TY, )y on Y are now naturally equipped with Hermitian metrics.
Let || [[xcarE*@m)» | 1@y be the corresponding Quillen metrics on the lines AMAPE*®
n), A(nyy ). We equip the line MAE* ®n) with the Quillen metric || ||y E*@n)» Which
is the obvious tensor product of the Quillen metrics || || x4p E*gr) OF their inverses.
Similarly, we equip the line A™'(ny) ® A(AE™ ® n) with the tensor product of the

metrics |[[[yg, ) and [| [x15+@n-

Recall that the metrics g7 and g7 are Kibhler.
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In [BL1,2] Bismut and Lebeau calculate Log(”alli_1 (y ONAE* ®17)) in terms of

explicit local quantities on X or Y. This result of [BL1,2] and its relation to our
previous work [B2] will be considered in more detail in Sect. 3.

Remark 2.3. The formula established in [BL1,2] is valid for general resolutions of a
holomorphic vector bundle on Y by a complex of holomorphic vector bundles on X,
and not only for resolutions by Koszul complexes.

II1. Equivariant Intersection Over Loop Spaces
and a Formula of Bismut-Lebeau

The purpose of this section is to show that the formula of Bismut-Lebeau [BL1,2]
which calculates the Quillen norm of the canonical section o € A~! () ® A(AE* ®7)
can be considered as a formal consequence of an equivariant intersection formula
established in [B2, Theorem 3.4]. The analogy is not only in terms of results. In fact
a detailed comparison of the intermediary steps and proofs in [BL2] and [B2] shows
that they are formally identical.

In particular, we will show that the additive genus R of Gillet and Soulé [GS3]
is an infinite dimensional version of the genus K R of [B2] evaluated on the infinite
dimensional excess normal bundle N.

The organization of this section is quite simple. In a)-e), we express formally
the various quantities — like the Ray-Singer analytic torsions — whose sum is

2 . .
Log(lo I3 -1 () eAAE ®77)) in terms of integrals of Bott-Chern currents over loop

spaces. We thus discover that Log(||cr||f\_1(my)_1®)‘(AE*®")

to the left-hand side of the formula of [B2, Theorem 3.4].

In f), we calculate formally the right-hand side of the formula of [B2, Theorem
3.4] in terms of well defined Bott-Chern currents on X and Y. The genus R appears
as a special case of the genus X R.

In g), we apply formally the intersection formula of [B2, Theorem 3.4], i.e. we ex-
press formally Log(l]a”f\_ ) as a sum of integrals of Bott-Chern currents
over X and Y.

In h), we state the rigorous formula of Bismut-Lebeau [BL1,2] for
), which turns out to be strictly identical to the formal for-

) is formally proportional

Ly )®XNAE*@mn)

Log(lo 1131y yarcam+am
mula derived in g).

Finally in j), we show how the analogy of the results of [BL1,2 and B2] extends
to the proofs themselves.

a) An Equivariantly Closed Differential Form on LX. We make the same assumptions
as in Sect.2a). Let V¢ be the holomorphic Hermitian connection on (¢, h%) and let
RE be its curvature.

Take z € LX. Let 70 be the parallel transport operator from &z, into &, along
the path s € [0,t] — x5 with respect to the connection V. Set 7¢ = (1)~ L.

Fort € S, Rﬁ , is a 2-form at z; with values in skew-adjoint elements of End(ég,):.
By pulling-back R . bythemapz € LX — z; € X, we will consider RS , 1s a 2-form
at ¢ € LX with values in skew-adjoint elements of End(&;,).

Definition 3.1. Let U; be the solution of the differential equation

dU
d—tt =UlgRE, 7, Up=1Ig, - (3.1)



Infinite Dimensional Aspects of Arakelov Intersection Theory 231

We may expand U;74 in the form

1
O =i+ [ iRt + [ RS s RS, shrbdsat + ..

0 0<s<t<l1

i.e. U17'01 is a sum of forms of degree 0,2,4,... with values in End(¢z,).

Definition 3.2.. Set
B(LE, A" = Tr[U 73] . (3.2)

Theorem 3.3. The form B(LE, hE%) lies in K PLX . Moreover
(d+ix)BLER) =0. (3.3)

Proof. Since R¢ is a 2-form of type (1, 1), it is clear that 3 is a sum of forms of type
(p, p). The remainder of our theorem is proved in [B4, Theorem 3.9]. O

Remark 3.3. As pointed out in [B4], the restriction of 3(L&, g%¢) to X is given by
the form Tr{exp(R¢)], i.e. it is a normalized version of the canonical representative
of ch(¢) in Chern-Weil theory.

Let (¢, h¢') be another holomorphic Hermitian vector bundle on X. Let h¢®¢' be
the metric on £ ® €', which is the tensor product of the metrics hé and h¢'. Then it is
clear that

BLE ® &), hEE8) = B(Le, hEE) B(LE, hEE) . (3.4)

13
b) Accumulating Evidence: A Formal Expression for _8_3 (0). We still make the same

assumptions as in Sect. 2a). Recall that A(T*®V X)) is a ¢(Tr X)-Clifford module. In

factif U € TOOX, V € TOVX | if U € T*OVX corresponds to U by the metric
TX

g7, set

cU)=V2U'A,  oV)=—V2iy. (3.5)

We extend by C-linearity the map cto amap U € TrX ®g C = T X TOD X —
c(U) € End(A(T*®D X)). One then easily verifies that if U,V € T X ®g C, then

U e(V) + c(V)e(U) = —2(U, V). (3.6)

Equation (3.6) shows that indeed A(T*®DX) is a (T X)-Clifford module.

Recall that the Kihler form w* is associated to the antisymmetric section JTX of
End(Tr X) by formula (1.3).

Let ey, ..., €24imx be an orthonormal base of TR X.

The following simple result is proved in [BGS2, Proposition 2.4].

Proposition 3.4. The following identity holds

N — %dimX =vV-1) %wx(ei,ej)c(ei)c(ej). (3.7)

.3
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By using (3.7) and by proceeding along the lines of [A], [B4, Sect. 2], [B8, Sect. B],
we get the following formal formula:

Trs [(N{,( — din;X) exp(—tDX>:l

TR N VA VR 2 ¢ OxOx/—1wlX
~\2r P
LX

- t
BL(E @ (det TX)!/?), gHeowaT X)) (3.8)
The only minor difference is that in [B4], C' was instead the infinite constant

+00 +o00 +00
[T %% Here we have replaced [] k% by [] (—k?) by a more careful calculation of

1 1 1
the sign of certain expressions which appear in [A, B4, B8]. These expressions are
in fact very similar to the right-hand sides of (1.17), (1.18).

Using the notation in [B2, Definition 2.2], we thus find that

Tr, [(Nef - di“;X ) exp(—t0% )}

. dimX .
b(ﬁ) = / KYBLE © [@et TX)!?), gHEeT0) - 3.9)
LX

Now recall that if LX was instead a finite dimensional compact complex manifold,
by [B8, Proof of Theorem 7], we know the first two terms of the asymptotic expansion
of the right-hand side of (3.9) at t — 0. The first two terms of the asymptotic expansion
of the left-hand side of (3.9) have been calculated rigorously in [BGS2, Theorem 2.16].
As explained in [B8], the rigorous formulas obtained in [BGS2, Theorem 2.16] are
exactly the formulas one can obtain by extending formally the results of [B8] to the
infinite dimensional manifold LX. More dramatically, as also explained in [B8], the
method used in [BGS2] to derive the rigorous expansion of the left-hand side of (3.9)
was found by imitating formally the calculation of the asymptotic expression of the
right-hand side of (3.9) in a finite-dimensional situation.

In contrast with these remarkable facts, note that there exists ¢ > O such that as

t — 400,
dim X
Tr, [(N",‘ - “g )exp(—th)}

dim X
= Y (~1Ppdim H?(X, &)
0
B dim X
2

dim X

> (1P dim HP(X, ) + O(e™). (3.10)
0

However, if LX was instead finite dimensional and compact, by extending formally
the arguments in [B2], we find that as ¢t — +o0, in the right-hand side of (3.9), there

should be O(%) instead of O(e™°).
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Here, 'there is an unavoidable contradiction. The formal functional integration
formalism does not always detect the behaviour of the considered expressions for
t — 400, and this for good reasons:

e LX is not compact.

e Certain “irrelevant” terms are neglected when passing from the rigorous expression
in terms of the Brownian measure on LX to ill-defined formal integrals of differential
forms on LX.

Nevertheless, and without fearing the contradiction, in view of (3.9), (3.10), we
will write the formal equality

Tr, [(N{f - d1n21X) exp(——tEIX)PlJ

i [0\ 5mX 1/2
=—2—(2—) / KnBLE ® (et TX)!/?), gHEeCTOD) - 3.11)
us ™
LX

Theorem 3.5. The following formal equality holds

8 ¢ i (iC\"™X
a5 xO =751 (zﬁ)

/ K8, 1x BULE ® (et TX)!/2), gHeESaTO) (319
LX
Proof. Using [B2, Egs. (2.25)—(2.27)], (2.9) and (3.11), (3.12) follows. O

c) Accumulating Evidence: A Formal Expression for the Ray-Singer Analytic Torsion
of AE* ® . We make the same assumptions as in Sect. 3b).
Set for s € C, Re(s) > dim X,

dim
057 () = Y (—1rox ), (3.13)
p=0

For 0 < p < dim X, let g¢""” be the metric induced on A? E* by the metric gF.
Theorem 3.6. The following formal equality holds

9 AE*® i (iIC\"™Y [k = %\ LAPE?)
5 0% O =5 {5 Suex( Y (—DPBIAPEY),g )
LX 0

B(L( @ (det TX)!/?), gHneaT X!, (3.14)

Proof. Equation (3.14) is a trivial application of Theorem 3.5. O

We consider Eq. (3.1) associated to the vector bundle E. The operator U 17'01 then
acts on Ey,. Let (U, 70)2E" be the corresponding action of U;r) on AE*. Then

dim E
D (= DP BUAPE®), gHA D) = Ty [(Uy A7) (3.15)
0
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Clearly

Trs [(Uym0)*P7] = det(1 — (Uyrd) ™)
= det(Uyi)'? — (U17)™V/?) det(Uy )12 (3.16)

Also
det(Uy7d)™/? = B(L((det E)™'/2), gH@et B2y 3.17)

We will proceed as in Atiyah and Witten [A] to give another expression for
E
det((U )% — (Uyr)~"/?). Recall that > is the covariant differentiation oper-
DE‘
ator along the loop z with respect to the connection VE. By (1.10), = = JEE and
) 5 ¢
D
D | pE_kKpLE (3.18)
dt
K RLE

We will calculate formally det (—

E
values A of the operator s + RE je. we should find A € C and e € LE nonzero

d
such that

>. First, we determine the formal eigen-

DE
—dt—e + RPe = Je. (3.19)
Then by (3.1), (3.19), we get
d
P [UtTéet] = )\UtTget . (3.20)
From (3.20), we deduce that
Usrte; = eMeg . (3.21)
Since e; = ey, we get
Ulr()leo =elep. (3.22)
By (3.22), we see that if uy, ..., tam g are the (formal) eigenvalues of U 1701, the

eigenvalues of the operator X RLZ are given by u; + 2ikm(1 < j < dimE, k € Z).

Therefore
KR i y 2
J J 2
_ - I I _Hi _ B2 .
det( E ) : ( % > I1I ( A2 ) (3.23)

Let C be the infinite constant defined in (1.21). From (1.20), (3.23), we see that

K pLE . dim E
det(— il ) = (ﬁ) det(U )% — (U )~V (3.24)

2imw 2r
In view of (3.15)—(3.17), (3.24), we deduce the following identity:

dim E

3 (—DPALAPE*), gHATED)

0

. —dim E
- (g) K max(LE, g*F) B(L(det B)™1/2), " B7D) - 3.25)

Using (3.14) and (3.25), we obtain the following formal result.
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Theorem 3.7. The following formal identity holds

% 0;1(E*®7)(0)
i iC dim X —dim E/
- = (E) [ S Kena( LB, 52)

LX
B(L( ® (et TX)/2 @ (det B)~1/2), ghn®0aTPowm/2) = (3 56)
We finally state an obvious consequence of Theorem 3.5.

Theorem 3.8. The following formal identity holds

(9 my ) ZC dimY K 1/2
75 Oy O =--{5" / S,y B(L(ny ® (detTY)/?),
LX
gy e, (3.27)

d) Accumulating Evidence: A Very Formal Expression for Log(lali_l (my OB ®n))'

Let Ny be the operator defining the Z-grading on AE™. Then Ny acts on APE* by
multiplication by p.
Let K be the Z-graded vector space of smooth sections of A(T*®DX)QAE* @1
over X. Trace class elements of End(K) have a well-defined supertrace.
Set v = v/—14,. Then v acts as an odd operator on A(T*®DX)® A(E*). Let v*
be the adjoint of v. The operators 8%, X", v, v* act on K. Set
DX =X+, V=uv4o*. (3.28)

First, we will give a formal expression for

T, [(NH - dirgE) exp(~(/a DX + \/TV>2>] .

Clearly

Trs KNH - di‘;‘E ) exp(—(vuDX + \/TV)z)J

:%Trs [exp<~(ﬂDx+ﬁV)2+b(NH—dimE))} . (3.29)
b=0

2
We use the notation of Sects. 1b) and 3a). If f;, ..., fn, is a base of Tr X, and if
fl, ..., f™ is the dual base of Ty X, set
m
&VFo)==>" f*e(vE o). (3.30)

1

For b € R, let H be the solution of the differential equation

dHy b| t,AE* [ pAE* dim ¥
WIHt TO th +b NH— )

Ao B 2
VT c(V\/si(zt)) oy IS(-T;)| )TtO,AE*} , Hy=1I. (3.31)
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Then H f’ is a form at x € LX with values in End(/lE*)zo. Using (3.29) and pro-
ceeding as in [B4, Sect.2c), BS, Sect. B], we see that formally

Tr, [(NH - dinz‘E ) exp(—(a DX + VT vf)]
. dim X LX
() o (BT 8 o
LX

2 u
B(L(n ® (det TX)'/?), gHneeTX)! /D) (3.32)
We will calculate - Tro[HP7 4" J,—p. Let H,? be the solution of the differential
p ob ¢
€quation
‘b E "
dit :H;b[ (RAE 4oy +v/T Y5 \/;(xt))T?’AE ] Hy=1.(333)
Then
1
) 2 im E
_ Hlbexp{ —T/ 'S("’;l dt—bdm; } (3.34)

0

IfbeR,let U}’ be the solution of the differential equation

ﬂ_ br t(pE _ 14,0 _
7 =U/ln R, —b11, Us=1I. (3.35)

Then U} is a form at z € LX with values in End(E;,). An easy adaptation of a
formula proved in [B7, Theorem 5.1] and (3.33), (3,34) show that

Tro [H 745 = Trg[(UPr) A ]eXP{ -= ( / |s(zo)|?dt

+ <vEs, (% + RLE 4 biJLE) vEs>) — bd‘g‘E} . (3.36)

Note that (3.36) is a completely rigorous formula.
Also by proceeding as in (3.15)—(3.25), we get

. —dim E K pLE
o_iapt, _ [iC _ (¥RFE—b
Tr [(U'my)™ " 1= (_271') det( (_—27277 ))

ﬂ(L((det E)——I/Z), gL((detE)_l/2))ebdim E/2 . (337)
Using (3.36), (3.37), we obtain

0
% Tro[HY7y AB,

271 \ 27
From (3.32), (3.38), we finally obtain the key result.

. . —dim E
=5 <§) s* (K or(LE, g~F)) B(L(det B)™'/?, g B2 (3 38)
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Theorem 3.9. For u > 0, T > 0, the following formal identity holds

Tr, [(NH _L2 ) exp(—(/aDX + VTV))

iC dim X —dim E i
=|= — / Kays*®er(LE, "))
27 2

LX

B © (det TX)'/* @ (det B)~'/?), ghne@a 70 e /%) - (3 39)

Let PKrD¥ be the orthogonal projection from K on Ker DX.

Theorem 3.10. For any T > 0, the following identity holds

d
lim Trg [(NH— m

u—+00

= Trs [PK“DX <NH -

E) exp(—(vuD* + x/TVY)]
dim £

) exp(—T(PXer ¥ VPK“DX)Z)] . (3.40)

Proof. By proceeding as in Bismut-Lebeau [BL2, Proof of Theorem 8.2], we easily
obtain (3.40). O

Let H(AE* ®n) be the cohomology groups of the sheaf x (AE* ®n). By Hodge
theory, we know that
Ker DX =~ H(AE* ®@ ). (341

Also v = /=14, acts naturally on H(AE* ® 7). The operator PKerD™ypKerD¥
represents this natural action of v on H(AE* ® n) under the isomorphism (3.41),
and PKerDX % pKer DX i¢ the adjoint of PKerD¥ yPRer DX with respect to the metric
induced by the L, metric (2.4) on Ker DX

We now assume that the complex (K, 8% +v) is acyclic, and that the corresponding
spectral sequence degenerates at F,, i.e. (H(AE* ® n),v) is an acyclic complex.
Then PXerD¥ 7 PKer D is an invertible map. Also by [BL2, Theorem 1.7], the sheaf
“x (ny) has zero cohomology.

For s € C, Re(s) > 0, set

+o0

1
6(8)= m—) / Ts_l

0

Trs [PKCI‘ DX (NH _ dim E

) eXp(—T(PKerDX VPKer DX)2) dt . (342)

Then §(s) extends to a meromorphic function, which is holomorphic at s = 0.
dim E .
For 0 < p < dim X, let TP(v) be the canonical section of & (det HP(A'E* ®
i=0
n))D" associated to the acyclic complex (HP(AE* ® n),v), whose inverse is con-
structed in [BGS1, Definition 1.1]. Set

dim E

T(v) = @) @)

p=0
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Then T'(v) is a nonzero section of A(). By [BGS1, Proposition 1.5], we know that
Log(IT)|3) = — 6(0). (3.43)

Equivalently , /
Log(lal)\_l(nly)®)\(/\E*®7])) =—6(0). (3.44)

Now formally

. . dim X —dim E a /_ LX
— (g) / exp (—8"‘9" L )s*<KcT<LE,gLE»
LX

i
u—+o0o 27T U

B(L(n @ det TX)1/2 ® (det E)—I/Z’gL(n®(detTX)l/2®(det E)—I/Z))

i ZC dim X —dim
=3 (5;) / s*®ep(LE, g*P))
LX

BILM ® [det TX)'/?) @ (det B)™1/2), ghnecaTPeaa /) = g 45)

In view of [B2, Definitions 2.19 and 2.20] and of (3.39)—(3.45), we therefore easily
obtain:

Theorem 3.11. The following formal equality holds

5 i iC dim X —dim E KALX LE
LOg(lUIA’1(7l|y)®)\(AE*®7I)) = - 57—‘_ (g) / € (LE7g )

LX
AL ® et TX)'? @ (det E)~'/?),
gL(n®(detTX)l/2®(det E)“/2)) ) (3.46)
In the sequel, we will do as if the formal equality (3.46) was valid in full generality.

e) Accumulating Evidence: A Formal Expression for Log(||o|| ). We

2
. S A~y )@ MAE*®n)
now establish a key formal identity. of

Theorem 3.12. The following formal identity holds:

2
Log(”f"”,\—l(nly)®>\(AE*®n))

i 2C dim X —dim E
( ) l:_/KéLX(LE;gLE)

~ 2 \2r
LXx
B © [det TX)'/2 @ (det B)~1/?), gLnewa X 2ece71/%)

- / KSWLXKCmax(LEa gLE)
LX
B(L(n ® (det TX)'/? & (det E)1/2), gL(n®(detTX)l/2®(detE)_l/z))

+ / K v B(L(ny ® (detTY)'/?), gLy eETY) /21 (3.47)
LY

I
Proof. Using (2.10), (3.26), (3.27), (3.46) and the fact that dim X —dim £ = dimY/,
we get (3.47). O
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Remark 3.13. Observe that the identification of line bundles (2.1) also identifies the
metrics. Set

1= B(Lin® [det TX)'/* @ (det B)"1/2), ghnee T oua /) (343

Then, the restriction of p to LY is exactly the form B(L(ny ® (det TY)'/2),
gL(nly®(detTY)1/2))

Moreover by Theorem 3.3, p is a sum of forms of type (p,p), and also
Oxpu=0, 5K,U =0. (3.49)

Therefore the right-hand side of (3.47) is formally proportional to the left-hand side
of the identity in [B2, Egs. (3.10), (3.11)], with x given by (3.48). The idea will now
be to calculate formally the objects which appear in the right-hand side of [B2, Eqgs.
(3.10), (3.11)].

f) A Formal Expression for Certain Finite Dimensional Integrals. Recall that if B is
a (g, g) matrix, then

B
Td(B) =det| ————= | .
=)
Theorem 3.14. The following formal identity holds:

i iC dim X —dim E/ N KX
2 (ﬁ) {_/ " e (Nx/1x, 9" X12%) & (LE, g*F)
X

BL( ® (et TX)'/* @ (det B)1/2), ghnece 0! aas !/ 2’)}
_ / TATX, ™) TX (AE*, g"F") chir, 7). (3.50)

X

Proof. By Proposition 1.1 and Theorem 1.8, we see that the left-hand side of (3.50)
is given by

i iC dim X —dim E ) R C dim E B "
X

o~ TRE1+1/2 TH RTX) Trlexp(R™)] . (3.51)

Using Theorem 1.6 and the fact that &(F, g¥) has total degree 2dim E — 2, we see
that (3.51) is equal to

i \9mX A pTXy 1/2Ti[RTX) 1 5RE
(ﬂ) /A(R e det( “RE )
X

e Tr{RE] (— l)dim E (%ﬂ)dim E-1 g% &E, gE) Trlexp(R™)]

.\ dim X
= <_Z..) /Td(RTX)Td—I(RE) (—1)dimE(2i7r)dimE_1
X

2
s¥e(E, gE ) Trlexp(R™)]

= - [ 1K g T B, ) B g Py ehin g (35D)
X
By using again Theorem 1.6 again, we get (3.50). O
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Recall that PY is the vector space of smooth forms on Y which are sums of forms
of type (p,p). Also PY is the set of o € PY such that there exist smooth forms (3,
7 onY for which a = 93 + 0.

Let TA(TY, TXjy, g7 ) be the Bott-Chern class in PY /PY- defined in [BGS],
Sect. 1f)] which is associated to the exact sequence of holomorphic Hermitian vector
bundles 0 — TY — T'X;y — Nx/y — 0, and is such that

2%% TATY, TXy,g" ") = TAT X}y, g" ")

— Td(TY, g™ ) Td(Nxy,g"*/¥).  (3.53)
The class ”fa(TY, TX}y, gTXlY) is normalized by the fact that if the considered exact
sequence splits holomorphically and metrically, then it vanishes in PY /PY:.
Theorem 3.15. The following formal identity holds:

i iC dim X —dim E/ T Nx/Ly
- (E) /KcmaX(N,g )KC;‘;X(NY/LY;NX/LX‘Y,.Q e
%

B(L(n ® (det TX)'/? @ (det E)—I/Z),gL(n®(detTX)l/2®(detE)”l/z))
- / Td™ Ny, ™ TATY, T Xjy, g7 ) chiy, g (3.54)
Y

Proof. Let A(TY, TXjy,g" ") be the Bott-Chern class in PY /P associated to

the exact sequence 0 — TY — T'X|y — Nx;y — 0 and the complex Hirzebruch A
genus defined in (1.19). By [B2, Eq. (1.28)] and by Proposition 1.1, we get

00
Yir Cmax(NY/LYyNX/LX(y7g X/LX'Y)

= O~ X(ARTY) — AR™HARMIX)),

N,Q)n
Q

E(TY, TXIY ) gTX\Y)

. [ —RTX ./ —RTY\ . __RNY/X
= - A A . .55
( 2w ) ( 2 ) ( 2 ) (3:55)
Using the fact that A(z) is an even function of z, (3.55) and the uniqueness of
Bott-Chern classes [BGS1, Theorem 1.29], we get

K emax(Ny /Ly Nx/Lxy»9
=2ir X oV ATY, T Xy, g™ X¥) in PY/PYO. (3.56)

NX/LXIY)

Also since A(z) is an even function, it is clear from (3.55) that E(TY, TXyy, gTXlY)

is a class of sums of forms of degree 4p + 2. Using an analogue of Proposition 1.1
for N and (3.56), we thus find that the left-hand side of (3.54) is exactly

(RTX)
/ Td~'(Ny/x, gIXYATY, T Xy, g7X1¥ ) e M ch(ny,g™).  (3.57)
Y
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Recall that the isomorphism (2.1) also identifies the metrics. So we find that

- (rTX —

ATY, TXy, g™ V) e "2 = TdTY, TXy,g"X¥) in PY/PYO. (3.58)
Using (3.57), (3.58), we get (3.54). O

Recall that the genus X R was defined in [B2, Definition 1.20)]. In the right-hand
side of [B2, Eq. (3.10)], the class X R(IV') appears. We will now calculate this class
in our special situation.

Let ((s) be the Riemann zeta function. We introduce the genus R of Gillet and
Soulé [GS3].

Definition 3.16. Let R(x) be the formal power series

R(z) = Z( 2(( Z)) Z ) (—n)%. (3.59)
— =

We identify R with the corresponding additive genus. In particular R(Ny,x,
g™¥/X) lies in PY.

Let ¢ be the homomorphism of A°***(T X) into itself which maps o € A?P(Tf X)
into (—2im)Pa € A*P(T X).

Theorem 3.17. The following formal identity of differential forms holds on Y :
= ¢ RV, g") = RNy, x, g™/%). (3.60)

Proof. The spectrum of the operator J N exactly {2¢km}ez+. Using the notation
in [B2, Proposition 1.24], we see that

. N
KR = 3 R ) (3.61)

keZ* 2im

Now
R M(z) = — R*(—x). (3.62)

We thus rewrite (3.61) in the form

L& RNy/x RNv/x
K Ny _ k( _ _ pk
R(N,g") = § (R ( i > R ( 5 )) (3.63)

keN*

Using (3.63), it is clear that to evaluate (3.60), we should calculate

LE(e(E)#(-£)

Now for k € N*, by [B2, Definition 1.22], we get
1 _pfiT . /
- ZV=il2 _ _ il
o R (271') z( I'"(1) — 2Log(2kn) — Log (1 + hom ))

. -1
1T
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Set

. . -1
) = i(F’(l) — 2Log(2km) — Log (1 + %)) (2’”(1 + z%)) !

) L (3.65)
(@) = iF'(l)(ka(l + %))
By (3.64), (3.65), we get
ZL Ry <£.’l_)> = hi(z) + mi(x). (3.66)
s 27

Now using Bismut [B7, Egs. (8.37)—(8.39)], Bismut and Soulé [B7, Appendix, The-
orem 1 and Egs. (10), (11)], and also (3.66), we get

2 k(22 _pr( _ ) 2

- > (R ( 2m> R ( m)) R(z). (3.67)
keN*

Equation (3.60) follows from (3.63), (3.67). O

Remark 3.18. 1t is very important to observe that the only step where we needed to

convert the ill-defined X R(V, gN ) into a well-defined expression is Eq. (3.63), which
ensures the convergence of the ill defined series (3.61).

Theorem 3.19. The following formal identity holds:

i i C dim X —dim F .
( ) / Kol (Nyyoy) KR(V)
Y

T2 \2r
BL(® [@et TX)'/ @ (det B)™!/2), ghnoua T Foua byt
S / TA(TY) R(Ny, x) ch(r). (3.68)
e
" Proof. By using (1.22) and (3.60), (3.68) follows. O
g) A Formal Formula for Log(||a||§\_l (ny JOAAE* ®71)) in Terms of Finite Dimensional

Integrals. The main formal result of this paper is as follows.

Theorem 3.20. The following formal identities hold:

2
Log(llall,\—l(nly)®)\(AE*®n))
. / TA(TX, g"X)TX (AE*, g"E") ch(n, g7)
X
+ / T (Ny, x, ¢/ X)TATY, T Xy, g chy, g
Y

- / Td(TY) R(Ny,x) chiny),
Y
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/ 2
Log(lollx-1(rercam+any (3.69)

__ / TATX, g7X)TX (AE*, g"F") ch(n, g")
X

+ / Td Ny, x, g™/ TATY, T Xy, g5 ) chpy, g7 )
Y

- / TATX)R(TX) ch(AE* ® ) + / TdTY)R(TY)ch(ny) .-
X Y

Proof. The first identity in (3.69) follows from the rigorous first identity in [B2,
Theorem 3.4] applied to the right-hand side of (3.47) in Theorem 3.12 and from
Theorems 3.14, 3.15, 3.19. Using [BGS4, Theorem 2.5], the second identity in (3.69)
follows easily from the first one. One may instead use the second identity in [B2,
Theorem 3.4]. O

Remark 3.21. It is essential to remark at this stage that both sides of the identities
(3.69) are well-defined and are not “formal” objects. Only the identities (3.69) are for-
mal (for the moment) since the identities which connect the two sides are themselves
formal.

h) A Theorem of Bismut-Lebeau. The following result is the main result of Bismut-
Lebeau [BL1], [BL2, Theorem 0.1].

Theorem 3.22. The following identities hold

2
Log(|o|| )\—l(nly)®)\(AE*®77))

- / TATX, gTX)TX(AE*, g"F") ch(n, g
X
+/Td_1(NY/x,9NY/X)ﬁ(TK TXjy,g" ™) ch(ny, g")
Y

- / Td(TY) R(Ny,x) ch(ny),

Y (3.70)

2
Log(||o|| )\—l(nly)@))\(AE*@n))

__ / TA(TX, g7¥) TX(AE*, gAE") ch(ry, g")
X
+ / Td~! (Ny;x, g™V TATY, T X}y, g" 1) ch(nyy, g"")
Y
- / TdTX)R(TX) ch(AE* @ n) + / Td(TY)R(TY ) ch(ny) .

X Y

Remark 3.23. As the reader will have observed, the formal identities (3.69) have now
become the rigorous identities (3.70).
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Also note that the result of Bismut-Lebeau [BL2] is valid for arbitrary resolutions
of a complex vector bundle on Y by a complex of holomorphic vector bundles on
X, and not only for resolutions by Koszul complexes.

i) One Word of Explanation. As we just, saw, the result of Bismut-Lebeau [BL1,2]
confirms the predictions of Theorem 3.20.

However the most essential point to observe is that the very structure of the
rigorous proof of Theorem 3.22 in [BL2] is closely related to the proof of the result
given in [B2, Theorem 3.4], with of course:

e many more technical difficulties,
e some essential differences.
The first basis result in [BL2] is as follows.

Theorem 3.24. Let 7,  be the 1-form on R x RY,

dim X

T, T = d—s— Tr, KN‘)/( — ) exp(—(v/uDX + \/TV)Z)]

~ fi% Tr, [(NH - dinzlE> exp(—(vuDX + \/TV)Z)} . (37D

Then the form j,, T is closed.

Proof. Observe that by the McKean-Singer formula, Trs[exp(—(y/u DX + T 195!
is an integer which does not depend on u or 7'. Our theorem then follows from [BL2,
Theorem 3.3]. O

Remark 3.25. Recall that the form p € PLX was defined in (3.48). Let 7, 1 be the
one form on Rjﬁ X Ri which is defined formally by [B2, Eq. (3.12)], i.e. by an
ill-defined integration process on the infinite dimensional manifold LX. In view of
3.9), (3.36)—(3.39), we get the formal equality

1 iC dim X —dim E
Tlu, T = i (ﬁ) N, T - (3.72)

[B2, Theorem 3.6] and Theorem 3.24 are then formally equivalent. [B2, Theorem
3.6] plays a key role in the proof of [B2, Theorem 3.4]. Similarly, Theorem 3.24 is
essential in the proof in [BL2] of Theorem 3.22.

Recall that v = y/—11,. If the complex, (K, 3% +v) has the properties described in
Sect. 3d), the proof of Theorem 3.22 in Bismut-Lebeau [BL2] could be done by using
the contour I" of [B2, Sect.3c)] and by formally proceeding as in [B2]. However
in general, these very special properties are not verified. This is why a change of
variables v — u, T — Tu is done in [BL2, Theorem 3.5]. From the form j, 7, we
thus obtain a new closed form A, 7 on R* x R*.

Let I be the contour
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ua
I
Afb----- <
A AT

Efp----- >

| |

, I |

| |

' >
0 1 T T

Theorem 3.22 is proved in [BL2] by starting from the identity
/ A=0 (3.73)
I“/

and by making A — +oo, Ty — +00, € — 0 in that order in (3.73).
Let 0¥ be the Dolbeault operator acting on the Z-graded vector space LL of smooth
sections of A(T*®DY)® )y over Y, and let 8¥" be its formal adjoint. Set

DY =8Y + 97" . (3.74)

Let N be the number operator acting on L. By Bismut-Lebeau [BL2, Theorem 6.4],
we know that for any u > 0,

dim X

Jim Tr, KN(Z‘ - )exp(—(\/aDX + \/TV)2)J

— Tr, [(N“,’ - diI;Y) exp(—u(DY)z)] , (3.75)

dim E
2

71im Tr, [(NH — )exp(—(\/ﬂDX + \/TV)Z)] =0.

The proofs of (3.75) rely on:

e A precise asymptotic analysis by an adequate rescaling of the operator /u DX +
VTV near Y as T — o0, which is done in [BL2, Sects. 8 and 9].

e A remarkable algebraic property of the kernel of certain harmonic oscillators acting
on smooth form on C", which is proved in [B7, Theorem 1.6]. This property explains
in particular the second identity in (3.75).
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As explained in Remark 3.25, we have the formal identites

Tr, [(N(}( - gl_n%_)(;) exp(—(vuDX + \/TV)2)]

1 iC dim X —dim E
=2 (ﬁ) / pXyus* Kar(LE, g“F),
LX

Tr, KNH -2 ) exp(—(VaD¥ + \/TV)Z)]

1 iC dim X —dim E
T om (_2?) / p¥ays* Ker(LE, g"F).
LX

(3.76)

By using [B2, Theorem 2.18] formally, we know that

lim pK'yus* KaT(LE,gLE)= / /J,K'yu,

T—o00
LX LY

lim / pEryus* Kep(LE, g*F)=0.
T—o00
LX

(3.77)

Therefore the formal formulas (3.76) exactly predict the correct answer in (3.75).
Note that as appears clearly in [BGSS5, Theorems 3.12 and 3.15], the second identity
in (3.77) follows from the fact that

o KRLE ,le
K LEy\_ 9 _ _ 4
cr(LE,g"") = % [det ( Som b) exp ( T 5 )

dim LE—1 (—T(KRLE +27erLE)_1)k
k! b=0,

(3.78)
k=0

i.e. the expansion terminates at the index k¥ = dim LE — 1 and not dim LE.

Here dim LE = +o00, dim LE — 1 = +o00, and still by (3.75), the second identity
in (3.77) is formally true! . .

In [BL2], the analysis of the terms [ A, [ A relies on remarkable properties of

r

the spectrum of the operator DX +TV as T — +oo, which are established in [BL2,
Theorem 9.25]:
e The spectrum (with multiplicity) of DX + TV converges to the spectrum of DY,
e For T > 0, the dimension of the kernel of DX + T'V is equal to the dimension of
the kernel of DY .

If as in Sect.3d), we assume that Ker DY = {0}, the analysis of the terms I; =
J A, L = [ Xis much simpler, and is closely related to the analysis of I; = [ 7,
r! r I

1 2
I, = f n in [B2, Sect. 3e)]. The term I3 = f X does not raise any special difficulty
r r

in [BL2].
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In [BLl2] the analysis of [y = f X is very difficult, but is still very closely related
1-'/
to the analysis of I, = f n in [B2 Sect. 3e)], especially at the last stage where

€ — 0. One essential dlfference is that, contrary to what happens in [B2], in [BL2],
it is not easy to show that the problem is local near any arbitrary point y € Y. To do
this, Bismut and Lebeau [BL2, Sect. 13] use finite propagation speed for hyperbolic
equations.

However as should be clear from [B7] and [BL2], the strict analogues of the
forms xr which we also met in [B2, Sect. 1a)], appear when studying the limit as
e — 0 of Ij. In [B7], the analogy is exhibited in the clearest way by a complete
explicit calculation of certain infinite dimensional superconnection forms, which can
be expressed as infinite products. Once these products are normalized (with infinite
normalizing constant!), we obtain exactly the forms xr.

Most of the arguments in the proofs of [B2] are also very useful in understanding
the proof of Theorem 3.22 in Bismut-Lebeau [BL2] from an elementary point of view.
An important difference should be pointed out here: the scalings are in general not
exactly the same, in particular on the analogue of the coordinates Z, Z. Let us just
say that in [BL2], k, r which was defined in [B2, Eq. (3.94)] is replaced by ku’T,

1/2 1/2
k;,T:(y,Z,Z’,Z)—><y,<%) Z,\JuZ, (\—;—%) Z) (3.79)

This change on the scaling reflects the infinite dimensional character of the problem
considered in [BL2].

Acknowledgements. The author is indebted to a referee for his helfpul comments.
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