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Abstract. We construct and study the implications of some new non-local
conserved currents that exist is a wide variety of massive integrable quantum field
theories in 2 dimensions, including the sine-Gordon theory and its generalization
to affine Toda theory. These non-local currents provide a non-perturbative
formulation of the theories. The symmetry algebras correspond to the quantum
affine Kac-Moody algebras. The S-matrices are completely characterized by these
symmetries. Formal 5-matrices for the imaginary-coupling affine Toda theories
are thereby derived. The application of these 5-matrices to perturbed coset
conformal field theory is studied. Non-local charges generating the finite
dimensional Quantum Group in the Liouville theory are briefly presented. The
formalism based on non-local charges we describe provides an algernative to the
quantum inverse scattering method for solving integrable quantum field theories
in2d.
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1. Introduction

Symmetry in quantum field theory is widely recognized as being of fundamental
importance. In 3 4-1 spacetime dimensions, the likely symmetries of the S-matrix
are subject to the severe limitations of the Coleman-Mandula theorem [1]. The
theorem states that any symmetry group is necessarily locally isomorphic to the
direct product of an internal symmetry group and the Poincare group. These
possible symmetries are normally not restrictive enough to allow a non-perturbative
solution of the theory.

In lower-dimensional quantum field theory, some of the postulates of the
Coleman-Mandula theorem may be relaxed in a non-trivial way. Apart from the
structure of the Poincare group itself, one of the main assumptions of the theorem
is that the symmetry group acts on multi-particle states as if they were tensor
products of one-particle states. More specifically, let Q be a generator of the
symmetry group and V denote the Hubert space of one-particle states. The
multi-particle states are spanned by V® ••• ® V. The action of the generator on a
multi-particle state is an operator from V® ••• ® V into itself, and will be referred
to as the comultiplication Δ(Q). The proof of the Coleman-Mandula theorem
assumed the trivial comultiplication:

Δ(Q) = Q®1®'-®1 + 1®Q®1® ®1 + + l(g) <g)β. (1.1)

Supersymmetry in any number of dimensions is of course a well known example
of how the hypothesis (1.1) can be circumvented.

This paper is primarily devoted to the construction of some new quantum
symmetries that exist is a wide variety of integrable quantum field theories in 1 + 1
dimensions. The conserved currents that generate the symmetries are non-local
and further characterized by non-trivial equal-time commutation, or braiding,
relations. These exceptional properties of the currents are responsible for the
non-trivial comultiplication of the charges when acting on multi-particle states.
That is, the assumption (1.1) of the Coleman-Mandula theorem is violated.

The existence of a non-trivial comultiplication for the non-local conserved
charges implies that they belong to the algebraic framework of Hopf algebras,
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notably the Quantum Groups and the Yangian symmetries [2-4]. Our work thus
provides explicit currents that generate the Quantum Group Symmetries. The
non-local charges for the Yangian symmetry were studied in [5-7]. For the case
of the sine-Gordon (SG) theory, the symmetry algebra is the quantum sl(2) loop
algebra, which is an infinite dimensional symmetry. This algebra can be thought
of as a generalization of N = 2 supersymmetry, and is in fact equivalent to it for
a special value of the SG coupling constant, as we will see.

The sine-Gordon theory can be completely reformulated using the non-local
conserved charges. This leads to a new, remarkably simple derivation of the soliton
S-matrix. Though the final result is known [8], the steps leading to it provide
interesting non-perturbative information. Specifically, the derivation of the
S-matrix allows us to determine which fields create tr>e SG solitons within our
framework. Our conclusions are somewhat unexpected in that the fundamental
soliton fields can only be identified with the Thirring fermion fields at the point
where the Thirring model is free (see [9,10]).

The framework we develop for the sine-Gordon theory is readily generalized
to incorporate the affine Toda theories over a simply-laced group G. Though the
action of the affine Toda theories is ill-defined, the non-local charges provide a
formal non-perturbative definition of the models. In particular we are able to
derive the formal S-matrices for these theories at imaginary coupling constant.
This result can then be applied to massive perturbations of the coset conformal
field theories, with the aim of establishing the conjectured form [11,12] of the
S-matrices.

The subject of integrable quantum field theory has a long history, with many
impressive results. The Leningrad school developed the quantum inverse scattering
method (QISM) to quantize integrable systems, including the SG model [13,14].
It was this investigation that led to the theory of the Quantum Group. In quantum
field theory the QISM was developed as a way to quantize the theory in a manner
that preserves the infinite number of commuting integrals of motion which exist
in the classical theory. It is of interest to compare the QISM to the framework
advocated in this paper. Contrary to the QISM, the non-local charge framework
deals with conserved charges that are not in involution. The strength of the method
resides in the non-abelian nature of the algebras generated by the non-local charges.
Though the same algebraic structure of the Quantum Group appears in both the
QISM and the theory of non-local charges, their physical content is different. One
of the primary distinctions of the non-local charges approach is that these charges
have no apparent classical formulation. This is due to the fact that their very
existence relies on quantum anomalous dimensions of all the fundamental fields1.

The QISM is an algebraization of the Bethe-ansatz methods. Though the
Bethe-ansatz has had many successes, many of its features (such as the introduction
of a pseudo-vacuum and the entailed complicated filling of the Dirac sea) are
rather unpleasant for the typical quantum field theorist. In this respect the methods
based on non-local charges are more in the usual spirit of quantum field theory.

1 The currents that generate the Yangian symmetry have classical analogs, however their
comultiplication is a quantum effect [6]



102 D. Bernard and A. LeClair

Furthermore, these methods are rather general and self-contained, and are
well-suited to the clarification of more recent results2.

A preliminary version of some of the following results on the SG theory
appeared in [15].

2. Non-Local Charges in 2D QFT

2a. General Theory. In this section we review the general framework for dealing
with non-local charges in two-dimensional quantum field theory. Part of this
framework was used in [6].

Due to the possibility of fields with non-trivial braiding relations, quantum
field theories in two spacetime dimensions may have non-local conserved currents.
The currents, which we denote by Ja

μ(x, t), are localized at the space-time points
(x,ί). Their precise definition (e.g. from a lattice construction or directly in the
continuum) requires attaching to the currents a one-dimensional curve going from
— oo to the point (x, t). The precise location of the string attached to the currents
is irrelevant except when topological obstructions are encountered. One way to
think about this string is in analogy to the disorder line defining disorder fields
[16,17]. This analogy will be clarified in the sequel. The non-locality of the currents
is encoded in their equal-time braiding relations:

j;(x,t)J%t) = RfcJ
c

v(y9t)Jd

μ(x,t); for x>y. (2.1)

The above equation is implicitly time-ordered to the left, e.g. Ja

μ(x, t)Jb

v(y, t) =
Jμ(x, t + ε)Jb

v(y, t\ for ε small and positive. The braiding relations (2.1) originate in
the topological obstructions encountered while moving the string attached to the
currents, and are displayed in Fig. 1. In this figure, time increases upward, and
the positions of the strings are dictated by the time-ordering. Associativity of the
operator algebra requires the matrix Rfd to be a solution of the Yang-Baxter
equation. A more complete discussion of braiding relations in 2D quantum field
theories can be found in [18,19].

For conserved currents, dμJ
a

μ(x, t) = 0, the global conserved charges Qa acting

on the physical Hubert space are β f l = —\dxJ a

t (x,t). The charges Qa acting on
2ni t

-co

- 0 0

Fig. 1. Graphical representation of braiding

2 We refer the reader to [11] for a unified description of integrable quantum field theories based
on symmetries
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fields Φ\y) are not defined by integrating the currents along an equal-time slice
but along a path y(y) from - oo to — oo surrounding the point y:

γiy)

dzvε
v«J°μ(z)Φk(y). (2.2)

The contour γ(y) is drawn in Fig. 2. There we have drawn the string attached to
the currents in the position specified by the order of the fields in (2.2). The exact
shape of the contour γ(y) is irrelevant due to the conservation of the currents.

The action of the charges on the fields (2.2) can be expressed in terms of
generalized commutators, as we now describe. The fields of the theory can be
classified into multiplets according to their braiding relations with the currents.
We suppose the following braiding relations

Jl(x9t)Φk(yj)=ΘlkΦ\yj)Jb

μ(x,t); for x>y. (2.3)

As in (2.1) these braiding relations arise from the obstructions for moving the
string attached to the fields. To express (2.2) as generalized braided commutators,
let us decompose the contour of integration y(y) into the difference of two contours
y+ and y_, y{y) = y+ — y~9 as in Fig. 3. Integrating the right-hand side of (2.2)
along the contour y+ gives the product QaΦ\y). When the currents are localized
on the curve y_, the braiding relations (2.3) can be used to move the string through
the point y, giving the product βjf Φ\y)Qh. We gather everything into the result:

Qa(Φk(y)) = QaΦ\y) - ΘikΦι{y)Qb. (2.4)

-co

-co

Fig. 2. The contour of integration for the action of non-local charges on fields. The curve Cz

denotes the string

-00

-CO

Ύ- z

Fig. 3. Decomposition of the contour of Fig. 2
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In particular if we consider Φ(y) as the time-component of the currents, (2.4)
shows that the global conserved charges Qa satisfying braided commutation
relations:

QaQb-Ra

d

b

cQ
cQd = Qa(Qb) (2.5)

Next we consider the action of the charges on a product of fields. This will
define for us the comultiplication Δ(Qa) of the charges. For simplicity, consider
the action on a product of two fields. This is defined as

Qa(Φk(yi)Φn(y2)) = ^-. J dzvε^j;(z)Φk(yί)Φn(y2). (2.6)
iπi yi2

The contour yl2 encloses both space-time points y1 and y2. See Fig. 4. The contour
γi2 can be decomposed into the sum of two contours, γ12 = γx + γ2, as in Fig. 4.
The integration over the contour yx gives the action of the charges on Φk(yι).
After having taken into account the braiding relations between the currents and
the fields Φk{yγ\ the integration over the contour y2 gives the action of the charges
on Φn(y2). Thus we obtain:

Qα(Φk(yi)φn(y2)) = Qα{Φ\y1))Φ\y2) + ( © ί Φι(yMb(Φn(y2)) (2.7)

Let us arrange the quantum numbers of the fields Φ(yχ) (Φ(y2)) i n t 0 a vector
space V^V^. The action of the charges Qα on the product of two fields is then an
operator on Vx ® V29 which is denoted by Δ(Qα), and defines the comultiplication.
In this compact notation (2.7) becomes

A (Qα) = Qα®l + Θα

b®Q\ (2.8)

where Θα

h is the braiding operator and is a matrix acting on the vector space V±.
More specifically, </| 6>̂ |/c> = Θfr The same comultiplication holds for the global
charges Qα.

A lattice formulation can also be developed for the above continuum results.
The lattice approach reveals that non-local conserved currents are consequences
of quantum group invariance of the local hamiltonian. On the lattice, the non-local

-00 X2

Fig. 4. The contour defining the action of non-local charges on a product of two fields
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currents act as quantum Lie derivatives. This shows that non-commutative
differential calculus [20-22] is the geometrical tool appropriate for describing
non-local symmetries in two-dimensional quantum field theories. The lattice
formulation will be described elsewhere [23].

2b. The Algebra of Charges in Perturbed CFT. In this section we describe the
commutation relations of non-local conserved charges in perturbed conformally
invariant field theory (CFT).

Consider a conformal field theory perturbed by a relevant operator with zero
Lorentz spin. The perturbing field can be represented by Φpert.(z, z) = φpert.(

z)Φpert.(z)'
The Euclidean action is taken to be

2π p e r '

where λ is a generally dimensionful parameter that measures the strength of the
perturbation away from the conformal limit. Here z and z denote Euclidean
coordinates3. Chiral fields F(z,z%F(z,z) satisfy dzF(z,z) = dzF(z9z) = 0 in the
conformal limit. Equations of motion for the perturbed chiral fields which are
local with respect to the perturbing field can be deduced to first order in
perturbation theory using Zamolodchikov's approach [24]:

„ , x „ f dw ^ , x , xd-F(z z) = λ & Φ (w z)F(z)
z 2πι

2πι
dj(z, z) = λ§~ Φpert,(z, w)F(z). (2.10)

2πι

Equations of motion to first order can be exact to all orders in perturbation theory,
as we will see.

Let us now suppose that there are currents conserved to first order in
perturbation theory:

d,Ja(z,z) = dzH
a(z,zl (2.11a)

dzJ
ά(z,z) = dzίϊ

ά(z,z). (2.11b)

We assume that in the conformal theory these currents are chiral fields; i.e. when
λ = 0 they satisfy dzJ

a = dzJ
a = 0. We also suppose that they are local with respect

to the perturbing field. The condition for the currents to be conserved to first
order in perturbation theory is then a condition on the residue of the operator
product expansion (OPE) between them and the perturbing field. Namely, the
conservation laws (2.11) hold if the residues of these OPE's are total derivatives:

Resz=w(φperU(w)Ja(z)) = d2h\z\ (2.12a)

(0pert.(w)P(z-)) = dzh
ά(z). (2.12b)

3 We will always denote Euclidean light-cone coordinates as z and z, whereas xj and
x±=(x±t)/2 will signify Minkowski coordinates. Their relation is z = ix+= (tE + ix)/2,
z = - ίx~ = (tE - ix)/2, where tE = it. We follow the convention d2z = idzdz = - dxdtE/2
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The conditions (2.12) follow from Zamolodchikov's equation of motion (2.10). In
(2.11) the fields Ha are then

Ha{z,z) = λha{z)φperx{zl (2.13)

and similarly for Hά(z,z). From the conserved currents (2.11) we define the
conserved charges,

Q
lnι

Qά = —. (J dzlά + jdzHά). (2.14)
2πi

Since the currents Ja and Ja can be non-local, we allow for non-trivial braiding
between them:

J%x9t)Ja(y,t)=:Ra

biP(y,t)Jb(x,t); Vx,y. (2.15)

There is no contradiction in having the above braiding relations defined for all
x, y\ we will give explicit examples in the sequel. The above relations allow one to
defined a time-ordered product T that facilitates the string manipulations of the
previous section:

T(Ja(x, t + ε) T\y, ή) = Ja(x91 + β) P(y, t) ε > 0

= K*fJ*O>,0JW + β) ε < 0 . (2.16)

We suppose that the same braiding relations hold if the Ja (J°) component of the
current is replaced by the corresponding Ha (Ha)_component. To find the com-
mutation relations between the charges Qa and Qa associated to these currents,
we apply the general framework explained in the previous section. Using (2.12) it
is easy to compute Qα(Qα) to lowest non-trivial order in perturbation theory. The
result is:

bQb = Tαά, (2.17)

where Tαά is always a topological charge,

T°ά = ̂  ί (dzd* + dzdί)hα(z)h*(z). (2.18)
2πι

Equation (2.18) may be understood as a generalization of the topological extensions
of super-symmetry in two-dimensions [25]. In the following section we will show
that in the case of the sine-Gordon theory the relations (2.18) are those of the
quantum 5/(2) loop algebra.

3. Non-Local Charges in the Sine-Gordon Theory

In this section we describe the non-local charges that characterize the sine-Gordon
theory. We will show that these charges generate the quantum s/(2) loop algebra.
Our analysis provides a new derivation of the soliton S-matrix.
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3 a. A Review of the Sine-Gordon Theory. The quantum sine-Gordon theory is
described by the Euclidean action

S = ~(d2zdzΦdtΦ + -id2z:cos(βΦ):. (3.1)
4π π

The parameter β is a coupling constant; it is related to the conventionally
normalized coupling by β = β/-sf^n (see ref. [9]). The values of the coupling β = 1
and β = ̂ /ϊ are known to correspond to a free Dirac fermion and to the SU(2)
Gross-Neveu model respectively. The parameter λ defines the mass scale of the
model; in the deep ultra-violet it is zero. For β ̂  y/l the action can be renormalized
by normal-ordering the cos(βΦ) interaction and absorbing the infinities into λ;
the coupling constant β is thereby unrenormalized [9]. With the above
normalization of the kinetic term the Euclidean propagator is:

<Φ(z,z")Φ(0,0)> = - log(zz). (3.2)

We will treat the action (3.1) as a perturbation of a conformal theory in the
sense developed by Zamolodchikov [24]. Namely, we treat the λcos(βΦ) term as
a perturbation of the conformal field theory corresponding to a single free boson.
Recognizing that the cos(βΦ) potential imposes the periodicity βΦ = βΦ+ 2π, one
sees that the free boson is compactified on a circle of radius R = 1/β, where the

duality is R-+— (see e.g. [26]). For β<y/2, the perturbing field is relevant: its
2R

(holomorphic, anti-holomorphic) anomalous dimensions are less than one. This
implies that in the deep ultraviolet, the theory is conformal. Following
Zamolodchikov [24], this allows us to assume that the space of fields has not
been drastically modified by the perturbation. In particular it allows us to suppose
that all the operators Θ(x, t) of the sine-Gordon theory have a smooth ultra-violet
limit and that they are in correspondence with the fields of the ultra-violet CFT.
We can thus label in a unique way the fields of the sine-Gordon theory by the
corresponding fields in the ultra-violet limit. In the massless limit, the free boson
can be expanded as Φ(z,z) = φ(z) + φ(z) with (φ(w)φ(z)} = — log(w — z) and
similarly for φ. The fields of the ultra-violet CFT are products of the chiral vertex
operators exp(iaφ(z)) and exp(iαφ(z)) and of their Virasoro descendents. The
anomalous (holomorphic, antiholomorphic) dimensions (Δ9 A) of these exponential
operators are:

Λ(exp(ίαφ(z)) = 4(exp(iα0(z))) = y . (3.3)

The perturbing operator cos(βΦ) is thus relevant ΐoτβKy/2 as indicated above.
In the deep ultra-violet limit the (anti)-chiral components φ{x9t) and φ(x, t)

can be expressed in a non-local way in terms of the sine-Gordon field Φ(x, t). The
relations are:

+ f dydtΦ(y,t)

- } dydtΦ(y,t)\ (3.4)
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Equations (3.4) are proved by integrating the following equality, (dx + dt)Φ =
(dx + dt)φ = 2dxφ, which holds in the massless limit, because there we have
(dx — dt)φ = (dx + dt)φ = 0. A similar computation yields the expression for the
anti-holomorphic component. Though the above non-local expressions (3.4) were
derived in the massless limit, we can take them to define the chiral components
φ and φ in exponential operators in the massive theory also, because of the
correspondence mentioned above.

Let us illustrate the perturbative approach by deriving the equation of motion
for the sine-Gordon fieldJΓhe Zamolodchikov equations of motion (2.10) for the
chiral fields ίdzφ and ίdzφ, together with the operator product expansion (OPE),

ίdzφ(z) exp(iocφ(w)) ~ exp(z'αφ(w)) + (3.5)

z — w

give to first order in λ:

dzdz Φ(z, z) = - 2λβsin(β Φ(z, z)). (3.6)

Therefore, for the sine-Gordon field Φ, the equation of motion is exact to first
order in perturbation. For relevant perturbations, because the coupling constant
λ has positive dimension, local equations of motion are exact to a finite order in
perturbation theory. In. the case of the sine-Gordon theory, for the field idzφ it is
easy to see by scaling arguments that only the first order appears in the equation
of motion.

The sine-Gordon theory has a well known topological current:

^ μ (x,ί) = ^-βμ v3vΦ(x,ίλ (3.7)
2π

where εμv = — εvμ. We take the convention ε 0 1 = 1. The topological charge is:

F = A 7° dxdxΦ=—(Φ(x = oo)- Φ(x = - oo)). (3.8)
2π -oo 2π

The normalization of the topological current is fixed by the periodicity of the
cos(βΦ) potential. More specifically, the topological solitons that correspond to
single particles in the quantum theory are described classically by field
configurations with 3~ = + 1. These solitons are kinks that connect two neigh-
boring vacua in the cos(βΦ) potential. In the quantum theory the topological
charge 3~(Θ) of an operator 0 is defined by the commutation relation
\β~, Θ~] = 3Γ(Θ) Θ. The topological charge of the vertex operators is thus:

$~(exp(iocφ + iΰφ)) = β(oc - α). (3.9)

3b. The Non-Local Conserved Charges. In this section we derivethe existence of
conserved currents generated by fields of the form Ja = exp(zα^) or J α = exp(iα</>).

As explained in Sect. 2b, the existence of a conserved current in the perturbed
theory is the requirement (2.12) on the OPE of the current Ja (or Ja) with the
perturbing field. The perturbing field is Φ p e r t = exp(iβΦ) + exp(— iβΦ). Using the
OPE

exp(i(xφ(z))Qxp(iβφ(w)) - (z - wffexp(i(oί + β)φ(w)) + ••• (3.10)
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(and similarly for the anti-holomorphic sector) we see that the condition (2.12) for
a conservation law for Ja amounts to a condition on α; namely α = ± 2/β. Therefore
we find the following conserved currents:

dμ±=dzH±; dJ±=d,H±, (3.11)

where

(±4(,O±4 } dydtφ\ (3.12a)
\ β p-oo

,t)±± J dydtφ\ (3.
p-oo J

J p \ ± ( β ) ( , ) ± J y t \ ( 1 2 b )
β — 2 L \p J

f ^ 4 1 dydtφ\ (3.12c)
p / \ p

± ^ f <*M<4 (3.12d)
J

^ p + ^ ^ ( , ) ± ^
p - 2 L \p / p -

By simple scaling arguments, it easy to check that for β2 irrational, the equations
of motion for J+ and 7+ are exact to first order in perturbation theory. Therefore
the currents (3.12) are conserved to all orders. From these conserved currents we
define four conserved charges:

Q±X

Q±=±-X\dzJ±+\dzH±). (3.13)
lnι

2 / 2 \
The Lorentz spin s of the currents J± (J±) is s = —I — — I; this follows from

their anomalous scaling dimensions and the relation s = Δ — A The Lorentz spin
of the conserved charges is thus:

- = spin(β ± )=-spin(ρ ± ) = — - 1. (3.14)
y β2

The conserved charges (3.13) are non-local due to the fact that the (anti)-chiral
components, φ and φ, of the sine-Gordon field Φ are non-local. This non-locality
is reflected in the relations (3.4). The non-local expressions (3.4) manifest the strings
attached to the currents that were referred to in Sect. 2. The braiding relations
arising from the non-locality are independent of the scale; thus they can be described
in the ultra-violet limit without loss of information.
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3c. The Algebra of Non-Local Charges. We now use the results of Sect. 2 to
determine the algebra obeyed by the non-local charges (3.13). This requires
knowledge of the braiding properties of the non-local currents (3.12). These follow
from the expressions (3.4) for the chiral components φ and φ of the sine-Gordon
field Φ, and from the canonical commutation relations of Φ:

-y). (3.15)

Using the fact that eAeB = e[A'B]eBeA for \_A,B] a c-number, we deduce:

exp(iaφ(x, ή) Qxp(ίbφ(y, ή) = e±iπab exp(ibφ(y, ή) exp(iaφ(x, *)); for x ^ y,

(3.16a)

exp(*αφ(x, ί))exp(ιfcφ(y, ή) = eTiπabexp{ibφ(y, t))Qxp(ίaφ(x, f)); for x ̂  y,

(3.16b)

cxp(iaφ(x, ή) Qxp(ibφ(y, ή) = eiπab cxp(ibφ(y, ή) exp(iaφ(x, t)); V x, y. (3.16c)

These relations (3.16) are the braiding relations for generalized parafermions
[16,17] for the group αZ. In making this analogy, the disorder fields are identified

with μα(x,ί) = expί — j dydtΦ{y9t)) in the ultra-violet limit, and exhibit the
\ 2 -oo /

strings. This connection is further clarified in Appendix D.
For the currents of interest (3.12), the braiding relations (3.16) imply:

J ± (x, t)Jj (y, t) = q -2JT (y, t)J ± (x, t); V x, y,

J±(x, t)J±(y, t) = q2J±(y, t)J±(x, t); V x, y, (3.17)

where

q = exp( - 2πi/β2) = - exp( - iπ/y). (3.18)

The same braiding relations hold if we replace any of the fields J± (7+) by the
corresponding field H+ {H + ).

Using the above braiding relations Eqs. (2.17) and (2.18) become:

Q±Q±-q2Q±Q±=O, (3.19a)

The topological charges on the right-hand side of (3.1-9) can be expressed in terms
of the usual topological charge ZΓ in (3.8). A soliton configuration can be taken
to satisfy Φ(x = oo) = 0; the classical soliton solutions do in fact satisfy this.
Integrating (3.19) we obtain the algebra to lowest non-trivial order in perturbation
theory:

Q + Q+-q2Q+Q+=0, (3.20a)

ρ _ ρ _ - 4 2 ρ _ ρ _ = o , (3.20b)

ρ+δ--<r2ρ-ρ+=α(i-<?2n (3.20c)

ρ _ ρ + - < Γ 2 ρ + ρ _ = α ( i - < Γ 2 ^ ) , (3.20d)
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[^β±]=±2β±, (3.20f)

where a = λy2/2πi. In deriving the last equations we have used (3.9).
It is possible to show by scaling arguments that the algebra (3.20) is exact to

all orders in perturbation theory. Thus the algebra (3.20) can be taken as a
non-perturbative definition of the theory. The scaling argument goes as follows.
The scaling dimension of an operator 0 is dim(0) = Δ(Θ) + Δ(Θ). JΊie most general
possibility for the right-hand side of (3.19b) is £ λn{\dzΘn + \dzΘn). From the fact

n ^

that the dimension of the left-hand side of (3.19b) is 2/y, and dim(Λ,) = 2 - β2, one
finds that dim(0n) - 1 = 4/β2 + nβ2 - 2(1 + n). This equation can only be satisfied

if Θn = dzHn, Θn = d-zHn. The field Hn must be a product of expί ± -Φj with the
V β )

perturbing field raised to some power k. Therefore Hn ~ expί ± ί - -f kβ IΦ I, fceZ,
\ \β ) )

(2 Λ 2

and d i m ^ ) — 1 = \- + kβ I . Assuming that β is irrational, one thus finds that
β

k2 = n and 2fe = - 1 — n. The only solution is n = 1.
The algebra (3.20) is a known infinite dimensional algebra, namely the

^-deformation of the sZ(2) affine Kac-Moody algebra, denoted slq(2\ with zero
center [2,3]. Only the Serre relations for slq(2) are missing in (3.20). This algebra
is reviewed in Appendix A. Let Ei9Fi9Hi9i = 09l, denote the Chevaley basis for
the centerless sQϊ) algebra in the principal gradation (see Appendix A for
definitions). They satisfy the following defining relations:

QHi _ -Hi

lEt,Fj] = δij- ^ (3.21)
q-q x

with atj the Cartan matrix of the affine JCac-Moody algebra s/(2). The relations
between the non-local charges Q± and Q± and these generators are:

Q+ = cF0q
H°/2; (3.22)

where c is a constant ( c2 = — y 2 ( q ~ 2 — 1) )• The last equation in (3.14) reflects the
V^2πi J

fact that the center of slq(2) is zero.
Note that when q = —i9(β = 2/^/3), the algebra (3.20) is a topological extension

of the N = 2 supersymmetry algebra. This fact was recently used in the study of
perturbations of the N = 2 superconformal series [15].

3d. The Fundamental Soliton Fields. We will now construct the fundamental
quantum fields that create sine-Gordon solitons out of the vacuum. These fields
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must satisfy a number of requirements: (i) they must have topological charge ± 1;
(ii) they must transform in a well defined way with respect to the non-local charges.
It turns out that these requirements are not independent. The condition (ii) is
fundamental for consistency of our approach based on non-local charges. More-
over, as we will see, these requirements imply that the soliton fields have well
defined equations of motions.

There are large families of operators with topological charge ± 1 . These
operators differ by a product with local fields, and in general differ in Lorentz
spin. Among them, there are four fields which generate these families. These fields,
which we call the fundamental soliton fields, are defined by:

^φ(,) (3.23)

They have topological charges ± 1 as can be seen from (3.9). They are chosen for
the special properties of their OPE's with the currents (3.19). Namely,

(z —

J4z)ΨΛ*)~- ^V-M+' '. (3.24)
(z - w)2/p

The relations (3.24) imply that the non-local charges will transform solitons into
anti-solitons and vise versa. Thereby, the soliton states will form a representation
of the algebra of non-local charges. The solitons fields in (3.20) are also characterized
by non-trivial Loretnz spin:

= ^ . (3.25)

It is interesting to display explicitly the braiding relations satisfied by the^oliton
fields (3.23). They can be derived from the relations (3.16). Let Ψ^=±ί and Ψ^=±1

represent the soliton fields. Then,

for x^y,

for χ^y>

V x, y. (3.26)

These relations are the braiding relations for the parafermions considered by
Smirnov [27]. However his approach is different from ours in that his starting
point is the construction of form factors from the knowledge of the sine-Gordon
5-matrix, whereas we obtain these relations from (3.4) and (3.23), and will derive
the S-matrix in the following section.

Let us now study the equations of motion for the soliton fields. The soliton
fields are chiral or anti-chiral in the ultra-violet limit. They are local with respect
to the perturbing field. This relative locality is a consequence of the fact that the
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soliton fields have topological charge ± 1. Therefore their equations of motion
can be analyzed using (2.10). One finds:

dzΨ± = AexpΓ ± iβφ ± i(β-^\Λ (3.27)

The equations of motion for the soliton fields cannot be expressed solely in terms
of the soliton fields themselves. This leads us to define some auxiliary chiral and
anti-chiral fields,

χ±(x, t) = expf ± i(β-jjφ(x, t)\ (3.28)

The equations of motion now become:

d-zΨ±=λ:(χτΨ±)χ±:,

dzΨ±=λ:(χτΨ±)χ±:, (3.29)

wherethe normal ordering is defined by a point-splitting procedure. The fields
(Ψ±, Ψ±) and (χ±,χ±) are sufficient to describe all the fundamental fields in the
theory. The interaction term can be written as

:cos(βΦ):=:(χ. V+M+ Ψ-)'+:{χ+ Ψ-){ϊ- *+)'.. (3.30)

This equation shows the connection between the sine-Gordon model and a
deformation of the SU(2) Gross-Neveu models. This connection will be explored
in Sect. 3g. The non-local conserved currents (3.19) can also be written in terms
of these elementary fields. All these facts attest to the strong internal consistency
of the framework based on non-local charges.

3e. The Representation of the Non-Local Charges on Asymptotic Multi-Soliton
States. In this section we determine the manner in which the non-local charges
(3.13) are represented on asymptotic (in the sense of scattering theory) multi-soliton
states.

Let | α = ± ^ , 0 > denote a single-soliton state with topological charge
&~ = 2α = ± 1 and rapidity θ, where θ parametrizes the on-shell energy-momentum,

£ = mcosh0; P = msinh0. (3.31)

We will henceforth set the mass m of the solitons to 1. An Λf-soliton state is
denoted as,

|αi,#i>®|α 2 >02>® •••®laN>0jv>- (3.32)

The vector space of single soliton states of fixed rapidity will be referred to as
{ > }

Consider first the action on single-soliton states. The action of the charges on
such states must form a representation of the algebra (3.20). This representation
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can be deduced as follows. We suppose that the fields (3.23) create the solitons.
Taking into account the topological charges of the soliton fields, we have the
following non-vanishing matrix elements,

< 0 | ¥ r

± ( x , ί ) | T l / 2 , β > # 0 , (3.33)

as ί—> ± oo. Analogous non-vanishing matrix elements exist for any operator
having topological charge ± 1 and which differs from the soliton fields by
multiplication with a local operator. Thus we can take either fields of the family
generated by the soliton fields Ψ± or Ψ± to create the soliton state | ± | , θ)
asymptotically. From the OPE's in (3.24) (and similarly for the anti-holomorphic
fields) one infers that the charges Q+ and Q+ will transform anti-solitons to solitons
and vise versa for the charges β_ and β_. More precisely, using the same technique
as in Sects. 2b and 3c, we derive the exact action of the non-local charges on the
soliton fields:

Q±(Ψτ) = λ:Ψ±(χ±χτ)=λΨ±. (3.34)

The fields Ψ± (or Ψ±\ implicitly defined in (3.34), have topological charge ± 1 .
They differ from the fields Ψ+ (or Ψ+) by the local operators χ±χ+ (or χ±X+\
and thus also create solitons asymptotically. An easy computation shows that

spin(Ψ+) = spin(Ψτ) + -. Therefore the action (3.34) is consistent with the Lorentz

ί y

spin ± - of the non-local charges, as it must be. In rapidity space, a Lorentz boost
y

is represented as a shift of θ:θ-*θ — α. The on-shell operators exp(±0/y) have

Lorentz spin + -. Taking all these facts together, we find the following

y
representation of the charges on the asymptotic solitons,

Q±=ceθ/?E±q±HI2

9

3T = H, (3.35)

where c is a constant, H = diag( -hi, — 1) and E+ are the Pauli spin matrices σ±.
The comultiplication of the charges defines their action on multi-soliton states.

As explained in Sect. 2a, this comultiplication follows from the braiding of the
currents with the soliton fields. The required braiding relations are computed from
(3.16) using the expressions (3.12) and (3.23). The result is:

J ± (x, ί) ¥V(y, ί) = q ± * ψr{y, t)J_± (x, ί); V x, y,

^ J ± ( χ Λ V x , y . (3.36)

The same braiding relations hold if the field J± or J± is replaced by the cor-
responding field H± or H±. Therefore, the comultiplication is:

) = Q±®l+q±H®Q±, (3.37a)
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= Q±®l+qTH®Q±, (3.37b)

Δ{H) = H ® 1 + H ® 1. (3.37c)

The last relation follows from the additivity of the topological charge &'.
It is instructive to compare the above results with the known structure of the

slq(2) loop algebra. (The reader is referred to Appendix A for definitions of the
terminology in what follows.) The isomorphism of the representation (3.35) to the
slq(2) representation (3.22) is made explicit by identifying the spectral parameter
x in the principal gradation with exp(0/y). The comultiplication (3.37) that we
derived in the quantum field theory can be compared with the known comulti-
plication of slq(2) using (3.22); they are equivalent as they must be. In particular
this implies that the comultiplication provides a representation of the algebra (3.20)
on asymptotic states with an arbitrary number of particles. This fact is important
in establishing the non-local charges as true symmetries of the theory.

3f. The S-Matrix from the Non-Local Charges. We will now demonstrate how
one can use the non-local charges to obtain non-perturbative information about
the sine-Gordon theory by providing a derivation of the soliton S-matrix.

The integrability of the sine-Gordon theory implies that the set of in-coming
and out-going momenta are the same. Let V1 ® V2 denote the Hubert space of
two-soliton states of fixed rapidities, i.e. Vx ® V2 is spanned by the states
\OL1 = ± ! , 0 i > ® | α 2 = ±i>#2> The two-particle to two-particle S-matrix is an
operator, S: Vx ® V2 -• V2 ® Vt. By Lorentz invariance S depends only on the
combination θx — θ2. Apart from the rapidity dependence, S depends on the
coupling β. In order to keep this dependence in mind we denote the two-body

(x \
—\q I with xf = exp^/y) and q = — exp(-iπ/y).
*2 J

The 5-matrix must commute with the action of the non-local charges since
they are symmetries of the theory:

IS,W] = [ £ 4 ( G ± ) ] = ίS,Δ(Q±U = 0. (3.38)

Let us rewrite (3.38) in a slightly different form. Representing the charges as in
(3.35) and multiplying both sides of (3.38) by q^/2®q^/2 or q ^ ^
wherever appropriate, we find:

l (3.39a)

x2 )

(3.39b)

(3.39c)
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Jimbo has proven that the solution S(x; q) to the above equations is unique up
to an overall scalar function v(θί2 = θx — θ2). He showed that the solution
automatically satisfies the Yang-Baxter equation, which is required for factoriza-
tion of the multiparticle 5-matrix. Constraints on v(θ12) can be found by imposing
crossing and unitarity. The minimal solution is the known sine-Gordon 5-matrix
[8]. For completeness we have provided the details in Appendix B.

3g. Alternative Descriptions: The Deformed Gross-Neveu Models. In this section
we will describe some of the above results from a different point of view with the
objective of further clarifying our construction. As we will see the sine-Gordon
theory can be formulated as a deformation of the Gross-Neveu model, or
alternatively a deformation of a current-current perturbation of the 5(7(2) Wess-
Zumino-Witten (WZW) model [28].

(i) First consider the above reformulation of the sine-Gordon theory when the
coupling β = 1. This point is known to correspond to a free Dirac fermion theory.
This is easily seen from the equations of motion (3.27), or from the interaction
term, if we write it as in (3.30). When β=l9 the χ+ fields become the identity and
we recover the action and equations of motion for the Dirac theory. Note that
the soliton fields (3.23) have s p i n | at this point and are the components of the
Dirac fermion. It is interesting to consider what happens to the conserved charges
in this limit. The currents (3.12) have Lorentz spin ±2 when β = 1. They are easily
seen to correspond to the energy momentum densities. Namely, J+ corresponds
to the Tzz component of the energy-momentum tensor for the topological charge
sector ± 1. The fields H + correspond to the trace of the energy-momentum tensor.
The deformation parameter q becomes one in this limit and the algebra (3.19) is
abelian; it is just the translation algebra.

(ii) Now consider the theory at the coupling β — y/ϊ, which corresponds to
the point where the perturbation is just becoming marginal. The currents (3.12)
have dimension one and are nothing other than the vertex operator representation
of the level one Kac-Moody currents [29,30]. Of course the usual infinite-
dimensional Kac-Moody symmetry in the conformal theory is broken in the
perturbed theory. What remains is a global 5(7(2) invariance. In this limit the
fields H+ and H± become J+ and J+ respectively. Therefore there are only two
conserved currents that results from the above construction (in addition to the
topological current) satisfying dzJ ± + dzJ± = 0 . The deformation parameter is

q = — l when β — y/ϊ. In the limit q = — lim eε the algebra (3.20) of the non-local
ε->0

charges becomes the global 5(7(2) algebra.

The limit β^^/l in Eqs. (3.39) that characterize the 5-matrix yields more
dynamical information than simply the s/(2)-invariance of the 5-matrix. Define
ε = ί/γ, and consider the limit ε-»0. Keeping terms to order ε, one finds that the
equations (3.39) express the Yangian invariance of 5 [2]. The reader is referred to
Appendix C for clarification of this point. In particular the Yangian symmetry
implies the 5-matrix at this particular coupling is a rational solution of the
Yang-Baxter equation.

When β = y/ϊ the sine-Gordon theory can be described as a current-current
perturbation of the level one 5(7(2) WZW model. This fact is the origin of the
Yangian symmetry of the 5-matrix at this point, as shown in Appendix C. After
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bosonizing the currents through a vertex operator representation the current-
current perturbation becomes the cos(y/ΪΦ) perturbation. The SU(2) WZW model
at level one is known to contain a single primary chiral field transforming in the
fundamental representation [31]. Its scaling dimension is \. The chiral primary
fields correspond precisely to the soliton fields we proposed in (3.23) at β = ^Jl.

A deformation of the current-current perturbation is provided by coupling the
different components, J+

9J~ and J° of the Kac-Moody current in an anisotropic
way,

SDJJ = Vzw + ^ $d2z(J+J- +J-J+ + gJ°J°). (3.40)
2π

For g = 1, the action (3.40) describes the current-current perturbation of the SU(2)
WZW model, which is o^course SU(2) invariant. After bosonization of the level
one SU(2) currents, the J°J° term which breaks the isotropy amounts to a rescaling
of the action of the bosonic fields. This rescaling breaks the SU(2) invariance and
re-introduces the coupling constant β into the sine-Gordon action.

(iii) Finally let us make contact between the sine-Gordon model and a
deformation of the SU(2) Gross-Neveu model. It is well known that at β = ^2
the sine-Gordon theory is equivalent to the chiral SU{2) Gross-Neveu model
[30,32]. Let us deform the SU(2) Gross-Neveu model such that the 5*7(2)
symmetry is broken. The action we choose is,

(3.41)

where Ψa are Dirac fermions. The parameter σ in (3.41) measures the deformation
away from the SI/(2) symmetric jpoint which corresponds to σ= 1. Bosonizing
according to the standard rules, Ψa Ψa = cos(φα) and Ψay5 Ψa = isin(φfl), we find,

SDGN = — ίd2z[dzφ1dzφ1 + σdzφ2dzφ2 + 2#cos(φ1 - φ 2 ) ] . (3.42)
2π

Only the difference of the fields φ1 and φ2 interact. We define two new fields Φ
and Φ by the linear combinations,

/ σ - / 1
Φ= ( φ ! - φ 2 ) ; * = /- (Φi+σφ2). (3.43)

V 1+ V 1+
The kinetic term in (3.42) is the sum of the kinetic terms for the fields Φ and Φ.

Therefore, the field Φ decouples, and we are left with a sine-Gordon action with

coupling constant β =

What happens to the Gross-Neveu fermions through this deformation? At the
SU(2) invariant point, the standard bosonization formula expresses the fermions
as exponentials of the bosonic fields. Namely the components of the Dirac fermions
Ψx are 1/̂  =exp(iφ1) and φ\ = Qxp( — iφ1)9 where φx is the chiral component of
φx (and similarly for Ψ2). Once the deformation parameter σ is turned on,
expressing everything in terms of the sine-Gordon fields Φ (and setting the
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d e c o u p l e d field Φto zero) we o b t a i n ψί = e x p ί - φ ), φ2 = e x P ( i\β — ^
\β / W β /

similarly for the complex conjugate fields. In other words, we have the following
correspondence between the deformation of the Gross-Neveu fermions and the
soliton fields (3.23), (3.28),

ψ±(x91) = ψ+(χ,0; Ψ2(χ>0 = x-(χ,0;

φ*(x91) = Ψ.(x, t); φ*(x, t) = χ + (x, t). (3.44)

Hence we see that introducing the parameter σ in the DGiV-action (3.41) breaks

the SU(2) symmetry to sφ) with q = exp(-i2πσ/(l +σ)).

3h. The Restricted Sine-Gordon Theory Revisited. In the works [33-37] it was
shown how at special values of the coupling β one could use the quantum group
symmetry of the sine-Gordon S-matrix to restrict the theory to obtain perturbations
of the c < 1 minimial conformal series [38,39]. It is of value to re-examine the
restricted sine-Gordon (RSG) theory from the vantage of the non-local charges
developed above.

As emphasized by Reshetikhin and Smirnov [36], the energy momentum tensor
is only quantum group invariant if it has a background charge contribution. Now
that the charges generating the quantum group symmetry are available, one can
see this fact in an explicit way. Let T(x,t) be the Tzz component of the
energy-momentum tensor. Quantum group invariance of T(x, t) means,

[β + ,Γ(x, ί ) ]=0. (3.45)

Consider the above equation in the massless limit, when Q+ = f — J + , with J+
2πi

given in (3.12a). Equation (3.45) is equivalent to the condition that Q+ be a
dimension zero operator. This is accomplished if T(x,t) has an additional
background charge,

T(z,z)=-±d,φdxφ + iy/2aod
2

xφ. (3.46)

That Q+ has dimension zero is a relation between the background charge α0 and
the coupling constant /?,

When β2/2 = p/(p + 1), α0 is such that c = 1

In the Feigin-Fuchs description of the minimal models [40,41], Eq. (3.45)
defines Q+ to be a screening operator. Similarly for Q_. These two screening
operators generate the finite dimensional quantum group slq(2). The other non-local
charges β_ and Q+ become identified with integrals of the operators Φ 3 ; 1 and Φ 3 ; 1 .
(See [38] for a definition of these fields.) The spin of these charges is twice the value
of when the background charge is zero,

2 2
spin(β_) = - spin(β+) = - = -. (3.48)

y p
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In particular this new value of the spin explains why it is necessary to first transform
the soliton S-matrix from the principal to the homogeneous gradation (see
Appendix A) before restricting it. In other words, introducing the background
charge in the stress-tensor (3.46) changes the gradation of slq(2) from the principal
to the homogeneous one. The action of the residual conserved charges β - and
Q+ on the kink states of the RSG theory were described in [35].

The soliton fields (3.23) are still expected to create particles in the soliton sector
of the restricted theory. Let ΨΛ=±1,2(x) denote the soliton fields Ψ±(x). A
multisoliton state is described by

(3.49)

Due to the slq(2) symmetry, this Hubert space may be decomposed into irreducible
representations

χ (3.50)

where VU) is the 2j + 1 dimensional spin(j) representation of slq(2), by using the
g-analog of the Clebsch-Gordon coefficients. We have the following definition of
the kink fields Kjιj2(x) for j 2 = j x + 1/2:

= Σ (P° * kλ\h h h] ΛψMVM l (3.51)

where the brackets are the g-Clebsch-Gordon coefficients. The restriction relies
on special properties of the representation theory of slq(2) when q is a root of unity,
and amounts to a restriction on the allowed spins of irreducible representations

[42-44]. This yields kinks KJιh{x)9 where Λ , j 2 e j θ , l / 2 , . . . , ^ - l j .

I i l k h hIt is natural to ask where these kink fields are in the minimal models. Including

b

p-ί

the background charge, the dimensions of the fields Ψ_, Ψ+ become - — and
4

respectively. The dimension of the field Ψ_ corresponds to that of the Φ2 i

?
primary field, whereas the field Ψ+ is not in the spectrum of primaries.

The minimal unitary models are equivalent to the coset theories
SU(2)ι®SU(2)L

— for p = L + 2, where SU(2)L denotes the 51/(2) WZW model at

level L [45]. Denote the primary fields of the SU(2)L theory by (L j), where
j = 0,1/2,..., L/2. In coset notation the Φ2 i field is

where dot refers to the scalar representation. Thus we see that the Φ1Λ field is
associated with the fundamental representation, as expected. The kink fields Kjιj2(x)
correspond to the intertwiners in the decomposition of Φ21 into chiral vertex
operators. More specifically, they are associated with the decomposition of the
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factor (L; 1/2). The kink fields thus satisfy the same non-abelian braiding relations
as these chiral vertex operators [46-49].

The ultra-violet limit of the RSG theory can be considered as a Liouville theory.
We remark that the Liouville theory is also characterized by non-local charges.
The Liouville theory has the action

Suouv. = j - \d2zdzΦd-zΦ+^- j</2zexp(- iβΦ). (3.53)

Following the analysis of Sect. 3b, one discovers only two non-local charges Q +
and Q_ again defined by (3.12) and (3.13). As described above, requiring these
charges to commute with the energy momentum tensor endows it with a
background charge, and the charges Q+ and β_ have spin zero. Together with
the topological charge they satisfy the finite dimensional algebra slq(2\ where q is
still given by q = exp( — 2πi/β2). These charges may be useful in describing the
quantum group symmetry of the Liouville theory and its associated minimal con-
formal models that has been studied in [50-53].

3i. Additional Remarks. The study of the sine-Gordon theory as a quantum field
theory has a long history. It is of interest to compare the above results with the
existing literature. Interest in the quantum theory began with Coleman's work,
where it was shown that the sine-Gordon theory is equivalent to the massive
Thirring model [9]. Coleman further conjectured that the Thirring fermions are
the sine-Gordon solitons. Subsequently, Mandelstam constructed quantum
operators in the sine-Gordon theory that correspond to the Thirring fermions
[10]. On the other hand, Zamolodchikov and Zamolodchikov determined the
exact 5-matrix using a minimal number of assumptions, such as (7(1) symmetry,
crossing symmetry, the Yang-Baxter equation, and the requirement that it agree
with the perturbative expansion [8]. Korepin was able to derive the known
5-matrix starting from the Thirring theory, but the Thirring fermions had to be
treated as pseudo-particles [54]. The true solitons were obtained by filling the
Dirac-sea of pseudo-particles in a well-prescribed way.

Within our framework, the fundamental quantum fields that create the solitons

have fractional spin ± -^ they can only be identified with the Thirring fermions

when β= 1, i.e. when the theory is free. Taking into account the expressions for
the (anti)-chiral bosonic fields, the soliton fields we consider are of Mandelstam-
type. One distinction between our fundamental soliton operators and Mandelstam's
fermionic operators is that ours are chiral in themassless limit. Indeed the fermions
in the massless Thirring model satisfy dz Ψ = J Ψ, dz Ψ = J Ψ, where J, J are the
(7(1) currents. In our notation, the Mandelstam operators are:

= exp( ± l-(- + β)φ(x,t) + l-(\- β)φ(x,t)

^ Q ^ (3.54)

Note that these operators also have topological charge ± 1, and are therefore in
the family of fields generated by our fundamental soliton fields. The Mandelstam
operators are primarily characterized by their Lorentz spin ± 1/2. Thus the
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Mandelstam fermions are not the unique operators that create the solitons. This
non-uniqueness can be attributed to the fact that the Lorentz spin of an asymptotic
state is not a measurable quantity in 1 + 1 dimensions.

4. Introducing the Center: The Central Sine-Gordon Model

As we have seen, the algebra of non-local charges in the sine-Gordon theory is
slq(2) with zero center. The fact that the center is zero is what allowed us to find
the finite dimensional representations (3.35). These finite dimensional representa-
tions were sufficient to deduce the S-matrix. One of the lessons learned in the
conformal field theories [38] is that it is important for solving the model that the
symmetry algebra possess infinite dimensional representations. In the case of the
Kac-Moody algebra, it is necessary for the center to be non-zero in order to have
only such infinite-dimensional representations. This leads us to believe that one
must introduce the center into the algebra slq(2) in order, for example, to constrain
the correlation functions.

The vanishing of the center is traced to the fact there is only one topological
charge, which leads toH1= - Ho as in (3.22). This suggests that one should introduce
new fields into the theory with additional topological charges. It is well-known
that the sine-Gordon theory is a Toda theory over the Kac-Moody algebra s/(2)
without center. Namely, introduce a field Ω valued in the Cartan subalgebra of
s/(2), Ω(x, t) = YjHiΦi(x, ί), where Ht form a basis of the Cartan subalgebra. The

duality relation between the simple roots α,- of sl(2) and the Cartan generators Ht

is defined through the Cartan matrix: atj = Hi&j. Consider the Toda action,

(4.1)

Setting Ω = H1Φί+ H0Φ0, where Ho = — Hu we find that the action (4.1) is the
sine-Gordon action for the field Φx — Φo. If we do not impose the zero center
condition, but take instead Ho = K — Hl9 with K the center, then the resulting
action is unaffected since KOLJ = O.

The correct thing to do is to recognize that the full algebra s/(2) contains an
additional element, the derivation, which we denote by d. The derivation measures
the order of the grading: [d, Ja

n~\ = nJa

n. With the derivation included, the Killing
form is non-degenerate on the Cartan subalgebra. In particular the important
non-zero inner product is (d,K} = 2. Following Babelon and Bonora [55], we
introduce an additional field η for the derivation,

Ω(x, t) = HΦ(x, t) + dη(x, t) + Kξ(x, t). (4.2)

The affine Toda action (4.1) becomes:

\(dzηdzξ + dindzξ)\ + λμh(ei'^ + e^φ+H
2 J In

(4.3)

Setting η to zero, one recovers the sine-Gordon theory.
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Let us now see the implication for the non-local charges. A simple computation,
that we leave to the reader, shows that four non-local currents are still conserved.
The currents J±,J± and H_,H+ are defined as before, (3.12). Only the currents
H+ and H_ are changed according to:

) = - ylexpI i[ ̂ - β )φ(x91) - iβφ(x, t) + iβη{x,

„ [x,t)-iβφ(x,t) + iβη(x,ή .
\β / J

(4.4)

The non-local charges now satisfy the following algebra:

Q±Q±-q2Q±Q±=o,

a = — γ2 1 where $~n is the topological charge of the η field,
2πi

. (4.6)

This is the centered sQϊ) algebra with Ho= -f; Hi= βΓ + 3~n.

We conclude that the central sine-Gordon models are invariant under the

quantum affine Kac-Moody algebra slq(2\ and the center of slq(2) is the topological

charge of the additional field η. This suggests that it could be possible to formulate

the central sine-Gordon model as a theory of interacting slq(2) modules.

5. Generalization to Other Groups

In this section we will generalize the above results to other groups. Namely, we
will construct the non-local charges for the affine Toda theories based on a simply
laced Lie algebra G. These results will then be applied to perturbations of conformal
field theories. We skip some of the details, having provided them for the s/(2) case.

5a. Non-Local Charges for the Affine Toda Theories. Let G be a simply-laced finite
dimensional Lie algebra of rank r, and G its affine extension. In this section, G
and its g-deformation Gq will always refer to the zero-center algebras. A basis of
simple roots for G will be denoted by "αi9ί = 0,l,...,r, where ό? i = 1 r are the
simple roots of G and α"0 is the extended root, i.e. the horizontal projection of o?0

is the negative of the highest root of_G. For simply-laced algebras, the roots all
have the same length 'oci'~oίi = 2. Let Φ be a vector of fields valued in the Cartan
subalgebra of the algebra G, i.e. Φ = ( Φ \ Φ 2 , . . . , Φr). The affine Toda theory is
defined by the action

S = —\dzdzΦdiΦΛ \dz 2^ expl — ί—— α/Φ I, (5.1)
4π 2π Λj simple \ ^/2 /



Quantum Group Symmetries and Non-Local Currents 2D QFT 123

where β is a real coupling in the range O^β^ yj2. For convenience of notation

we define β = β/y/2. In the above equation, the sum is over the simple roots of

G. The propagator for the fields are

< Φ\z, z)Φj(0) ) = - δij l o g (zz). (5.2)

The sine-Gordon theory is equivalent to the s/(2) case. As described for the
sine-Gordon theory, we treat the action (5.1) as a perturbation of the free boson
theory. The chiral and anti-chiral components φι and φι of the Toda fields are
defined as in (3.4).

The action (5.1) is not hermitian unless the algebra is s/(2). It is also not
renormalizable [56]. These problems will be addressed in Sect. 5c. Our aim is to
identify non-local conserved charges in this model and to show how they provide
a non-perturbative scheme for quantizing the Toda theory (5.1). In other words,
our approach consists in defining the theory by implementing the non-local
symmetry.

Following the analysis in Sect. 3b, we find the following non-local conserved
charges to first order in perturbation:

with,

Ja.(x91) = exp( ^ayφ(x91)),
\β /

Hα.(x,t) = -γλexpί - i(β-Λccyφ(x,t)- iβotyφ(x91)\

J_α.(x,ί) = expί|α i 0(x,ί)\

H.aj(x91)=- γλexp ( - h-X\,φ(χ, ή - iβayφ(x91)\ (5.4)

In the above equation, α,- is any simple root of G. The above currents define r + 1
conserved charges

^ ( J ώ V - . , + \d_Λ)) (5.5)
2πi

As before, the spin of these charges is ± 1/y, where γ is defined in (3.14): - = — — 1 =
y β2

-— 1. We define the topological charges

H^H^ίldxOt dtΦ. (5.6)
2π r
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Due to the fact that there are only r independent fields, the above r + 1 topological
charges are not all linearly independent.

The conserved charges satisfy the following algebra:

[H«,β- β i ]=-f lyβ- β i , (5.7)

QaiQ-ak-q**Q-akQaj = aδjk(l - q2H*>\

I a = — y2 \ where q is as in (3.18), q = exp( - iπ/β2), and ai} = α, α, is the generalized

Cartan matrix of G. These equations are the defining relations of the Gq loop
algebra. Only the Serre relations are missingχ(See Appendix A for definitions.)
The relation with the generators Ei9 Fi9 Ht of Gq is

Qai = cEiq^
2; Q-ai = cFiq

H>'2 (5.8)

for some constant c.

5b. The Soliton Fields and the S-Matrices. Let us first consider the SU(N) case.
The soliton fields are characterized by their locality with respect to the perturbation;
this ensures they have well-defined equations of motion. These soliton fields are
in one-to-one correspondence with the N-l fundamental representations of
SU(N). For SU(N), all the fundamental representations are integrable (highest
weight) representations of G at level one. We therefore have a simple vertex operator
representation of these soliton fields. The soliton fields associated to the nth

fundamental representation are:

= exp ( - ^μn'φ(x, t)\ (5.9)

with μn any weight_of the nth fundamental representation oϊSU(N). The topological
charge of Ψμn or Ψμn is the weight μn. As for SU(2)9 all the fields which differ from
the soliton fields (5.9) by local operators have the same topological charge. They
also create the solitons asymptotically.

We denote by pn the nth fundamental representation, by Vn its representation
vector space, by ωn its highest weight (satisfying ωn-0Lj, = δnj\ and by [ ω j the set
of weights of pn.

The fields whose topological charges are weights in [ ω j are stable under the
action of the non-local charges (5.5). More precisely, we have:

Q«j(ΫJ=0 if (μn + <xj)φίωnl

+aj if (Λ + α^eCωJ,

if ( A - α y ^ ω J ,

j μ a j if μ n - α , G [ ω J , (5.10)

where Ψμn (or ΨμJ are fields which differ from Ψμn (or Ψμn) by local operators.
Note that (5.10) is compatible with the weight structure of SU(N).
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Thus we conclude there are ΛΓ — 1 families of solitons, where each family
transforms under a fundamental representation of SUq(N). We will refer to these
representations as pn, and to the vector spaces of these representations as Wn. The
solitons in a given family are all degenerate in mass. We define Mn to be the mass
of the solitons in the representation ρn. These masses will be specified below.

The action of the non-local charges on the asymptotic solitons can be deduced
from (5.10), from the fact that they must form a representation of the algebra
SUq(N), and from the Lorentz spin of the charges. As can be seen from (5.10), the
vector space Wn of the representation ρn of SUq(N) is isomorphic to the vector
space Vn of the representation ρn of SU(N):Wn = Vn. The action of the non-local
charges on asymptotic states in pn are given by (5.8), where the generators Eiy Fh Ht

oϊSUq(N) are in the principal gradation of the representation pn. More specifically,

Qxι = ce^e^2; Q_ai = ce'^j^2, (5.11)

where ei,fi^Hi form a spectral parameter independent representation of the

quantum algebra SUq(N) on the vector space Vn = Wn.
Let Smn denote the S-matrix for the scattering of two incoming (and outgoing)

particles in the representations βm,pn. It is an operator Smn:Vm(g) Vn->Vn® Vm.
This S-matrix is required to commute with the action of the non-local charges.
This is equivalent to the equations

= [S m π , (p m ® pn)4(F f)] = [S m n , (pm® βn)Δ(Ht)l = 0, (5.12)

where Δ is the standard comultiplication for SUq(N).
It has been shown that the solutions Smn to (5.12) are unique up to an overall

scalar function. Standard techniques have been developed for finding the solutions.
We refer the reader to a recent review of Jimbo [57]. We take the following ansatz
for SmB:

LnW) = Xmn(θ)vmn(θ,q)Rmn(θ,q), (5.13)

(see the analysis in Appendix B for the 51/(2) case). Above, Rmn is a crossing
symmetric solution to (5.12). The scalar function vmn is defined to be the minimal
solution to the constraints of crossing and unitarity for the product vmnRmn. The
unitarity constraint reads

(-θ,q). (5.14)

The crossing symmetry condition on vmn is

vmn(θ) = viίm(iπ-θl (5.15)

where n is the charge-conjugate representation to n.
The additional factor Xmn(θ) is a CDD ambiguity factor that is by itself a

solution to the unitarity and crossing conditions. The mass Mn and the CDD
factors will be fixed below (see Sect. 5c) by examining the /?->^/2 limit. They will
turn out to be the same as for the SU(N) Gross-Neveu models [58,59]. To clarify,
we first give the result; the masses are determined to be:

» - l , . . . , N - l , (5.16)
sm(π/JV)
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and the CDD factors Xmn are:

Xmn(θ) = f(m + n)f(m + n - 2)2f(m + n- 4)2 . . ./( |m - n|), (5.17)

where

. /0 iπx
sinh +

sinh
<««>

The S-matrix (5.13) was conjectured in [11,12]. That it satisfies all the necessary
requirements has been checked in [12].

Let us now turn to the other simply laced algebras G. We use the same
convention for denoting the representations of G and Gq. New subtleties arise due
to the fact that not all the soliton fields admit a vertex operator representation
as in (5.9). Only the solitons which belong to the fundamental representations
of G that are integrable for G at level one have such simple soliton fields. Let

θ = Σ mi^h where θ is the highest root, and mi is a positive integer. The funda-
i=ί

mental representations that are integrable at level one are p t for which m{ = 1.
Such representations exist for all the algebras except E8. For this class of represent-
ations, all the computations described above can be similarly done. This implies
that for these specific fundamental representations we still have the isomorphism
between the spaces Wn and Vn:Wn=Vn. For the other representations, the situation
is more complicated. The spaces Wn and Vn are no longer isomorphic; Wn is the
direct sum of a finite number of spaces Vk. This can be seen in a variety of ways.
For the approach we are developing, this fact is best thought of as a property of
the representation theory for the algebra Gq. Namely, the representations of Gq

are not isomorphic to that of G ^ O C ^ x " 1 ) , where C(x,x - 1 ) is an arbitrary
function of the spectral parameter x. The difference between the spaces Wn and
Vn finds it origin in the Serre relations for the quantum loop algebras Gq. This
can be explicitly seen by examining the fusion procedure [60] for the Gq R matrices.
Alternatively, this fusion procedure may be viewed as nothing other than the
requirement of closure of the bootstrap for factorizable scattering. In all cases the
S-matrix will still be as in (5.13) but now it acts on the spaces Wm®Wn\

sG.wm®wn^wn®wm,

where R^n are the Gq K-matrices in the representation Wm®Wn.
Let us be more specific by specializing to the DN = S0(2N) case. The fundamental

representations which are integrable at level one are the vector and the spinor
representations. We denote by (ps, Vs) and (p5, V5) the spinor representations and
their vector spaces, and by (pΠ, Vn\ n = 1,..., N — 2, the tensorial representations
ordered in the usual way; pλ is the vector representation. To illustrate how the
difference between the spaces Vn and Wn manifests itself, consider the S0q(2N) R
matrix in the vector representation and its fusion. In the homogeneous gradation
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(for simplicity) this R matrix is [57]:

l*-<Z)^ω o> (5.20)

where Pω are the projectors onto the irreducible representations of SOq(2N) of
highest weight ω.

To apply the fusion procedure [60], we first have to find a value of x for which
RVί®Vi projects onto a proper subspace of V1®V1. For xq2N~2 = l, RVί®Vi

projects onto the trivial representation. However for xq2 = 1, we have

This implies there is no way to disentangle the space V2 from the space Vo.
Therefore the fusion procedure shows that W2 = V2 + Vo and that

Rvι®w2(x) = (l®Rvί®vι(M))(Rvι®vM4~1)®1)\vι®w2 (5.22)

This method goes through for the other fundamental representations by fusing
recursively. The decomposition of the spaces Wn on the spaces Vn and the masses are:

ί nπ \
= 2Msin — — for n = l , . . . , N - 2 ;

\2N-2J

WS=VS; MS = M;

W-s = V-s; M-s = M. (5.23)

In all cases the decompositions of the spaces Wn coincide with those of the
representations of the Yangians. This is because the S-matrix (5.19) is Yangian
invariant in the limit β = yjl. This will be explained in the next section, but could
have been foreseen from the idea the spaces Wn are expected to be stable when β
is varying. The depositions of the spaces Wn and the masses Mn are all known
and can be found in [61,59].

Though we have fixed some of the properties of the 5-matrix by appealing to
known results on the Gross-Neveu-like models, this is not a necessary feature of
our construction; these results could have been found by closing the bootstrap
directly.

5c. The Gross-Neveu Limit. As shown in [56], the theory (5.1) is not renormalizable.
Let us demonstrate this fact by a different analysis than the one used in [56] that
is more suited to our purpose. Consider the action (5.1) when β = ^/l. At this
point the perturbing operators are marginal. More generally, consider a conformal
field theory perturbed by some marginal operators Θ\z, z),

S = S C F T + )-\ά2z Σ λiήz, z). (5.24)
2π i

Introducing an cutoff /, Zamolodchikov has shown [62] that the beta-functions
to second order are

^— v_^ Λ Λ L " T " *** i

dlog(ί)
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where Cjf are the structure constants of the operator algebra:

.... (5.26)

Returning to the action (5.1), the perturbing operator is £ JJ-v where
^simple

J α = exp(ια </>) is the bosonized expression for the level one Kac-Moody current
[29,30]. The main point is that the operators Ja for α a simple root obviously do
not form a closed algebra by themselves; a closed set of operators is given by J ± α

for any positive root α (along with Ha). From (5.26) and (5.24) we thus infer that
operators corresponding to the non-simple roots will be generated under renormal-
ization. We are thus led to the current-current perturbation of the level one WZW
model:

j < f z £ j J , (5.27)
2π a

where Ja

9J
a are the Kac-Moody currents. This action is now renormalizable.

From the bosonized form of the Kac-Moody currents, one sees that the above
action (5.27) is of Gross-Neveu type:

S = — \d2zdzΦd-2Φ + -\d2z X cos(/?α Φ); with 0 = 1 , (5.28)
4π π α>o

where the sum extends over all positive roots. For example, the bosonization of
the SU(N) Gross-Neveu models yields the above action [30,32]. (See Sect. 3g for
the case of SU(2)).

The S-matrices for the G-invariant Gross-Neveu-like models (5.28) are known
explicitly for the classical Lie algebras [58,59]. The structure of these S-matrices
is expected to be the same for all Lie algebras. We now argue that the β-+Jϊ
limit of the S-matrices in (5.13) are precisely these S-matrices. Note that the non-
local currents in (5.4) are the bosonized expressions for the Kac-Moody currents
in this limit. Furthermore, in this limit q-> — 1, and the symmetry algebra is
isomorphic to the Lie algebra G. Thus the S-matrix must be G-invariant. The fact
that the theory can be formulated as a current-current perturbation of the WZW
model further implies that the theory has Yangian symmetry (see Appendix C).
This symmetry can be seen explicitly by taking the limit /?->χ/2 carefully in
Eqs. (5.12), as is shown in Appendix C for the Si/(2) case.

For other values of the coupling β near v /2, the arguments based on the
beta-functions (5.25) are not significantly modified, and one therefore expects the
action to still be unrenormalizable. However, at this stage of development we are
unable to conclude that the S-matrices that are solutions to (5.12) correspond to
the theory with the action (5.28), except at β = yfl. The reason is that the non-
local charges (5.5) are not symmetries of (5.28), but are symmetries of (5.1).

To summarize this section, we have found that for β < y/l, the S-matrices
(5.13) can only be formally associated with the action (5.1) due to the non-
renormalizability and non-hermiticity of the action. At /? = ^ / I , the S-matrix (5.13)
is the physical S-matrix for the renormalizable action (5.28). However, as we will
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see in the next section, the ^-matrices (5.13) are just what one requires in order
to solve certain perturbations of the coset conformal field theories.

5d. Applications to Perturbed Coset Conformal Field Theories. Let Gκ denote the
G-invariant WZW model at level K. In [11] factorizable S-matrices for the full
series of coset conformal field theories GK®GJGK+L were conjectured. The main
difficulty in proving these conjectures is establishing the form of the "unrestricted"
S-matrix (for 51/(2) this is just the sine-Gordon soliton 5-matrix). In this section
the non-local charge formalism will be used to determine these 5-matrices.

We consider the coset conformal field theories Gl®GJGl+L with central
charge [45]

c = c(G1) + c(GL)-c(G1+L). (5.29)

It is well-known that the coset^FT has a generalized Feigin-Fuchs construction
consisting of r bosonic fields Φ valued in the Cartan sub-algebra of G [63,64].
The energy momentum tensor takes the form

T(z)= -±dzΦ dzΦ + ioto?'d2

zΦ, (5.30)

where ~β is the Weyl vector of G, and α0 is a background charge

1 (5.31)
*)

(h* equals the dual coxeter number of G). The Feigin-Fuchs construction can be
formulated as the quantization of the simple Toda theory over the Lie algebra G
[63]. The simple Toda action is as in (5.1), but without the extended affine root
in the sum. To formulate the Feigin-Fuchs construction in this way, one chooses

β βthe coupling to be a screening charge: = — α_, i.e.
yβ yβ

(5.32)

As recognized in [65,66], if one treats the additional extended root term in
the affine Toda theory as a perturbation of the CFT of the simple Toda theory,
then it formally amounts to a perturbation by the coset field

(5.33)

where (L /l) is an integrable representation of highest weight A for Gκ, and ,Adj
refer to the scalar and adjoint representations respectively.

It is important to bear in mind that the Feigin-Fuchs construction entails a
restriction of the operator algebra, i.e. the null states must be projected out [40,41].
Upon this restriction the unitary, rational CFT of the coset is obtained. This
implies that the action in (5.1) is not to be taken literally for the applications we
have in mind. It is precisely this kind of restriction of the operator algebra that
is needed to render invalid the argument of Sect. 5b that led us to conclude that
the action is not renormalizable. Therefore we conclude that when L is finite, no
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additional terms are generated in the action (5.1) under renormalization, due to
the above restriction of the operator algebra. In particular this implies that the
non-local charges (5.5) can be used to solve the model. Note that when L->oo,
there is no restriction of the operator algebra and we are back to the Gross-Neveu
action (5.28).

As for the s/(2) case [33,35,36], the S-matrices (5.19) must be restricted to the
RSOS form in order to describe the perturbed coset theories. (See also [67] for
the case of restriction of the twisted Aψ theory.) This restriction is a massive
analog of the Feigin-Fuchs construction. The restriction procedure relies on special
properties of quantum group representations for q, which now is exp( - iπ/(L + h*))
from Eqs. (3.18) and (5.32), equal to a root of unity. Standard techniques have
been developed for performing this computation [68,69]. More specifically, the
S-matrix for the Lth theory in the coset series was conjectured to be [11]

= Xmn(θ)vmnφ, q)R%(θ, q), (5.34)

where R1^ is the crossing symmetric RSOS restriction of Rmn. (We have dropped
the superscript G in (5.19).)

The spectrum consists of r families of kinks, which we denote as (Kn), n = 1,..., r,
and all kinks in the nth family have the same mass Mn. For concreteness we now
specialize to SU(N). The kinks in {Kn) are labelled by two highest weights oiSU(N).
A kink of rapidity θ is K[°^h\θ\ where a, b denote highest weight representations
of the SU{N) WZW model at level L. A pair of weights [α->b] is said to be
^-admissible iff the representation b appears in the tensorial product a®ρn. Only
w-admissible pairs of [α -» b] appear in the kinks of the family (Kn).

When L = 1, as in the SU{2) case the RSOS quantum numbers are frozen, and
the S-matrix reduces to the CDD factors:

S^m^X^Θ). (5.35)

This is the result conjectured in [70]. In this context, the CDD factors are referred
to as the minimal solutions to the bootstrap for the spectrum of masses Mn.
They also appear in the study of real coupling affine Toda theory and can be
found in [71] 4.

6. Conclusions

To summarize, we have demonstrated that quantum non-local conserved charges
characterize many integrable quantum field theories. These non-local conserved
currents provide a quantum field theoretic basis for understanding the structure
of Quantum Groups.

Though our discussion in Sect. 5 has focused on the integrable quantum field
theories related to perturbations of the cosets where one of the levels is one, the
methods extend to the theories underlying an arbitrary coset of the form

L. For the case of SU (2), these field theories are the (fractional) super

4 We recently received the preprints [72,73], where RSOS S-matrices for cosets of the form
Gί®GJGί+L were also considered, and appear to be in agreement with the S-matrices in this
section
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sine-Gordon theories and their restrictions [15]. The S-matrices (5.19), (5.34) and
the Yangian (rational) limit of (5.19) are the basic building blocks for the S-matrices
for the full series of cosets, the fractional super Toda theories, and for the current-
current perturbation of the WZW models at any level. The S-matrices for the
cosets are a tensor product of two RSOS factors; they are obtained from a restriction
of the fractional super Toda theories whose S-matrices are the tensor product of
an RSOS factor and a trigonometric factor (5.19). The S-matrix for the massive
WZW model is the tensor product of an RSOS factor and a Yangian invariant
factor, where the RSOS factor is not present at level one. The arguments leading
to these conclusions are based on the residual symmetries of the restricted models
and their appropriate limits. The reader is referred to [11] for the details of the
arguments.

Since the non-local currents completely characterize the S-matrices, we expect
that they may also be used to constrain correlation functions. We believe that
introducing the center into the symmetry algebra as was done in Sect. 4 is a
promising new approach to this problem.

Appendix A. Quantum Affine Algebras

We review a few basic facts about quantum affine algebras. ^ ^
Let EuFl9Hί denote a Chevalley basis for s/(2). The algebra s/(2) has an

additional simple root with generators Eθ9Fθ9Ho. The affine Kac-Moody algebra

s/(2) is defined by the following relations:

l * ]

where Ad is the adjoint action and α y = ί ). The last relation in (A.I) is

referred to as the Serre relation. The algebra has a central element K = Ho + H1

called the level. When the center K is zero the algebra is called the loop algebra
and is isomorphic to s/(2)®C(x, x " 1 ) , where C(x, x " 1 ) is an arbitrary function of
a formal parameter x, referred to as the spectral parameter. Choosing x", neZ as
a basis for C(x, x~1), a zero-center representation of s/(2) is provided by Ja

n = Jaxn

with Ja forming a representation of s/(2). In this representation, the Chevalley
generators are,

E0 = xE_; F0 = x~1E + ; (A.2)

H1 = H; Ho = — H,

with E± and H a Chevalley basis for the simple Lie algebra s/(2),

[ H , £ ± ] = ± 2 £ ± ,

[£ + ,£_] = H. (A.3)
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The representation (A.2) is in the so-called principal gradation. The gradation
is only meaningful up to inner automorphisms of the Lie algebra 5/(2). Another
useful gradation is the homogeneous gradation with,

Eo = x £ _ ; F0 = x E + ;

H 1 = fί; Ho=-H. (A.4)

The relation between the two gradings for an element αes/(2) is,

βprincW = σ αhomo.(X> " ' . (A.5)

where σ = xHI2. ^ ^
The algebra slq(2) has the defining relations,

[#;, £;] = OIJEJ,

where Ad, is a g-deformation of the adjoint action, first defined in [74]. The algebra
slq(2) is a Hopf algebra with comultiplication Δ,

Δ(Et) = Ei®q~ Hil2 + qH<12 ® Eh

i) = Ft ®q-Hil2 + qH 12 ® F, . (A.7)

The slq(2) loop algebra in the principal or homogeneous gradation can be
represented as in (A.2) or (A.4) where now E± and H generate the slq(2)
algebra:

[/f,£±]=±2£±,

[£ + , £ _ ] = - ?—. (A.8)
q-q

The above structure is straightforwardly extended to the untwisted quantum
affine algebras Gq with G any simple Lie algebra. In this case the^extended roots
in the principle gradation are E0 = xE_β,F0 = x~1Eθ, where θ is the highest
root.

Appendix B. Details on the Sine-Gordon S-Matrix

Jimbo has shown that the solution S(x; q) of Eqs. (3.39) can be written as follows,

Six: q) = σ7ί S(x: q)σ~1, (B. 1)
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where x = xjx29 σ12 = x f / 2 ®xf 2, σ2 1 = xf / 2® xf/2 and,

*

q 0 0 O λ

0 (q-q'1) 1 0
0 1 0 0

0 0 0 a

(B.2)

with t (x) an arbitrary function of x. The matrix R plays a central role in the theory
of the finite dimensional quantum group slq(2). It satisfies the Hecke algebra,

The Yang-Baxter equation for the S-matrix is a consequence of the Hecke algebra
for R.

The function v(x) in (B.2) is fixed by the unitarity condition of the S-matrix:

S(x;q)S(x~1;q)=l. (B.4)

Using the Hecke algebra relations (B.3), we have,

JJ^A, HJijyΛ, , iff — U\Λ,jU\A, jlf ^1 — Λ l£ )yί Λ H ) ' \-*^"*^/

Therefore v(x) is characterized by the equation,
2

ι;(xMx"1) = - j-Λ- z^-τ (B.6)
(1 — x qz)(l— x zqz)

Crossing symmetry further requires v(θ) = v(iπ — θ\ or

Φ) = ^ - ^ - \ (B.7)

There exists a minimal solution to Eqs. (B.6) and (B.7) for v(x). It is obtained
iteratively as follows. One first tries v(x) = q/(l — x2q2). This solves (B.6) but spoils
the crossing symmetry. Crossing symmetry is restored by multiplying by 1/(1 — x" 2 ).
Now unitarity is spoiled so we start again, the process never terminating. The
result is,

Putting all these pieces together one verifies that (B.I) is the known S-matrix for
sine-Gordon solitons.

Appendix C. The Yangian Limit

In this appendix we describe the connection between the q -> — 1 limit of the
quantum loop algebra and the Yangian symmetry.
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We first show how Yangian symmetry is generic to current-current perturba-
tions of the G-invariant WZW models. Consider the action (5.27) in the instance
that the WZW model is at level one. The currents satisfy the OPE

(C.I)
(z — w) z — w

and similarly for I. Using this OPE in the equations of motion (2.10), we
obtain

d,r = λ(dzJ
a + fa

bcJ
bn

dzΓ = λ(dzJ
a + fa

bcJ
bJc). (C.2)

Define the gauge fields

TΓxl ( C 3 )

where J = £ ta3\ J = Σ fJa> w i t h f a representation of the Lie algebra of G. The
a a

equations of motion (C.2) can be written as

+ Λ,]=0. (C.4)

The relations (C.4) are the foundation for the construction of some non-local
charges that generate the Yangian symmetry [5,6].

The on-shell realization of Yangian symmetry can be exhibited explicitly by
taking the /?->>/2 limit of the algebraic equations characterizing the 5-matrices
(3.39), (5.12). We describe this computation for the case of s/(2). There are two
equivalent ways to write the S-matrix for the sine-Gordon model. The first one
has been described above (3.39), (B.I); it corresponds to the quantum group
parameter q = — exp( — iπ/γ). In the second description, the 5-matrix is still given
by (B.I), but with the opposite sign quantum group parameter q = exp( — iπ/γ).
Both these 5-matrices are crossing symmetric:

S£»'(iπ - Θ) = κCΛS%(β)σ «, (C.5)

where C is the charge conjugation matrix and Cτ = KC. However they differ in
the definition of charge conjugation; in the first case C+_ = C_+ = 1, whereas in
the second case C+_ = —C_+ = l. Off shell, the choice of description amounts
to a prescription for statistical Klein factors and is not dynamical; thus the two
5-matrices describe the same theory. To take the limit β-+^/2, we choose the
second description. In this limit, x « 1 + εθ and q « 1 — iπε, with ε -• 0.

The S-matrix in this limit becomes S(xι/x2) = f(ε)SY(θ1 —θ2)+ ' 9 with f(ε)
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an irrelevant scalar function. The quantum group generators behave as follows:

= J= J Q T" ε — J i ~τ '" j

H 0 = H,

We have defined the generator /ft for later convenience.
The generators J"o = JQ,H0 satisfy the s/(2) algebra:

[ ^ , . ^ = ± 2 ^ ; [J0

+,J0-] = H 0 (C7)

The generators Ja

i^J^,H1 are s/(2) intertwiners in the adjoint representation:

Vao,J\~]=fabcJCv ( C 8)

Jimbo has shown that a solution to (3.39b) automatically satisfies (3.39a, c).

Equations (3.39a, b) to zero th order in ε just imply the sl(2) invariance of the limiting

Sγ matrix:

Sγ(θί2)(Ja

0®l + 1 ® Ja

0) = (Ja

0®l + l®Ja

0)Sγ(θί2). (C.9)

To first order in ε (3.39b) reads

SY(θ12)Δθιθ2(Jf) = Δθ2θi(Jf)Sγ(θ12) (C.IO)

with Θ12 = θλ-Θ2 and

iπ ) \ ίπ J
(C.ll)

Equation (C.ll) defines the comultiplication of Jf. From its definition, one derives
the comultiplication of Hί. The result is:

( 2β
H1 + -^-H

(C.12)

The Sγ matrix is also Hγ invariant.
The comultiplication of the generators J°o and J\ can be written in the following

synthesized form:

( 2Q \ / 2β \ 1

Jai + — Jo ® 1 + 1® J\ + — Ja

0 )--fabcJbo®JCo' (C13)
iπ / \ iπ / 2

The exchange relations (C.9) and (C.IO), and the comultiplication (C.I3), are those
of the sl(2) Yangian [2].

The solution to (C.9), (C.IO), for the fundamental representation, is Sγ(θ) oc iπ—ΘP,
where P is the permutation operator: P-(u®v) = v®u.
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Appendix D. Generalized Parafermions and Their Braidings

Here we make contact between the braiding relations (3.16) and those of disorder
fields and generalized parafermions [16,17].

Disorder fields and generalized parafermions are in general non-local fields
which reflect the group invariance of the model. We denote by ̂  the group. In a
lattice formulation the disorder fields are defined by introducing a disorder line
along which the spins of the lattice model are flipped by acting with an element
g^y. The group invariance of the hamiltonian ensures that the exact shape of the
disorder line is irrelevant up to possible topological obstructions. Thus disorder
fields, which we denote by μg(x, t\ gsΦ, are labeled by group elements. On the
contrary, the spin fields, which we denote by σp(x, t\ are labeled by the representa-
tions p of the group, peRep(^). The spin fields are local fields, which in the lattice
description correspond to the insertions of the matrix representing the group.
The generalized parafermions are the product of a disorder field with a spin field
(the product is to be regularized in the continuum). We denote them by Ψp(x, t) =
μg(x9ήσp(x9t\ with ge& and peRep(^); it takes values in the representation p.
The braiding relations for the generalized parafermions are well-known,

βH Ψ>\(y, t)) = (1 ®p 2(g ι)Ψ p 2

ι g 2 g- t(y, t)){Ψp

g\{χ, 0 ® 1);

for x>y. (D.I)

For g = 1 or p = 1, (D.I) gives the braiding relations for the disorder fields and
for the spin fields. Note that in general there is no natural pairing between the
group ^ and Rep(^).

Let us now specialize to the abelian group OLZ where α is any fixed real number.
Elements of αZ are {an}, where n is any integer. (For the application to Sect. 3d,

α = ̂ .) The unitary representation of OLZ are one-dimensional and are labeled by
β

a real number r. We denote them by pΓ, reR, with pr(a) = eιπra, for αeαZ. Hence
for the group αZ there are natural embeddings of ̂  into Rep(^) given by α e α Z - *
[α] = pαeRep(αZ). This allows us to introduce a particular set of parafermions
defined by*

Ψa(x,t) = μ-a(x>t)<P\x>t). (D.2)

These two parafermions only differ by the change a -* — a in the disorder fields.
The braiding relations (D.I) then reduce to,

Ψb(y, t) Ψa(x, t); for x % y;

x, t) Ψb(y, t) = c τ """>_Ψb(y, t) Ψa{x, t); for x % y;

,t); Vx,y. (D.3)

These relations are the same as in (3.16). Therefore, we have,

Ψa(x,t) = cxp(iaφ(x,t)); Ψa(x, t) = exp(iaφ(x, ή). (D.4)

All fields, including the disorder fields and the spin fields, are generated from these.
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