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Abstract. We construct the thermodynamic limit of the critical (massless) φ4

model in 4 dimensions with an ultraviolet cutoff by means of a "partly
renormalized" phase space expansion. This expansion requires in a natural
way the introduction of effective or "running" constants, and the infrared
asymptotic freedom of the model, i.e. the decay of the running coupling
constant, plays a crucial role. We prove also that the correlation functions of
the model are the Borel sums of their perturbation expansion.

Introduction

This paper extends the methods of constructive field theory to treat strictly
renormalizable asymptotically free situations. We study the infrared behavior of
massless Φ4. with an ultraviolet cutoff as one of the simplest of these situations. We
use an approach which has its source in the work of Glimm and Jaffe [1] on the
ultraviolet limit of Φ4. The basic tool of this paper is a kind of "phase space
expansion" [1—5]; many of its features were already presented in [6], where it was
used to control the "infrared superrenormalizable" (VΦ)4 model. It consists of
scaled cluster expansions with effective parameters. It had however to be further
improved to apply to strictly renormalizable theories and this resulted also in a
number of simplifications. We give to the present expansion the name PRPSE (for
partially renormalized phase space expansion). The methods developed in [7] to
control the large orders of perturbation theory for Φ4, and in [8] to exploit
rigorously asymptotic freedom at the level of Feynman graphs played an
important role in the genesis of this paper; in particular they helped convince us
that constructive field theory could attack non-superrenormalizable situations. In
fact the results of [7] can be recovered using the present version of the phase space
expansion [9, 10].
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We also used the PRPSE to prove the ultraviolet stability of massive Gross-
Neveu models, in other words of TV-component massive fermionic fields in two
dimensions with a quartic interaction [11, 12], and there is some hope to apply
some kind of PRPSE to a 4 dimensional gauge field theory.

In fact in its present form our method seems to apply to any theory whose
content is essentially perturbative (typically for which the perturbation series is
Borel summable). It looks also promising for a rigorous study of the large order
behavior of renormalized perturbation expansions in field theory [13-15].

The model we study will be defined precisely in the next section. It is a massless
Euclidean Φ4 theory on IR4 with an ultraviolet cutoff of Pauli- Villars type. Other
types of ultraviolet regularizations, like lattice versions could be treated equally
well by our method. In contrast with [8], we consider the theory with the usual sign
of the coupling constant. This model is asymptotically free in the infrared region
and the renormalization group trajectories approach a Gaussian fixed point at a
logarithmic rate [16,17]. This behavior has been confirmed by numerical
simulations, for instance [18]. The approach to the critical behavior is studied in
[19,20]. The control of this "infrared Φ4" model has also been obtained by
Gawedzki and Kupiainen, using a rigorous formulation of the renormalization
group [21], and the constructions of both groups were presented in some detail at
the Les Houches Summer School, August 1984 [22, 23]. The completion of this
paper suffered a long delay (not solely due to the laziness of the authors!): indeed
we found during the process of writing [1 1] a simplification in the treatment of the
mass renormalization which avoids the use of fixed points to fix inductively the
bare mass at its critical value, as is done in [21, 23]; and we thought that it was
worth rewriting the present paper to include it.

The paper is organized as follows. In the first chapter, the model is defined and
our main results are stated; a brief sketch of the proof is also presented. The
notation and a precise definition of the expansion is given in Sect. II. In Sect. Ill the
renormalization of the mass and the coupling constant are explained and lead to
the computation of the effective (or "running") coupling constant in terms of the
corresponding bare quantity. The estimates leading to the main results are also
stated in Sect. III. These estimates are proven in Sect. IV, and Sect. V is devoted to
Borel summability.

I. The Model

LI Definitions

The theory in a volume A (A is a volume cutoff smooth and vanishing outside a
large compact box of IR4 which will also be called A with some abuse of notation) is
defined by the probability measure dσΛ(φ):

(I.I)

where by definition:
- dμc is the Gaussian measure on S'(A) with mean 0 and covariance C

1 ip.(X-y) 1 4

(2π)4 p2(p2 + l)5
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Remark. We choose our ultraviolet cutoff to be of this particular form in Fourier
space because it allows better conservation of momenta and makes simpler the
proof of Borel summability in Sect. V:

- A(x) = h(x/A), where h(x) is a smooth function of compact support
- δm2 is the mass counterterm. It will be shown to exist, and will be chosen to

renormalize all mass insertions by subtracting the zero momentum value of all
one-particle irreducible two-point subgraphs in our expansion. This prescription
will automatically fix the theory to its critical point, i.e. the asymptotic behaviour
of the two point function will be massless, as shown in (1.4).

- Z(A) = Z(A;λ,m2(A,λ)) is the normalization of the interacting measure dσ
(In the following we might often forget the Λ and λ dependence.)

Our basic objects of interest will be, apart from the pressure

the Schwinger functions

S^(xl9..., xj = <<P(XI) . φ(xn)y<τΛ = I φ(xι) - - φ(xn}dσΛ(φ). (1.3)

The connected Schwinger functions (defined as usual) will be denoted

The unnormalized Schwinger functions with cutoff Λ is denoted §Λ(XI, ...5xn)

1.2 The Results

Our results concern the existence of massless φ4. in an infinite volume and its
infrared behavior.

Theorem I.I (Existence of massless φ4). For λ small enough one can choose
δm2(A, λ, x) such that the thermodynamic limit of the model exists and is a massless
field theory. More precisely the limits, as A ->R4, ofp(A), S^ and S^'Λ exist (they will
be denoted with the superscript A dropped), and S2(x, y) does not decay exponentially
in \x — y\ for large \x — y\.

Theorem 1.2 (Infrared behavior of massless φty. The behavior of the correlation
functions is Gaussian up to logarithmic corrections. More precisely, for λ small
enough, there exists 0(λ), C^(λ, |x — y\), C2>0, C3>0 such that

λ,\x-y\}], (1.4)
\x-y\2 l

-̂/ 9

Ϊ(x1,...,xJ^ J Π

where the infimum is taken over all pairs (i,j), 1 ̂ i<j^
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Theorem 1.3 (Borel summability). The Schwinger functions Sn and $„ are Borel
summable as functions of λ.

These theorems are proved in Sects. III-V.

Remark. Equations (I.4)-(L5) tells us that the two point function is asymptotic to
the two point function of the free massless field at large distance.

Inequality (1.6) ensures that the truncated 4 point function is asymptotic to its
Gaussian value, 0, at large distances, the approach being logarithmic. Similar
inequalities hold for the higher truncated functions S J, n > 4, showing that they
approach 0 at large distances. We do not write them for simplicity. In fact our
method gives a systematic computation of the exact asymptotic behavior of S^.
For instance we can prove, if all the distances \xt — y \ for ί,j=l, 2, 3, 4 are of order
en, that:

i + o , (1.7)

where β is the first non-vanishing coefficient of the β-function. More generally
using our method one should be able to put on a rigorous level the results already
existing in the literature obtained by renormalization group computations, like
those of [19, 20]. Finally we want to point out that this method can be applied to
any one-parameter family of theories such that for small values of the parameter
one is in the domain of attraction of a known fixed point (not necessarily gaussian).
Typical examples of such situations are given by the Gross-Neveu model in 2 + ε
dimensions [35], the —gφ^ + ε model [36] and the Gross-Neveu model in 3
dimensions and large TV [37].

1.3 Outline of the Proof

To prove Theorems I and II we will expand the pressure of any Schwinger function
Sn according to an improved version of the expansion described in [6]. We
introduce an infrared momentum cutoff M~ρ, where M is a fixed integer. The
convergence for ρ fixed as Λ-+OO is easy. Take A = MNρ with N big enough; then
A(x) = h(\x\M~Nρ); the infrared momentum cutoff is smooth and of scale M~ρ so
that the propagator has an exponential fall off: |C(x — y)|^exp[ — M~ρ\x — j;|],
thus up to small corrections we can consider only distances smaller than M0(1}ρ

and on such distances the function A(x) is almost constant up to corrections of
order M~(jv~0(1))ρ. jn ^e core of foQ paper and after the expansion we shall
consider only A = oo. In particular the counterterms in this limit are translation
invariant.

We will then prove the convergence of the expansion when ρ-> + oo, our
estimates being uniform in ρ. We use scaled cluster expansions. To converge, a
single cluster expansion in d dimensions requires a summable propagator, hence at
least a decrease like l/\x — y\d + ε for the propagator between x and y, ε being a
positive number. As in [6], this is not the case here: the free massless propagator
(and if the expansion converges, the full propagator) behaves as l/|x — y\2. We
avoid this problem by introducing scales of momenta and cluster expansions
related to the different scales. The scales of momenta (in contrast with [6]) form an
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exponentially decreasing sequence {l,M"1,...,M"/,...,M"ρ}. The layer or slice
of momenta of index i may be thought of as corresponding to momenta between
M~(ί~l) and M~\ To be more precise, this partition of momenta into slices is
realized in fact through the following decomposition of the Fourier transform of
the co variance: ^

C(p)= Σ Cfy), (1-8)

There is a corresponding decomposition of the field

φ(x)= 0 φ\x) (1.10)
i = l

as independent variables with φl having covariance Cl and free measure

00

dμ= [] dμ ί5 dμ~dμCi. (1.11)
ί = l

To each momentum index z is also associated a cubic lattice Dί? whose cubes, of
length side αMl, are union of M4 cubes of D ί_ 1 (for z>l) ; to each lattice we
associate a decomposition of unity:

£ J(x) = l, with A(x) = ξ[.(x-A)/<xMi']9 (1.12)
ΛeDt

4

where £00 = Π ξ(j;fc), j> = 0>ι»J>2> J>3>3>4.)> and for each A, A=(Aί9A29A3,A4) is the
k=l

center of A and ξ(ak) is a C°° function such that

ξ(αk) = 0 if k|>3/4 and Σ £(" + **) = !•
neZ

We decompose also the fields of the external variables; each external field in
S(xl5 ...,xπ) has now an index ij. Let

/o = ((ii,xi),.-. 9(iwxn)). (1-13)

The elements of this set will be called the (indices of the) true external variables;
each cube containing one or more true external variables is called a true external
cube.

For each scale of index /, ί = 0, 1,2, ... we will perform successively:
- a cluster expansion on dμi to estimate the correlations between different

regions (unions of cubes of JDt). It produces propagators O connecting cubes of JDt.
Technically they are third order Taylor expansions in parameters, called s,
associated to pairs of cubes of the same index /, which test the coupling between
these cubes through the gaussian measure dμt.

~ A momentum coupling expansion which tests successively in each cube A of
ID; the coupling between "high" and "low" momentum fields (these notions of high
and low are relative to the index of the scale one is looking at: "high" means "of
index lower than or equal to Γ and "low" means "of index bigger than ί").
Technically they are fifth order Taylor expansions in parameters, called tΔ,
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associated to single cubes A of Dl? which test the coupling between low and high
momentum fields in the cube through the exponential of the φ4 interaction. More
precisely, if

φh= ί Σ <P'(*)ώc and φl = ί Σ 9JMdx (1.14)
A j^i A j>i

are the corresponding high and low momenta fields, we write

J (φh(x)+ 9l(x))4dx = J (φh(x) + tΔφι(x))4 + (l-t4)φ4(x)\tA = 1, (1.15)
A A

and we write the Taylor expansion with integral remainder to fifth order in tA.
Remark that each vertex created by a derivation in tΔ contains both high and low
momenta fields hooked to it, and that to each derivation is associated at least one
low momentum field.

The final expansion is generated by applying these expansions to each
momentum range starting from the highest ones. Its outcome appears as a sum of
graphs made of cubes connected either by propagators (created by the cluster
expansions) or by vertices (created by the momentum coupling expansion).

It is convenient to view this expansion organized as in Fig. 1 . The horizontal
direction represents the 4 space-time dimensions, and the vertical direction
represents the scales of momenta, the high momenta being above. Propagators of
the cluster expansions, which join two cubes, are represented by horizontal lines
(since they belong to a given scale), ending at points localized in the two cubes.
Fields can be represented by half-lines, and vertices may have fields of different
indices hooked to them. Therefore they can be pictured as vertical dashed lines
connecting 4 horizontal half-lines of various scales. Such a vertical line goes
through all the cubes A elD; such that x, the position of the vertex, belongs to zl,
and such that 7 ̂  i^ k, where 7' and k are respectively the smallest and highest scales
of the 4 fields hooked to the vertex. By a very natural convention we will say that
these vertices or vertical dashed lines connect precisely these cubes which contain
the fields hooked to the vertex (remark that there are therefore at most 4 such
cubes, which are necessarily contained one within another). In this representation
our expansion can be viewed as a cluster expansion in both the horizontal and the
vertical directions. (This point of view is close to the one developed in [30], using a
staggered lattice.)

However there is one important difference between the horizontal and the
vertical directions: by power counting (see [9, 10], or the next sections) one needs
at least 5 vertical links to obtain exponential decrease in the vertical direction,
while in the horizontal direction a single link is enough (since the propagators in a
momentum slice have an infrared cutoff, well adapted to the summation over the
cubes of corresponding size). This forces us to push the momentum expansion to
fifth order in each tΔ variable, to be sure that the remainder term has enough
vertical coupling to ensure summability. We remark that it is also for this reason
that renormalization enters the picture, to restore the vertical decrease when it is
missing.

Finally there is a third kind of "link" between cubes in our expansion, namely
we will consider that the cubes A of index i and A' of index i + 1, A c/Γ, are linked
through an "open gate" if tΔ is nonzero. We remark that by our rule for the tΔ
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dependence (see the next sections) if the gate between A and A' is open, there are at
least 5 low momentum fields attached to the vertical dashed lines crossing the gate,
and if the gate is closed there are at most 4 such low momentum fields (see Fig. 1).

Scales
of momenta

1

M"

Lattices

n-3

Fig. 1. A connected graph in the phase space expansion

In Fig. 1 open gates are represented by a wavy line at the bottom of A and closed
gates are represented by corresponding fat straight lines. A technical consequence
is that our horizontal cluster expansions are like those of [27-29], i.e. propagators
can connect directly cubes far apart, but our vertical expansion is more like the
Erice cluster expansion [38], since the gates are between cubes which are "vertical
neighbors," hence have some similarity with the Dirichlet surfaces of [38].

Let us summarize the connection rules of our expansion. Two cubes A and A' of
indices i and j are connected if either:

- there is a propagator (horizontal line) between them (this requires i =j)
- there is a vertex (dashed vertical line) and two half lines hooked to it, one in

each cube (this requires i ή=j and Ac A' or A'cA)
- there is an open gate (wavy line) between them (this requires j = i+\ and A

C A' or the converse, and is equivalent to the presence of at least 5 low momentum
fields attached to the dashed lines crossing the interface between A and A'}.

A connected graph G is then defined as a set of cubes together with their fields
and propagators such that any two cubes can be linked through a chain of
connected cubes, and its amplitude, i.e. the associated contribution in our
expansion will be denoted A(G).

A general argument of the Kirkwood-Salzburg type then shows that the
normalized Sch winger functions exist if the unnormalized Sch winger functions can
be written as (each Gα being a connected graph):

s=Σ Σ Π
I , . . .,Gn <x = 1

(1.16)

with

\A(Gx)\<e -Kp

(1.17)
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where A is some fixed cube, ||Gα|| is the number of cubes in Gα, and K is some
positive constant (see Sect. Ill), which one ought to be able to make large enough
by choosing the bare coupling constant λ small enough (to beat the combinatoric
constants generated by the machinery of the cluster and Mayer expansions).

In (1.17) the sum over the graphs Gα is in fact a sum over the cubes composing
the graph, and is controlled either horizontally by the exponential decrease of the
propagator (Cl(x, y) rg M~ 2l exp( — M~l\x — y\)) which allows to sum on cubes of Df

[because ]Γ exp( —M~ Idist(zl,zl /))^O(l)Ί or vertically by the exponential
L Λ'εVt J

decrease associated to vertical lines by the combined use of power counting and of
"useful" renormalizations [10, 11], which in turn imply the use of effective or
running constants. Let us sketch this power counting analysis and this use of
"partial" renormalizations, which is the core of our method.

Let us call "almost local subgraph" or in short "subgraph" of a graph G a
connected component of Gj? where Gj is the subset of the cubes of G which have
indices ^7. The index of an almost local subgraph is then defined as the index of the
largest cube that it contains. Let us call "external fields" of such a subgraph the
fields of index >j hooked to its vertices.

The result of the power counting analysis of the next sections (see Proposition
IV.7 and Theorem III.5) is similar to the standard power counting analysis
explained in detail in [9]; namely to any such subgraph of scale j with e external
fields, of scale k>j, is associated a net factor M~(e~^(k~j\ after the summation
over internal vertices and positions of the internal cubes of the subgraph have been
performed.

As in [9], if e ̂  5, e — 4 ̂  e/5 and this exponential decrease can be attributed to
the external vertices, so that every corresponding vertical dashed line becomes an
exponential "spring"; it can then be used to control the vertical sums in a way very
similar to the way horizontal sums are controlled by the horizontal "springs"
corresponding to the propagators.

Such cases correspond to the so-called irrelevant operators of the renormal-
ization group analysis.

On the other hand subgraphs with 2 or 4 external fields do not give any vertical
decrease (e = 4) or even give exponential vertical growth (e = 2). They correspond
respectively to marginal and relevant operators, and need to be renormalized.

The renormalization will consist of a Taylor subtraction at zero momentum;
for example a two point function $φ(x)φ(y)f(x,y)dxdy after renormalization
becomes

-ί/2ίlφ(x)-φ(y) ]2f(x9y)dxdy. (1.18)

We have φ(x) — φ(y) = (x — y)Vφ(x) +terms with two gradients. Each gradient
increases by one the local power counting.

We will describe briefly our procedure, using the language of [10]. A "local
subgraph," i.e. a connected subgraph with the frequencies of its internal lines (say/)
higher than those of its external lines (say k), looks more and more "point-like"
(hence its name) relative to the external scale k when k —j becomes larger and larger
(this is because the internal lines have high infrared cutoff, hence fast decrease).
Therefore it is intuitively obvious that such subgraphs can be regularized in an
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efficient way by subtracting truly local ("point-like") counterterms. Moreover,
fortunately, they are precisely the subgraphs in our expansion which require such a
regularization when their power counting is bad (e^4). The counterterms
corresponding to these subgraphs will be called "useful." However to preserve
axiomatic requirements, in the standard theory of perturbative renormalization,
one is also forced to introduce the counterterms, which we call "useless,"
corresponding to "non-local subgraphs," i.e. subgraphs which have some external
lines higher than some internal lines. Such counterterms cannot be efficiently
added to the corresponding subgraphs (since these subgraphs do not look "point-
like" when seen from the external world through the "probes" of the external lines).
They must be kept uncancelled in the expansion in the form of additional
"insertions." Remark that "useless" counterterms are not only useless (except for
axiomatic requirements), but somewhat troublesome, since in the case of the
coupling constant they create renormalons [10].

Let us call "bare" parameters (like in field theory) those defined at the high scale
(here i = 0) and "renormalized" parameters those defined at the lower scale (here
i= oo).

In this model the renormalizations to be performed correspond to the mass,
and coupling constant.

We choose to perform completely the mass renormalization (i.e. introduce the
useless and useful corresponding counterterms) because this will fix the physical
mass to be zero, i.e. we will be sitting at the critical point. This is possible because
the corresponding useless insertions are summable (they do not create re-
normalons). We define a cluster and a Mayer expansion which allows the
factorization of the one particle irreducible (1PI) two point functions. We can
associate each mass counterterm with a graph, the consequence being that we
don't need a fixed point procedure to compute the mass counterterm.

On the contrary we will use the bare parameter for the coupling constant, and
we will add and subtract in the exponential of the interaction only the
corresponding useful counterterms. The useful counterterms introduced will be
used to compensate the corresponding almost local graphs; this will result in a net
transfer of internal convergence into external convergence through gradients
acting on the external fields (see Sect. IV). The effective external power counting
becomes then equivalent to that of a rc-point function with n > 4. Hence the vertical
exponential decay of the corresponding "springs" is restored (except for subtleties
due to the fact that we do not perform the wave function renormalization). Then
the useful counterterms "subtracted" in the exponential of the interaction will be
absorbed in the redefinition of effective coupling constants for the lower scales. We
remark that this process requires factorization of the high energy and low energy
fields in the exponential of the interaction, hence it requires that the corresponding
"gates" are closed. This will be precisely the case with our rules, because a proper
subgraph of scale j with e ̂  4 necessarily has all its ί^-parameters at scale; equal to
0. In perturbation theory there is a wave function renormalization, it will appear to
be finite and of the order of λ\ thus we choose to introduce no wave function
counterterms.

Finally to achieve the bound (1.17) one has to extract a small factor per cube to
control the combinatorics and to give at the end the e~κ factor per cube. This is
obtained by taking λ small enough (depending on M) and by using:
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a) The Asymptotic Freedom of the Model We obtain at each scale i a "running
coupling constant" λ{ which is given inductively by:

A ί + 1=Λ. + W ί 9 (1.19)

where δλ—sum of the useful coupling constant counterterms due to the
introduction of the zth range of momenta. At lowest order in λb 8λt is quadratic with
a negative coefficient:

δ λi = — ctλf + higher order terms . (1.20)

Since c^c, c constant, one has:

<L21)

with λΛ—λ. The theory is asymptotically free because c> 0, the consequence being
that λi&l/L

With this running coupling constant essentially all quantities of interest are
given by the lowest order contributions in the effective interaction. In particular
the difference between the bare and renormalized wave function constants is

GO 00

bounded (and small if λ is small because £ λ f & £ i~2 is finite. This is important,
i=l i= 1

since the correct asymptotic flow of the effective constants is expressed in terms of
the "renormalized" rather than the "bare" wave function constant (in contrast with
[11]). However (always in contrast with [11]) we do not need here to know the
correct flow with great precision, and the behavior (1.21) (without even the precise
value of the constant c) is sufficient for our purpose of controlling the
thermodynamic limit of this critical φ\ model. The value of the wave function term
at scale i is of order λf so that the wave function insertion at scale k coming from
the contributions of the higher scales is of order:

kΣ λϊ^0(l)λ. (L22)
i= 1

Thus the wave functions insertions are small.

b) The Domination of the Low Momentum Fields. We have to overcome the
problem (not present in [11]) of the ordinary divergence of perturbation theory
due to the large number of graphs. In our expansion this occurs when many
vertices created in small, high frequency cubes have low momenta fields which
accumulate in a single large low frequency cube.

The value of a graph is given by an integral over:
- the exponential of the interaction, called A,
- the high momentum fields, called B (roughly speaking a field of index i

belonging to a vertex of index j is a high momentum field if / :gj, see Sect. Ill),
- the low momentum fields, called C (roughly speaking a field of index i

belonging to a vertex of index j is a low momentum field if i >j, see again Sect. III).
We want to use a bound of the type:

\AC\, (1.23)
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i.e. to dominate the low momentum fields using the positivity of the interaction.
This can be effective only if the low momentum fields are smeared, since the
interaction in the exponential is smeared in the volume A. Hence we write:

φ(x)= $ηi(x-y)φ(y)dy + δφ(x), (1.24)

where ηi(x) = ((xMiy4η(x/aMi\ and η is a smooth function of integral one with
compact support, such that η(x) = Q for |x|>l/4. This defines δφ which, being a
fluctuation field at scale f, can be considered as a high momentum field.

Using Holder's inequality we have:

M
J

, (1.25)

where the sum on A is finite (restricted to the cubes of JDt which are neighbours of
the cube containing x). The interaction in A to the power 1/4 is easily bounded by
the exponential of the interaction. [This requires Re/l>0 (see Sect. V). Hence the
domination is related to the stability of the model and is not possible for the
(ultraviolet asymptotically free) negative λφ4 theory in 4 dimensions.] The
conclusion is that a low momentum field in E)ί is of order M~\

Finally the introduction of the smearing operation with the η function forces us
to add a corridor around the support of each graph, hence to augment slightly the
connection rules given above.

II. The Expansion

The first part of the expansion consists of a cluster expansion on the cubes of Df;
for each i it will control the thermodynamic limit for the part of the interaction
corresponding to momenta of index i. The second part is a momentum coupling
expansion which measures for each i the strength of the coupling between
momenta higher than M~i and lower than M~l. The third part is a Mayer
expansion. The fourth one is the renormalization of the two and four point Mayer
graphs and the computation of the effective coupling constant.

II. 1 The Cluster Expansion

For each i we define first an interpolating covariance Cl(s, x, y) by

Cl(s,x,y)=
(A, A') A

(II.l)

where the sums are on pairs of distinct cubes or on cubes of JDt and where each s
runs from 0 to 1. We remind the reader that we use the same symbol A to stand for
the cube A eDί? the centre of the cube, the function A(x) = ξ((x — A)/uMl) (which
belongs to a partition of unity associated with D;) and the operator on L2(R4)
consisting of multiplication by A (x).
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Theorem 11.1. Pick any real number γ and let Γ = (Cl)y be the yth power of Cl. For
j = 1 , 2, 3, . . . let Aj e IDt and let αMlπ7 be the centre of Aj. Hence nj e 2£4. Let k be any
positive integer. Then there exists a constant K independent of z, α (for α large
enough) and the Δ s such that

a) A1ΓIΓ~1.>A2]A3 is a bounded operator on L2 with operator norm

b) AίΓA2Γ~iA3 is a bounded operator on L2 with operator norm

c) // the operator Q obeys \\ΔlQΛ2\\^K'[_\ + \nl — n2\
2γ2~ε for some ε>0

then \\Q\\ ^KK'.
d) Cl(s) is an operator of positive type. ||C'(s)1/2(C'Γ1/2|| ^K and

e) Let G be either OC^s)'1 or C\s)(CT^ Then

Proof. We will use the symbol K to stand for many different, but all irrelevant,
constants.

a) If we use C to denote (C1)7 (in momentum space) and h to denote the fourier
transform of the function ξ, then the kernel, in momentum space, of the operator

B(p, q) = f drds [(αMI)4/z(αMί(/7 - r)) exp(i(p - r) αMX)] C(M'V)

[(αMl)4/z(αMl'(r - 5)) exp(/(r - s) αM'n2)] [C(Mfr) ~ 1 - C(M15) ~ ']

[(αM^ΛίαM1'̂  - q)) Qxp(i(s - q} - αMlrc3)] . (II.

The norm of this integral operator on L2 is bounded by

where we have scaled p, q, r, and s by a factor of αMl, using the fact that the sup over
p is the same as the sup over ocMlp. To display the decay in \n1 — n2\ and \n2 — π3 | we
write

and the analogous formula for exp[zs (w3 — n2)] and integrate by parts. Deriva-
tives that act on the /z's are of no importance: they merely replace one Schwartz
space function by another. Any derivative that acts on a C or a C"1 produces a
factor of 1/α by the chain rule:

8 [C(r/α)] = (1/α) (dQ (r/α) , δ [C(r/α) ~ J] = (1/α) [δ(C ~ :)] (r/α) ,

and similarly for C~ 1(s/a). Now for any nth order (n ̂  0) derivative dn and any real
number y (positive or negative) there is a constant Kn such that
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(For our cutoffs δ = \2.) Consequently, for any n, m^O,

C^

(assuming 7 >0; if not, interchange the roles of r and s)

and all terms in which at least one derivative acts on a C or C~ l obey the desired
bound. In the event that no derivatives act on any C or C~ l we simply use (again
writing explicitly only the case y > 0)

|C(r/α)[C(r^

for some 0 ̂  ί ̂  1

b) This follows immediately from part a) and

c) Let/,geίλ Since

Σ
2» ^3» ^4 Δ\,Δ2,Δj,,Δ4

«4l 2]" 2"ΊM4gll (Π.7)

by the hypothesized bound on β and the fact that, to yield a nonzero term, we must
have \nί—n2\^2 and \n3 — n4\^2. Interpreting this sum as

and using that \\B\\ is bounded by the L1— L°° norm of its kernel gives

since A (x)2 ^ A (x).

d) We write Cί(s) = Ci-(Cψ2A(s)(C^12 , (II.8)

where

(Π.9)
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Now

Σ (\-sAtA,)AA' ^sup Σ A(x)A'(x)=sup\l-ΣA(x)2l=\-2

(11.10)

2l
[_ A J

Hence by parts a), b), and c) of the current theorem with Γ = ( C l ) 1 / 2 ,

M(s)||gl-2-4 + 0(l/α)<l, (11.11)

if α is large enough. Consequently

(/, Cl(s)f) = ||(C)1/2/ I I 2 - ((CO1/2/, A(s) (C*)1'2/)

must lie between [2-4-0(l/α)] and [2-2-4 + 0(l/α)] times ||(C)1/2/||2.
e) For G = Cl(s) (C1)'1 this is an immediate consequence of (II.3). For the other

case we write (but dropping the superscript i)

= 1- X (\-sΔ,Δ,){ΔΔ'-ΔCίC-\Δγs=I(s) + D(s), (11.12)
/1ΦZΓ

with
/(s

and

D(s)=

Since I(s) is a multiplication operator whose inverse is bounded by (IT. 10) and

by (II.2) we can achieve the desired bound by expanding

G- Σ (-ir/ίCWKίsΓ1]11. π (π.13)

Definition IL2. An s-dependent Schwinger function is obtained by replacing the
measure dμ on the fields by dμ(s) which is the measure of co variance C(s). However
for a reason that will be explained in the section dealing with renormalization
(Sect. II.4) we do not wish the fields belonging to the mass counterterm to depend
on s. This wish may be implemented as follows. Prior to the introduction of any
5-dependence we have (using [33, Lemmas V.4 and VI.2]):

el/2$δm2(x)φ(x)2dx_. el/2$dxdyφ(x)[l - δm2C]- 1δm2(y)φ(y) . y (II 24)

_ el/2Sdxdy(Cδ/δφ)(x)[l-δm2C]-iδm2(yHδ/δ)φ(y) y (11.25)

Hence it suffices to leave the C's in (11.15) independent of s. We remark that V is
simply a constant (a sum of vacuum graphs) which appears in both the numerator
and the denominator and hence cancels out, and that C[l — δm2 C]~ l δm2 C is the
sum of all possible strings of mass counterterms Cδm2C...Cδm2C.

The elementary step of the cluster expansion is [for one Gd,zΓ)]

(11.16)
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with:

I A t A . F ( s ) = l/2]dsAtAl-sAtΔ )2-^—F(s), (11.18)

and for A, A'elD,:

dΛfa^, jP(<p)<W = ί Λ(x)C(x9y)A'(y)dxdy Γ ^ P(φ)l ^(5).

(11.19)

The cluster expansion is (s = l means that s j>/r = l, for all /4,zΓeID ; and for all i):

F(s = l )=Π Π (i>U + <,. + £>l,. + /^)f(s). (Π.20)
i Od,Λ')eDi

We do not actually evaluate the δ/δφ derivatives until after the mass renormal-
ization has been performed. The D°^< operator decouples A from zΓ, the operator
DA,A' (respectively D2

Δ Δ) decouples A from A' and creates one (respectively two)
propagator linking A to A'. We say in this case that there is at least one derivation
in A and one in A'. The reason that we push the cluster expansion to third order is
that we want to analyze the mass renormalization in terms of one particle
irreducible kernels. We remark that the operator 1AA, creates three propagators
between A and A', hence A and A' must then belong to the same one particle
irreducible kernel.

II. 2 The Decoupling Expansion

The different layers of momenta are coupled through the interaction term. For
each i and each cube A e ID/ we introduce an interpolating parameter ί A9 0 ̂  tA ̂  1
which tests the coupling between the high momentum fields φj, j ^ i, and the low
momentum field

<Pι.i= Σ 9s- (H.21)
j>i

(See, however, the remarks at the end of this section.) For the first slice, the
introduction of tΔ, A^]D1 for the φ4 term of the interaction is obtained by
replacing:

by

L v^ ) \

where λ2 is defined below.

(11.22)

Definition 113. More generally, at scale i we define

(11.23)
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with

a(x,{t},k,j) = Π Γ Σ tΔΔ(x)\. (11.24)
Now m=* +

Σ M(*)l

<P,,k(t,x} = Σ, a(x, {t},k,j)φj(x). (Π.25)

The quartic part of the interaction, 74(ί,x) is now:

(11.26)

where the A fc are the effective coupling contants and are defined below.

Definition IL4. No ί-dependence is introduced into the quadratic part of the
interaction.

The reason for this is discussed in Sect. Π.3. So is the ί-dependence for fields
downstairs.

Let F(t) be the unnormalized Schwinger function with the t dependence. For
each A e ID; we write :

F = f(OL = ι = f(0) + F(0) + ...+(l/4!)F<4>(0) + J (^~F^s\tΔ)dtΔ,o 4!
(11.27)

where we have suppressed the dependence with respect to the other ί-variables.
For all the terms in the l.h.s. of (11.27) but F(0) we say that there is at least one
derivation in A.

The ί dependence in (11.26) has been chosen to play two distinct roles. To
display them let's suppress the x-dependence in (11.26). In other words consider

Σ Γ Π ί»V]4+ Σ Vn(i-tf){Σ Γ Π ί»V)4 (π.28)
j^l\_l^m^j J j fc^l {j>k\_k+l^m^j J J

To concentrate on the first role replace tjψj by ιpj and pretend for a minute that ιpj

does not depend on tj. Suppose that we are in the zth decoupling expansion and
wish to apply a ίrderivative. Hence at this stage all ί/s with) > i are still 1. Further
suppose that the largest value of j for which tj = 0 is h. (If no such j exists set h = 0.)
Hence momentum scales above h have been decoupling from those below h. Under
these conditions the only terms of (11.28) that can possibly depend on t{ are

Σ 4 + i ( i -#) l Π ί m = Σ

where

Hk= (Σ>t[m

Jn+ιtm]ψj, Lk= [m

lπ+ίίm] Σ/
are fields which have momenta higher than and lower than scale i respectively. (We
remark that high momentum fields are decomposed into their constituent scales in
our expansion but low momentum fields are not. This will be made more precise in
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Sect. III.) Hence still pretending ιpl is independent of tt the only terms that can
depend on tf are

Σ Σ
i>k^h l ^ m ^

= Σ Σ (4)λt+1(i-ίί)frί-IW*)M-{ Σ (λk+2-λk+1)L
i>k^h l £ m 5 Ξ 3 \m/ [i>k^h

since ί*Lfc = Lk_i and Li^1= Lt. Terms generated by the application of derivatives
with respect to ti should be thought of as belonging to two generic types. The first is
typified by λk + lHk~

mLkm with 1 ̂ m^3. These vertices always have at least one
high (compared to z) momentum field and one low momentum field. The coupling
constant λk + ί has k + 1 ̂  h + 1 with /z + 1 being the momentum scale of a certain
cube of the connected component of Gt in which the vertex was produced. The
spatial localization of the cube coincides with that of the vertex but its momentum
is as high as possible. The second type is (λt + 1 — λt) Lf when ti = 0. This will be used
as a counterterm for four point functions of scale z. All the other (λk + 2 — λk+ί)L^s
should be thought of as disguised versions of the first type. Even though they are
counterterms they are not needed for renormalization cancellations and may be
bounded by 0(\)λkLk. (See the bounds immediately following Theorem III.2.)

Note also that there is at least one low momentum field per d/dtt derivative.
Hence from (11.27) we see that if A e ID; has tΔ φ 0 at the end of the expansion there
are at least 5 low momentum fields below this cube. When we reinstate the
independence in ip'^t^1 it is no longer true that d/dtt must produce a low
momentum field; it may produce a φl instead. But φl will result in essentially the
same estimates as a low momentum field and hence may be viewed as such.

That brings us to the second role of the ί-dependence in (11.26) and the reason
we are using ψl = t^φ1 rather than ψl = φl. When tΔ = 0 for all A e W)t in some region
QclR4 all fields φl(x) with xeQ/{a strip around the boundary of Q} disappear
from the interaction. This is necessary for the factorization "the amplitude of a
graph is the product of the amplitudes of its connected components" used in (1.6).
Recall that since the functions A(x) are smooth the measure dμc(s} can connect
fields (possibly in the exponent) of neighbouring cubes A and A' even when

II. 3 The Mayer Expansion

Definition II. 5. Two cubes A and A' of indices ί and; are connected if either:
- there is a propagator (horizontal line) between them (this requires ί =j)
- There is a vertex (dashed vertical line) and two half lines hooked to it, one in

each cube (this requires zφj and Ac A' or A'cA).
- There is an open gate (wavy line) between them (this requires 7 = z + 1 and A

C A' or the converse, and is equivalent to the presence of at least 5 low momentum
fields attached to the dashed lines crossing the interface between A and A').

- If z'=7, A and A' are neighbours and one of them contains a field or an "open
gate." We consider in this case that A and A' are joined by a "neighbour link."

- If A and A' are joined by a Mayer link. This is explained below.
A connected graph G is then defined as a set of cubes such that any two of them

can be linked through a chain of connected cubes.
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After the cluster and Mayer expansions up to scale i—i and the cluster
expansion of scale i, we have connected components that we call polymers of scale i
(or /-polymers). These objects still have disjointness constraints at scale i but not at
scales j < i, and they do not yet have Mayer links of scale i. On these objects we
perform the z-th Mayer expansion. It requires the following definition:

Definition II. 6. A 1PI subgraph of index i is a subset of an z-polymer of Gf which
contains at least one cube of index i and which cannot be disconnected by cutting
at most one propagator. In addition cubes joined by a dashed vertical line, a
"neighbour link" or a Mayer link are viewed as being irreducibly linked. The
external legs of a 1PI subgraph of index i consist of fields of index; > i belonging to
vertices of the subgraph and of (half)propagators connecting vertices of the graph
to vertices outside the subgraph.

The Mayer expansion of scale i uses the forest F of all z-polymers and all 1PI
2-ρoint subgraphs of Gt which do not contain true external fields. The ί-th support
Bi of B e F is the set of the cubes of Br\ΊDί that are not in the 1PI 2-point subgraphs
of A

Let P(F) be the set of all of pairs of distinct elements of F that are not pairs for
which both elements are vacuum components or both have true external legs. In
our expansion the z-th supports of the elements of jp are disjoint. We express this
condition for the pairs in P(F) as:

Π e-V(» *'\ (11.29)
(B,B')eP(F)

where

The Mayer expansion is generated by expanding the disjointness constraints:

Π [JB>fl +lL (Π.31)
(B, B')eP(F)

Q .f

JB B, becomes an irreducible link between B and B'. The Mayer expansion is
organized inductively as follows. We select one z-polymer and expand all
disjointness constraints involving this polymer and another z-polymer. This gives
two terms; in the first, the polymer is no longer constrained, and is called a dressed
polymer; in the other we have an intermediate object containing one or more
Mayer links of scale z, called a partially dressed polymer. We repeat the operation
until there are no disjointness constraints left between the intermediate object and
other i-polymers, obtaining a dressed polymer. We then repeat the operation until
all z'-polymers have been transformed into dressed polymers. We repeat then this
inductive process for all the constraints involving 1PI two point subgraphs. In
each step we pick a minimal (in the sense of the forest) 1PI 2-point subgraph which
is at the end of a maximal chain of such subgraphs. (Recall that since a Mayer link
is 1PI each addition of a Mayer link changes the forest of 1PI 2-point subgraphs).
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This defines the Mayer graphs at scale i. In particular the 1PI 2-point
subgraphs are now free of constraints on their supports, even when they are not
almost local. The convergence of the Mayer expansion is shown in Sect. III.2.

At this stage all t/s withj>i are 1. At later stages of the expansion they of
course take values other than 1. We allow the ί's associated with almost all fields
downstairs to follow their natural values. However external fields of almost local
2-point functions of scale i are not given a ί-dependence. In other words for them
we hold t j = ί for all j> i. This is legal because we will never dominate these fields. It
is desirable because the fact that we do not perform a wave function renormaliza-
tion makes it hard to control the combinatoric factors that would be associated
with ί-derivatives acting on these fields.

II.4 The Renormalizatίon

The purpose of this paper is to construct a model having physical mass zero. Since
our covariance has mass zero we will achieve renormalized and consequently
physical mass zero if all 1PI 2-point Mayer are renormalized regardless of the
relationship between their internal scales and the scales of their external fields.
When we say that a 2-point Mayer graph is renormalized we mean that a mass
counterterm, whose coefficient is the value of the graph at zero external
momentum, is subtracted from it. We remark firstly that there is no law barring us
from estimating the graph and counterterm portions of a renormalized Mayer
graph separately and we shall indeed do so in the "useless counterterm" situation.
We remark secondly that despite the indications of superficial power counting it is
not necessary to perform a wave function renormalization: we will not have
exponential decay in the vertical direction but after subtraction of the mass
counterterm a 2-point Mayer graph of scale i is O(λf) = 0(\/ί2) and this is still
summable.

To show that we have the right to renormalize all 1PI 2-point Mayer graphs we
must show that the renormalization procedure can be implemented by counter-
terms, i.e. by the inclusion in the exponent of a term J δm2(x)φ2(x)dx. (Until we take
the infinite volume limit there will be a weak x-dependence in δm2.} Since it is
impossible for 1PI 2-point subgraphs to overlap this is relatively easy. δm2(x) will
be a sum of terms of different scales

δm2(x)= £ δm2(x,k) (11.33)
k = l

defined inductively on the scale fc. Suppose that we are now working on scale i. By
the beginning of the zth step we will already know δm2(x, 1),..., δm2(x, i—\) and the
running coupling constants λ = λ^λ2,...,λi. During the ith step we will first define
δm2(x,i) and then λi + 1. δm2(x,ί) is itself a sum

δm2(x,i)= Σ δm2(x,i',n)
n ^ O

with δm2(x, i\ n) being the value, at zero external momentum, of (minus) the sum
K2(i, n) (x, y) of all 1PI 2-point Mayer graphs of scale i that have precisely n proper
1PI 2-point subgraphs. In evaluating the Mayer graph all proper 1PI 2-point
subgraphs are renormalized, as are the appropiate 4-point subgraphs, but the
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Mayer graph itself is of course not renormalized. To perform the evaluation we
need to know δm2(x,ί';ri) for f^i, ri<n (for the renormalization of the 2-point
subgraphs) and λv for ϊ ^ i. This will indeed be the case if, for each fixed i, we define
δm2(x, ί n) by induction on n.

Having discussed the definition of δm2 we now discuss the mechanics of the
cancellation between K2's. an^ <5m2's. The propagators that form the external lines
of the K2s have been generated by the cluster expansion. Hence they are of the
form d/dsΔίΔ>C(s) = ACA'. Upon summation over the different possible values of A
and A' we get simply C, not C(s). Even when K2 has external fields rather than
propagators we can apply φ = Cδ/δφ [correcting of course for Wick ordering as in
(11.14)] to those external fields to get propagators that are independent of s. (Note
that the external fields belong necessarily to a scale in which the cluster expansion
has not yet been performed.) Hence we get strings of K2's joined by C(s = l)'s and
terminated by C(s = l)δ/δφ's. The same is true for the mass counterterms. See
(11.15). Furthermore neither the mass counterterms nor, thanks to the Mayer
expansion, the K2s are subject to disjointness constraints ("K2 exponentiates")
and we can combine each K2 with its corresponding counterterm to form a
renormalized graph.

Once the mass renormalization has been performed we take care of the
numerous δ/δφ's that have been generated by the cluster expansion etc. They are,
except for those that find themselves at the ends of chains of mass insertions simply
evaluated. To the latter we apply [33, Lemma VI.2]:

ί Π ICδ/δφ ] (xi)F(φ)dμC(s} = J: Π[CC(sΓ >] (xt ) : F(φ)dμc(s} . (11.34)

This is so that the end of each chain introduces a single φ rather three of them.
Normally it doesn't matter that the end of each cluster bond produces three φ's:
the exponential decay of the propagator together with the disjointness constraints
inherent in the cluster expansion can control any local nl. But the Mayer
expansion has removed the disjointness constraints from the mass insertions and
we have to be more careful. See Propositions IV.5 and IV.6. That the CC(s)~ 1 is
harmless is shown in Theorem II. 1 d).

The definition of λi+ ί is given by

) = - $K4(i)(x,xί,x29x3)dx1dx2dx3,

(11.35)

where K4(ί) is (the sum of all 4-point Mayer graphs of scale i that do not contain a
δλi vertex) divided by (the sum of all vacuum Mayer graphs of scale i). Recall that a
4-point Mayer graph may contain at most one δλt vertex. See the discussion
following (11.27).

Remark. The renormalized values of

$K2(x,y)φ(x)φ(y)dxdy
and

ίK4(xl9x29x39x4)φ(x1)φ(x2)φ(x3)φ(x4)dxidx2dx3dx4

are

J K2(x, y) φ(x) φ(y) dxdy - J K2(x, y) \_φ2(x) + φ2(y}]/2dxdy
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and
^K4(xl9x29x39x4)φ(x1)φ(x2)φ(x3)φ(x4)dx1dx2dx3dx4

— J K4(xl9 x2, x3, X4)φ(xl)
4dx1dx2dx3dx4

4 Γ Ί 4

= f^4(x1,x2,x3,x4) £ Π φ(xt)\ίφ(Xj+ι)-φ(Xj)'] Π φ(xk)dxίdx2dx3dx49
J = l U = l J fc = ; + 2

respectively. It is the difference [φ(z) — φ(z'J] which is responsible for the good that
renormalization does.

III. The Main Results

For clarity we prove the convergence of the expansion only in the case ρ = oo. To
prove the convergence as ρ->oo is straightforward. Since we are now in infinite
volume we can forget the weak dependence on x of the counterterms of Sect. II.4
due to finite volume effects.

1 1 Li The Renormalization Group

We shall prove by induction that for k = 1, ..., ί the following bounds hold:

Theorem IIL1.

λί9 (III.l)

\δm2(k)\ ^ 0(l)λkM ~2k

Let us make the convention that K2(i9 e)(...) (respectively K4) is the sum of all
the 2-point Mayer graphs unrenormalized (respectively 4-point Mayer graphs) of
index i with e external vertices, e = 1, 2, 3, 4. The external vertices are kept fixed.
We prove in Sect. III.2:

Theorem III.2. There exists K independent of λ such that for λ small enough:

e'(M~ί/K)lXί-χ2lM-2ί-4ί(e-1}. (111.5)

The moral of these bounds is that the leading contributions come from the
lowest orders of perturbation theory. An immediate consequence is that for M ̂  2
and λ small enough:

hence

which, by an easy recursion argument, proves the first two statements of Theorem
III.l. The remaining one is an easy consequence of the second bound of Theorem
111.2.
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III.2 The Bound on the Subgraphs

In this section we prove Theorem III.2 and also a bound of the same kind on the
sum of the subgraphs containing some true external fields.

Theorem III.3. Let iί,...,ik, be the indices of the true external fields. The sum of the
Mayer graphs of index i containing them is bounded by k\ times

M~lί ...M ~ίk]\/[-(ί/2)sup[0,i-inf(iί,...,ik)] ^ (IΠ.6)

This bound shows that the sum of Mayer graphs of all indices converges. The
existence part of Theorem I.I follows. The statement on the non-exponential
decay of the two point function will be proven in Sect. III.3.

We perform a complete renormalization of all two point functions. But as
explained at length in Sect. 1.3, it is beneficial to estimate a graph and its
counterterm together only in the "useful" case. To define precisely this notion we
have to introduce a "reduced index" for Mayer graphs, whose definition is
inductive (see [7, 10] for similar examples). Basically, the "reduced index" ignores
the "useless" mass counterterms contained in the Mayer graph.

For a Mayer graph which contains no two point subgraphs, the reduced index
is equal to the ordinary index. Such a graph is called "almost local" if its reduced
index is strictly smaller than the indices of all its external legs. Otherwise it is called
a low momentum graph. The counterterms corresponding to low momentum two
point functions are called "low momentum insertions" and are not combined with
these functions. By induction on the number of two point subgraphs or
counterterms, we define the reduced index of a graph as the index of the graph
obtained by ignoring all the low momentum insertions. Remember that in
contrast, the "almost local" two point graphs are combined with their counter-
terms to form a renormalized graph.

Definition III A. For one graph, let for a φ4 or φ2 vertex v:
- l(v) be the biggest of the indices of the derivatives d/dt or d/ds of index at most

i acting on υ,
- h(v) be the smallest of the indices of the fields attached to v,
- i(δm2) be the index for a low momentum mass counterterm,
- i(φ) be the index of a field φ.
A field φ hooked to a vertex v is called a high momentum field if i(φ) rg l(v).
In contrast with high momentum fields it is sometimes convenient to consider

as a single low momentum field hooked to v the sum

By convention the index of such a low momentum field is l(v).
Each renormalization of 2- or 4-point graphs of index 7 "creates" a difference of

fields: i
φ(x) -φ(y)=$ da(x - y) - Vφ [y + α(x - y)] . (III.7)

o

The factor (x—y) will be called a renormalizaίion factor of index/ The index of the
gradient V acting on φ is i(V) = i(φ).

Using the fact that the two point function is translation invariant (because
Q = oo ) we can transfer gradients in the mass renormalized two point function from
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one leg to another, hence we consider that in a local 2-point function the two
gradients act on the field with the biggest index. An almost local term is then of the
form φkK2 V

2φl with k ̂  /, and by definition we incorporate in K the factors (x — y)
that Eq. (III.7) generates: K(x, y) = (x — y)2K(x, y). The index of such a term, noted
i(K2), is then defined to be the smallest of the two external indices (here fe), and the
biggest one (here /) is noted l(K2).

We start the proof of Theorem III.2. The proof is by induction on i. Let us
suppose that Theorem III.2 holds up to scale i— 1. We will deduce from this
induction hypothesis that Theorem III. 5 below holds for /-polymers. From it we
will verify that Theorem III.2 holds at scale /. From Eq. (III. 5) of the induction
hypothesis we have

Let us suppose that i(K2} = k. As a consequence of the bounds on K4 we have:
0 ̂  λj^ int(λ, 0(l)/ jl for j < ί.

Hence £ (λj)2^0(ί)λ. Thus because the non-vanishing renormalized K2

j^k
have necessarily e = 2 (the renormalized "tadpoles" with e = \ vanish), the bound
on a local term of index i(K2) = k^i is:

Σ \*-y\2K2(j,2)(x,y)
j^k

where Ck(x,y) =
j^k

We observe that for A eDfe:

(ΠI.ll)

In a graph there are φ4 vertices, δm2φ2 vertices (i.e. low momentum mass
counterterms), and φKzV

2φ vertices. In Sect. IV we prove then:

Theorem III.5. For ε small enough, holding all its vertices fixed, a i-polymer is
bounded by (if it has 2 or 4 external lines, we denote by E the set of its external
vertices):

0(1) per cube,
0(\}λCk(x, y} per K2 local term (i(K2) = k) ,
0(ί)λnV) per φ4 vertex vεE,
O(ί)(λl(Ό))

114 per φ4 vertex vφE,
MB[i(v)-h(vn per vert ex v,

M~i(^ perfieldφ,
λi(δm)M~2l(δm) per ίow momentum mass counterterm,
Mj per renormalization of index j ,
M ~ I(Γ) per gradient ,
e-(M-j/κ)d(Δ,Λ') per pγopagatoγ Of index j and K2 insertion,

of index i(K2)=j between points in cubes A and Δ'.

d(A,Af) is obviously defined as inf |x — y|V
xeΔ,yeΛ' J

From Theorem ΠI.5 we prove Theorems IIL2 and 7/7.3 at scale i.
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For a Mayer graph Γ we define the support S(Γ) as the union of all cubes of D
which belong to its constituent polymers (of all scales). We also define its "Mayer
structure" T(Γ) as the set {n(Δ\ A e S(Γ)} where n(Δ\ the multiplicity of Δ e Dfe, is
the number of/c-polymers in Γ containing zl, together with the set of Mayer links of
Γ. To bound the sum of all Mayer graphs of scale /, we first bound the sum of all
Mayer graphs having a given support.

We write

td(Γ)=ΠΠtd(/% (111.12)
j^i k

where the product over k is over the y-polymers Γj which are constituents of Γ.
td(Γj) is the tree decay of scale; between the cubes of ID7 in Γ].

Let us call the sum over all Mayer graphs having a given Mayer structure T
fixed as G(T), and let us put \T\=^n(Δ). Then

Proposition III.6. For any δ > 0 there exists a constant 0(1) (depending on δ) such
that

Σ |G(Γ)|^sup{ sup {0(iγtd(ΓΓδ\Γ\}\. (111.13)
T / | Γ | = n T [ Γ , T ( Γ ) = T j

Proof. The Mayer expansion described in Sect. II.3 was in two parts. At the end of
the part of the Mayer expansion dealing with the connected components we have a
tree of Mayer links. In the dressing process of a polymer we have only to choose for
each cube whether or not it is used to create a new Mayer link. Hence the
corresponding sum is bounded by a factor 2 per cube of T. For the part of the
Mayer expansion dealing with the 1 PI 2-point subgraphs we proceed as follows: at
each intermediate stage we develop the disjointness constraints between a minimal
1PI 2-point subgraph, say B, at the end of a maximal chain and the rest. Using a
small fraction δ of the exponential decay of the propagator hooked to B which
forms the end of the chain, we decide which constraint is developed. This results in
a factor 0(1) per such propagator and a factor 2 per cube as before. Π

The factors 0(1)" and td(Γ)'δ in (111.13) are easily controlled (for δ and λ small)
by the ones of Theorem III.5, hence we will forget them from now on.

Proposition III.7. Let us consider the sum over the absolute values of all the Mayer
graphs of index i containing a given fixed cube, a given total number n of cubes and
having some fixed external fields or true external fields. This sum is bounded by the
right-hand side respectively of (III.4\ (111.5), and (III.6\ depending on the number of
external fields, times a factor Bn, where B is as small as we want provided λ is small
enough and M is big enough. In addition the same sum for vacuum subgraphs is
simply bounded by B".

Proof of Proposition III.7. Each high momentum field has an index (that we sum).
Let Γj note a Mayer graph of index 7 (i.e. formed of all the cubes of index lower or
equal toj), and Γ] its connected components. A vertex is contained in a subgraph if
at least one of its legs is contained in it.

Using an induction procedure starting from the subgraphs of largest index, we
will define at least one fixed vertex per subgraph:
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All external vertices (true or not) are fixed vertices. If a subgraph contains no
previously defined fixed vertex we pick one at random. For a graph of index i we
write for the factors of Theorem III.5:

Mj = M* Π M~l (III. 14)
j<h^i

for each field other than true external fields,

M~j = M~l Π M (III. 15)
j<k^i

for low momentum mass counterterms and gradients,

for the exponential fall off of each propagator of index j. Inequality (III. 16) is true
provided M > 2. From now on we also refer to the hth factor on the right-hand side
of (III. 16) as a propagator of scale h.

For each connected subgraph (of index 7), starting from the subgraphs of
smallest index we integrate over all space each nonfixed vertex of the subgraphs
which have not already been integrated. For a vertex which has fields of index
bigger than j we use :

Sg(x)h(x)dx£ sup \h(x)\ J \g(x)\dx^M*J sup \h(x)\ Σ SUP IgOOl , (ΠI.17)
x x ΔeΏj ye Δ

where h(x) is the product of the propagators of scale bigger than 7 and hooked to
the vertex, g(x) is the product of the propagators of scale less than or equal to j and
hooked to the vertex. The result is a factor M4j per integrated vertex of a subgraph
of index 7. We apply (III. 14) to this factor.

Then using Theorem III.5 we rewrite the bound on a subgraph of index i as:

t;(M) e~(M~J/K}d(pϊ

ΔeK j I _ peGj

ΓT Γlίλ \ 2 ΓT Γ\(λ\ 1 Π (1 ^1/4 ΓT 1 ΓT Λ/f ε[l(v) — h(v)]ί ί ϋ(l)λi(δm} 11 v(i)λ 11 (λl(υ}) 11 λl(v} i i M ,
tex

(III. 18)

dm K2 vφE veE
v φ4 vertex v φ4 vertex v φ4 vertex

where /(/, k) = φ of fields of G] that are not true external fields

+ # of gradients acting on fields of G]

— Φ of renormalizations internal to G]

+ 2Φ of δmφ2 vertices of Gj,

v(j, k)=φ of non-fixed vertices of G],

d(p\ for each propagator p is the length of p,

and

L-M~2ί"4ί(e"1} for a 2-point function of index / ,

L = M~4l(e~1} for a 4-point function of index i,

L = O(l)M" ί l...M" I k for a subgraph containing true external

fields of indices z'1 ?..., ik,

L is a tree decay of scale i between the external vertices.
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Each cube is associated with a derivation, a derivation acts on a vertex and a
vertex v can be derived at most 3(/(ι;) — h(v) + 1) times; thus the factor 0(1) per cube
is bounded by a factor 0(ί)Mε(l(v)~h(v)\ for small e, provided M is later fixed to a
large (ε-dependent) value.

We define e(j, k) = number of external legs of G* which are not true external legs.
Then

ΣefrQ^ΣUW-hto)-]. (111.19)
j,k v

Thus the factor Π M2£(l(v}~h(v}} is bounded by Π M2εe(j*k).
v j,k

We use the exponential decay of the propagators to bound the sum on the
cubes of Gkj arising from formula (III. 17),

Each vertex has at most 4 legs so that all the sums are bounded by 0(1)" (we
omit repeating such factors in the bound since they are harmless). There remains
an exponential tree decay of scale i between the external vertices for the 2 and
4-point Mayer graphs of index i.

For subgraphs with e(j, k) > 0, v(j, k) is the number of vertices of G] minus one
(the fixed one). Hence — 4v(j, k) + /(/, fe) < 0 and we have:

The result is that:

) - ί(/, fc)] + Σ 2β [/(ϋ) - h(vj] ^ - £ (1 - 8ε) . (111.21)
v j,k

For ε< 1/100 we obtain a small factor per G*:M~ ( 1~4 ε ).

' k } Π λlβ Π l/(t;) /I *^o r X2 insertions) ^

j, k vφE veE
v φ4 vertex v φ4 vertex

(111.22)
The sum on the left is over all subgraphs containing a fixed cube and having

given fixed external structure. The sum on the right is over the total number of
vertices (φ4, δm or K2) and over all possible assignments of the e(j, fc)'s and /(ι )'s.
This last sum is done in the following way. For each scale j we sum over the number
of vertices with h(v) =j9 using the small factor per vertex. This sum gives a constant
per scale. Then, using a fraction of the exponential decay in e(j, k) of (111.22) we can
sum over the choices of the /(/;)'s. Finnally the product of the accumulated
constants (one per scale) is bounded by another fraction of this decay. This
achieves the control of the sum in the right-hand side of (111.22). We have thus
obtained Proposition III.7 up to the fact that the /Γs of the external vertices do not
yet have the index i. Paying with still another fraction of the exponential decay in
e(j, k) in Eq. (III. 22) we can transform the λl(v^s of the external vertices v into factors
λb which completes the proof of Proposition III.7. Π

To achieve the proof of Theorem III.2 (and III.3), we have only to sum over the
number n of cubes and this last sum is geometrically convergent.
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III. 3. The Behaviour of the Two and Four Point Functions.
Proof of Theorem LI and 1.2

The two point function S2 is equal to the free propagator C(x — y) with all possible
insertions of mass-renormalized 2-point subgraphs. For simplicity let us call
B(x,y) the sum of all mass-renormalized 1PI 2-point subgraphs. We may write S2

as:
., (111.23)

the product being a convolution product. To get the exact leading behavior of S2,
we must perform the wave function renormalization, hence write in Fourier space

) = B0(λ)p2 + Bί(λ,p}. Then we decompose (111.23) as £2 = ̂ 2, 0 + ̂ 2,1, with

S2,o = C f l + Σ (B0xQ"}9 (111.24)

S2, i = I ΣQ (
C x BoTl C I ̂  (5, x C)"j. (111.25)

In the first sum (111.24) we have a geometric series. From the bounds of Theorem
III.2 we have B0(λ) = 0(λ) since by Theorem III.l Σ Λ2 ̂  0(λ). Hence if we denote

i

by U(p2) the ultraviolet cutoff (in momentum space) of Sect. 1.2, we have B0

xC = 0(λ)U, and S2t0 = C{ί—0(λ)U}~1. In position space, S2t0(x — y) behaves
like [1 4- 0(λ)~]/\x — y\2 for large x — y [the corrections, due to the ultraviolet cutoff,
vanish rapidly and can be absorbed in the correction term C1 in (1.5). Similarly the
first geometric sum in (111.25) can be bounded by 0(1)]. Hence we have only to
verify that:

<

First we observe that the effect of the mass renormalization in B{ is to replace the
C's in the interior of (111.26) by F2C's, which behave at large distances as |x — j;| ~4.
Similarly the two C's at the ends are changed into PC, which behaves like \x — y\~3.
If we do not take into account the wave function renormalization, the kernel
between these differentiated propagators behaves like \x — y|"4[Log|x — y|]~2.
The Log ~ 2 correction to ordinary power counting comes from the λf in the bound
on K2 of Theorem III.2. Hence, were it not for the wave function renormalization,
we would have to bound:

l*ιΓ3 x biΓ'ELogNΓ2 x |χ2Γ
4 x - x W"4[LogW]-2 x χB + 1r 3,

(III.27)

where the x's correspond to difference variables of differentiated propagators and
the /s to difference variables for the kernels. This does not satisfy the desired
bound (111.26). The problem is that the mass-renormalized 2-point function has
dimension 0. Consequently we do not have exponential decay between the
momentum scale of an almost local 2-point insertion and its external legs.
However with wave function renormalization, this decay is restored. For a two
point insertion B(y — z) between propagators C(x — y) and C(z — t\ this decay can
be used to transform the factor [Log|y — z|]~2 into {Log [sup {|x — y\,
|y-z|}] Log[sup{|j;-z|, \z — t\}~]}~1. Then we use:
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Lemma.

r *y
JLog[sup{|x-y|,b-zl}] Log[sup{|y-z|,|z-ί|}]|x-y|3 |y-z|4

0(1)
Log[sup{|x-z|, |z-ί|}] |x-z|3'

^ < LJ an 29)
,.ι I . . _ ι ) π I,- ,.ι3 i, . _ι3 = rr u. _π u. _ι2 ' V A A A ^^/

<

Applying repeatedly (111.28) to the chain of convolutions in (111.27) and
applying (111.29) for the last convolution, we obtain the desired bound (111.26),
hence completing the proof of Theorem I.I and of the first part of Theorem 1.2
[(I.4HI.5)].

To prove the last part of Theorem 1.2, i.e. (1.6), we have to bound the truncated
four point function at large distances. We consider the contributions of lowest
orders in the effective coupling constant. The biggest one is the one with only one
coupling constant whose index must be equal to the smallest index of the external
legs; up to smaller corrections this index is proportional to:

(111.30)

where the x's are the 4 external points. Hence we obtain the desired result:

s2(Xί, y)

IV. The Bounds

We prove Theorem III.5, i.e. we bound an z-polymer.
We return to the definition of the Mayer expansion of Sect. II.3. In Sect. III.2 it

was explained how to bound the combinatoric factors generated by the expansion
of the disjointness constraints of the 1PI 2-point subgraphs. However a technical
problem remains. In the ordinary cluster expansion, the local factorials due to the
integration of the fields hooked to many propagators which can accumulate in a
single square are easily bounded by the exponential decrease associated to these
propagators. This is no longer the case for the Mayerized cluster expansion,
because the cubes at the far ends of the propagators of the chains of 1PI 2-point
subgraphs need no longer be disjoint. Therefore we reserve a special treatment to
these end-of-chains propagators. Instead of evaluating the δ/δφ at the ends of these
chains as in the usual cluster expansion (i.e. applying them directly on the
remaining integrand, which can generate three fields per such δ/δφ) we convert
them into C(s)~1φ.

Each such polymer is now a sum of terms that we write as:

Σ^ABCPdμ. (IV.l)

A is the exponential of the interaction, B is the product of the high momentum
fields, of the true external fields, of the almost local (renormalized) mass insertions
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and of the "useless" mass counterterms, C is the product of the low momentum
fields and P is the product of the propagators produced by the expansion.

Let us introduce some definitions. Let G be a polymer, x e A e IDί? A e G, then:

h(x) = mί(k\Δf e Dfc, zΓ in the support of G, x E Δ'} , (IV.2)

l(i,x) = i-h(x) + i, (IV 3)

and

l(Δ) = (ί/Δ)S Mεl(ί>x}dx, (IV A)
A

n(Δ) = 3Φ{Δ'9 such that in formula (11.16) we choose D ,̂, D2

ΔtΔ, or IΔtΔ,}.

I V.I The Low Momentum Fields

For each low momentum field φltk9

ΦuCM)= Σ Φ,WΛjV, (IV.5)

where α(x, (ί},/cj) was defined in (11.24). We decompose

(IV 6)
with:

ή<Pι.k(x,t)= Σ a(x9{t}9k9j)ίηk(x-y)φ^(y)dy9 (IV. 1)
j>k

δ<Pι,k(x,t)= Σ a(x9{t}9k9j)δhφJ(x)9 (IV. S)

where ηk(z) = (aMkΓ4η(z/ocMk) was defined in (1.24). Note that η is C£ and that,
since η is even, if (0) = 0.

We observe in (IV.7) that the a(x9 {t}9 kj) and the field φj(y) do not come in the
combination (Pιtk(x,i) needed for domination. We thus rewrite a ( x , { t } 9 k j ) as
a(y9{t},kj) plus corrections using

We start from the lowest index, j, and apply (IV. 10) to all the cubes of this index
appearing in the function a. For the terms containing only A(y) factors, the correct
ί-dependence for domination has been restored at this scale and we move to the
scale j— 1 and so on. As soon as we encounter a term with a factor Δ' or Δ"9 say at
scale q, k<q^j, we stop using (IV. 10).

If the factor is a A" we have two terms, one with the field φq, the other with the
low momentum field φlΛ. For the φq field, we contract (use gaussian integration)
and for the field φlq we use ordinary domination in the appropriate cube of scale q
[see Eq. (I V.I 3)]. In the first case, since there may be up to O(l)M4(q~k) fields
contracted in this way, the (nl)1/2 of the gaussian integration gives M2(q~k) per field.
Moreover the propagators of scale q give a factor M~2(q~k} per propagator, hence
M~(q~k} per field better than the propagator of scale k. Similarly in the second case
the factor (nl)1/4 in Eq. (I V.I 3) results in a factor Mq~k per dominated field. On the
other hand the factor |x — y\2A" gives us in both cases an extra factor M~2(q~k\
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Hence in both cases the remaining factor M~(q~k] may be used to sum over q, and
the net result is the same as if we had dominated at scale k.

If the factor is a A' we use the fact that

to rewrite $ A'(x)(x — y)ηk(x — y)φj(y)d4y as

+ $d4z(ηq+ί(y-z)φJ(z)-ηq+l(x-z)φ\z))-]. (IV. 11)

Since x — y is of order Mk because of the function ηk, and the characteristic scale of
momenta of ηq + i and of φj is less than or equal to q, the two differences in (IV. 1 1 )
result both in an extra factor M~(q~k} which combines with the A'(x)(x — y) to
behave just like the A" in the former case. The contractions and dominations are
then done as above, and the conclusion is the same. Hence in the future it suffices to
consider fields which have the correct ί-dependence for domination, hence we
replace (IV.6) by

φlt k(f , x) = ηφlt k(f , x) + δφlt k(ί, x) . (IV. 1 2)

The same procedure may be applied to low momentum fields to which derivatives
have been applied: simply use integration by parts to move the gradients of r\Vnφ
from the φ to the η.

To prepare the low momentum fields for domination it remains to introduce a
(1 — ί) factor for every such field, since there is a corresponding factor (1 — ί4) in
front of the φ4 term in the exponential [see (11.22)]. We can dominate at most 15
fields which have no (1 — ί) factors:

j"^
(IV.13)

provided that m^l5.
The elementary step to introduce a (1 — t) dependence is (we suppose tφO):

<Pi,Jt,x)= Σ A(x)(\-tA)φl^x) + φu_1(t,x)- £ A(x)tΔφ
l(x). (IV.14)

We do this as long as f ΦO, and obtain

Ψu(t,x)= Σ Σ A(x)(ί-tA)φltJ{t,x)- Σ Σ A(x)tΛφ\x).
-

The first term of the l.h.s. of (IV.I 5) consists of low momentum fields while the
second term consists of new high momentum fields (which will be contracted
rather than dominated). We remark that by definition th(x)_1=0.

After completing the steps described above (reconstitution of the dependence
on t and the addition of the 1 — t factors) each low momentum field appears in the
form, for v E A υ e E)f,

Jdxf/ i fa-x) Σ Δ(x)(l-tΔ)φltJ{t,x)

M4i\ηi(v-x)\ £ M-4^A(x)l(ί,x}(l-tA}\φιJJ(t7x)\dx

A neighb. of Av

sup l(Δ)M-ί\\Δ(x)\φlJβ,x}\^dx\ll\ (IV.16)
A neighb. Av
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where

if j<i.

_0 otherwise

Applying the bound (IV.I6) to all low momentum fields of the polymer gives:

times a factor M"1 per low momentum field ηtφιj.

IV.2 Proof of Theorem 1 1 1. 5

The sum over all the derivations producing a given graph is controlled by the
following proposition.

Proposition I V.I. Postponing the summations on the vertices, each subdiagram G is a
sum of terms T (the value is noted also T ) that we bound by

for
T

The a(T) are given by

a(T)= Π 0(1) Π 0(\)Mε[l(v}-h(x(v» + 1] Π e

(M~ί/loκ)d(^A'^ (IV.20)
AeG vertex propagator

where i is the index of the propagator and x(v) is the localization point of the vertex.

Proof. Each d/dti and δ/δφ' derivative can act either on the exponent or on fields
that are already downstairs. A combinatoric factor of 2 allows us to decide which
of these two possibilities occurs. In the former case a factor of 0(1) (i — h(x) + 1)
allows us to decide on which term of the exponent and on which field in the term
the derivative acts. We assign to each vertex localized at x a factor of 0(1) per
momentum scale between h(v) ̂  h(x(v)) and l(v) to control the number of
derivatives of that scale acting on that vertex. Finally, given that a δ/δφ acts on a
given field, an exponential in d(A,A') is used to decide which δ/δφ it is. Π

To estimate |T| we want to use a bound of type (1.23),

\$ABCdμ\^[$B2dμ]1/2sup\AC\, (IV.21)
φ

i.e. we shall dominate the low momentum fields and integrate the high momentum
fields.

To apply (IV.21) some work has to be done. Indeed the coupling constant λ(υ)
of the vertex is different from λl(v) + 1. By induction, we know that Theorem IΠ.l
holds for k < i. Hence we know that 0(1) (l/2fc) ̂  λk ̂  0(1) (1/fc) if A is small enough.
Therefore for each vertex v at position x

λ(υ) £ λh(x) £ 0(1) V) + ι(/(t>) - h(x) + 1) . (IV.22)

Combining the bounds generated by (I V.I 5), (I V.I 6), and (IV.22) we get for a
vertex of index h(v) at position x in a cube A eΊDl(v}:

(IV.23)

times a product of fields which are hooked to the vertex. They are:
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- a product of absolute values of high momentum fields or of fluctuation fields
δφ fields

- a product of smeared low momentum fields, each accompanied with a factor

^)+lFor each high momentum field or fluctuation field ψ (ψj is either a high
momentum field φj or a fluctuation field δj(pk) we write

\ψJ{x)\^2lM~s + MjψJ{x)2^. (IV.24)

We have now to perform the integration of the field. The integral is of the form

SAB'B'ΈFL'MP'dμ,

where

A is the exponential of the interaction,
B' is the product of the real high momentum fields [i.e. which are not δφ fields

and are not coming from the use of (IV.I5)] and of fields which belong to the
external vertices,

B" is the product of all the almost local renormalized two point insertions,
E is the product of the high momentum fields coming from the decomposition

(IV.I5) of the low momentum fields,
F is the product of the δφ fields,
L is the product of the low momentum fields φιj,i of (IV.I6),
M is the product of the factors C(s)~1φ at the ends of the chains of the i-th

Mayer expansion,
P' is the product of the propagators introduced by the cluster expansion (with

possibly gradients acting on them).
We bound this integral in the following way.

lAB'B'ΈFL'MP'dμ

^(Bf()}dμl(B"6}dμ\(E6}dμl(F6}dμl(M6}dμ~\116 sup \AL'\ \P'\. (IV.25)
φ

Anticipating the integral over the position of the vertices that will be performed
in Proposition III.7 we can treat the factors (l(υ) - h(x) +1)0(1) of (IV.23) as follows:

J dx(l(v)-h(x) + ί ) 0 ( » f ( x ) ^l(A) J dx sup |/(χ)|. (IV.26)
Δ Δ xeΔ

Proposition IV.2

9 φeL' ΔeG

Proof. From the preparation of the low momentum fields in Sect. IV. 1, L' is equal to
Π O(ί)l(A)0(ί)(ί+n(Δ)} times:
A

π M-'^Π π ΓΣ
φeL' i ΔeT

(IV.28)
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Indeed recall that each low momentum field was accompanied by a factor
ω/(#+1 ^ω)/4. Moreover from (IV. 17),

φeL'

x exD Γy Y ^7"w f Γl -(t (x))4l \ω (χ}!4dx I (IV 29)XN v<Λ.|J I 7^ / ^ t A I I^J. I L ;\ // J l_τ Z /'\ /J *̂ -̂  I I-*- * »^*y I

Thus because £ l/(i-j + l)4^0(l)

φeL' A

The counterterms being exactly cancelled, there is no mass term in the exponential.
Hence the exponent is negative and O^A^l. Π

In the next proposition we recall the standard bounds on the covariances (1.9).

Proposition IV.3.

IPΊ < Π Π ΓJ^f-i(2+# (gradients acting on p))g-4(M-V«)d(p)-| (IV 31)

i peP'
p of index i

where d(p) is the distance between the end points of the propagator p.

We now bound the integration over the fields. Such an integration over a
product of fields K (K stands for F6, F'6, £6, F6 or M6) is a sum over all the
possible contraction schemes (S); let K(S) be the value associated with such a
contraction scheme S.

If a(K, S) > 0 is such that £ [_a(K9 S)] ~ 1 ̂  1, then:

J Π dx!Kdμ=ΣK(S)£supa(K9S)\K(S)\. (IV.32)
vertices S S

Proposition IV.4. A convenient choice for a(K,S\ Kή=M6, Kή=B"6, is

exp[(0(l)M~l)d(p)] per propagator of index i,

0(l)[π(zl)!]0(1) per cube z J e G ,

Mε(i~j} per field ηtφ
j,

M3^"^ per field δ^.

Proof. We bound the number of terms generated by the contractions. The fields can
contract in an arbitrary order so we make the convention of contracting first the
fields which have the smallest indices.

- Bound on the contractions of F. Let us consider a field φ\x\
which contracts with a field φ\y\ y e A ί e E)f.

The choice of A1 is controlled by o(l)e(M~l/κ)άist(Ao Al) because

(IV.33)
ΛieDj

A factor 0(1) + 0(l)n(J1) suffices to control the number of choices of φl(y) in
Aί. Collecting these factors we obtain the bounds on a'(B'6,S).
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- Bound on the contractions of E. Let us consider a field η^^x), xezJ 0 eD 7 ,
which contracts with a field ηιψj(y) y E A 1 E ΊDp yEAΈ ID,.

The choice of A1 is controlled by o(ί)e(M~J/K)dist(A° Aί). The choice of / is
controlled by 0(ί)MB(l~J\ A factor 0(1) + 0(ί)n(A') suffices to control the number
of choices ofηtφ

j(y) in A'. Collecting these factors we obtain the bounds on a'(E6, S).
- Bound on the contractions of F. Let us consider a field δtφ\x\ xezl 0eD 7 ,

xeA eE); which contracts with a field S^s(y), yeA1 EJDJ9 yezl 'elDj. Due to the
order of the contractions we have:; > /^ L The combinatorics are as above but for
the choice of / and A'. We choose / with a factor 0(ί)MJ'~l. We choose A', A'cAl9

with a factor AJA^ M4(j'l) ^ M2(j~l}M2(j~i}. Collecting the factors we obtain the
bound on a'(F6, S). Π

To bound the sum over contraction schemes of the M6 and B"6 terms is more
delicate. Let us define p(A, A') as the number of 2-point almost local insertions or of
chains of such insertions (called here "chains" for simplicity) which have one of
their ends in A and the other in A' (note that A and A' need not be of the same scale).

Proposition IV.5.

AγeM~J(A'Δ')d(Δ>Δ'}p(Δ>Δ'}M-4j(Δ<A')p(A>A'}, (IV.34)
Δ,Λ'

where j(A,A') is the smallest of the indices of the lattices of A and A'.

Proof. Let p^A) be the number of chains with their end field of highest index in A
and p2(A) the number of chains with their end field of lowest index in A. We have
p(A) = pι(A) + p2(Δ) = 2p(A, A)+ £ p(A, A'}. If we contract naively the p(A) legs in

A, starting with the cubes with p(A) maximal, we obtain, using a piece of the
exponential decay of the propagators, a factor [p(/l)!]1/2 for the Wick contrac-
tions. Moreover the propagators generated by this process have a power counting
which has to be taken into account. The highest leg of a blob, say of index j, has a
power counting M~J

9 and the lowest leg, say of index f, bears two V from the mass
renormalization, hence a power counting M~3t. We write the total factor from the
propagators as M~4j M~3(i~j\ The factors M~4j create exactly the factors
M-4j(Δ,Δ')P(Δ,Δ') in (jv.34). it remains to show that

Π(Pι(^) !)1/2(P2(Λ)!)1/2^ Π {.p(A,A'}M(2 + 2£)(i-j}e£M~Jd(A>Λ'}γ(A<Δ'\(lV35}
Δ Δ,Δ'

where in the r.h.s. of (IV.35) i andj are the indices oίA and A' and i^j. Let us sketch
the proof of (IV.35). We have first:

(Pί(A)l)1/2^ Π p(A,ΔYA>Δ>}l2[Mε(i-j}eεM~Jd(A>A'}γ(A>A'\ (IV.36)
Δ,Δ'

Indeed paying the small exponential increase in (i— j) in (IV.36) we can choose the
index i knowing j, and then the exponential increase in the spatial distance in
(IV.35) (which of course will be later controlled by the exponential decrease of the
chains) pays for the choice of A' knowing A. In this way we can transform the full
factorial pι(A)l into local ones, and taking square roots give (IV.35). Similarly we
can transform the full factorial p2(Δ)\ into local ones. This requires however to pay
an extra factor M4(I ~j) to choose the small cube of index 7 into a large one of index i.
Thus (IV.34) holds.
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Proposition IV.6. // the summations over the "chains" of Proposition IV.5 are made
independent, as mil be assumed in the way we perform them later, an extra factor
H p(A,A')l arises due to over counting, which compensates for the one in (IV.34).

A, A'

For a detailed analysis of combinatoric problems similar to those of
Propositions IV.5 and IV.6, we refer to the appendix of [15]. In particular a nice
picture of the exact overcounting factors above is given in terms of the
coordination numbers of the trees used in [15] and [32].

Proposition IV.7. A bound on B'6, E6(S), F6(S) is given by the product of:

e-(M-ηκ)d(P) per prθpagator p of index / ,

M~l per field of D or F of index i hooked to a φ4 vertex,

M-;M-ε(ί -j) per βeιd η,φj Of E

M~3(j~i} per field δiφ
j,j>i,

M~l per gradient acting on a function ηt,

(V)+ι)1/4 by vertex υ,

M~2l((5m) per low momentum mass counterterm.

Proof. Were it not for the δφ and ηtφ
j fields it would suffice to gather together the

factors arising from the bound on the propagators, the pieces of coupling constant
set aside and the bound on the mass counterterm.

The Fourier transform of a δ^ field is (see Sect. I V.I):

J(P) = D - fc(pM')] φ j(p) , (IV.37)

and we have that ή(Q) = 1 and that ή'(0) = 0 so that

Γ1 1
[1 - ή(pMί)~] φj(p) = f da(\ - α)/f (αpM1) M2ip2φj(p} . (IV.38)

LO J

Using formula (IV.38) we can consider the propagator coming from the
contraction of two fields δtφ

j and δvφ
j as a propagator with 4 gradients (plus

possibly the gradients coming from the renormalization) and multiplied by a factor
M2ί + 2Γ. Hence using Proposition IV.3 one obtains the bound on the fields of F.

Let us consider the contribution arising from the contraction of ηi(pj(x) and

. (IV.39)

After extracting part of the exponential decay of Cj(t — t'} we still have essentially

ί^ (IV.40)

'M^'-A π (iv.4i)
We have to bound the l(Λ) factors. There are such factors associated with each
vertex, field and derivation in A. The number of vertices or derivations is bounded
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by construction, the number of fields is bounded by

0(1

Proposition IV.8. For any N(A)

Π [/(4
AeG

Thus, by (IV.42), we obtain that:

Proof. For

so that:

0(1) Σ n(A'). (IV .42)
A' neighbour of A

Π IM*™^ Π 0(l)[JV(/l)!]. (IV.43)
AeG AeG

0(1). (IV.44)
zleG

[ λ/ΐ-4h(x) Ί

Ip-/K*)+ιH (IV 46)

The product over all the cubes of the polymer G is a product over i and over the
AeΌh AeG.

π E^ Γ^ΓΠ N(Λ)Πexp ΣX Σ j Γ.M \ Λ2d*
(IV.47)

Now for) given: £ a^ 0(1) sup[z—- j-\- l]2flj. Moreover, we can bound the integral

over x, such that h(x) =j, as the sum over the cubes of ID7 C G which contain x

M~4j

/LίZ-ί Z-i J Γ 7 _ ι _ 1 Ί 2 ~=~ ^r1 ^—' ^ ~~ ^-' \ / '
j i AeΏj,AeG \_xeA,h(x) — j] L* J ' -1 J 7 Ae)Dj,AeG A AeG

(IV.48)

This together with (IV.47) completes the proof. Π

We control the n(J)! per cube using the exponential decrease of the
cluster propagators

Proposition IV.9. For any ί.

peP', p of index i AeG,AeTDτ

Proof. Let

C(A) = {A', such that in formula (11.16) we choose D\ Δ,, D
2

ΔtA,9 I Δ ^ Δ , } .

There are, for n(A) large enough, at least n(A)/2 cubes of C(A} such that
dist(A,A'}>Mi/100n(A)1/4 thus:

)^ (IV.50)
peF', p of index i JeG, ^leDj

^ Π 0(ί)tn(Δ)!Tow, (IV.51)
zleG^eDj

which proves the proposition. Π

Theorem III.5 is now a consequence of Propositions IV.1-IV.9.
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V. Borel Summability

In this section we prove Theorem 1.3, i.e. the Schwinger functions with bare
coupling constant λ and bare propagator \/p2 (constructed in the previous
chapters) are Borel summable functions of λ.

V.i Introduction

Let us first recall what Borel summability is [31]:
If for some α>0, we have that in the disk Da

1) S(λ) is an analytic function
2) The following "uniform" Taylor bound holds:

k

Σ -έokl
^0(ί)n\λ\n+1n\ (V.I)

then S(λ) is Borel summable. It can then be recovered from its perturbation
expansion through its Borel transform. More precisely if we define:

B(b)= Σ 77^2^(0). (V.2)
fc = 0 (K\)

B(b) has a nonzero radius of convergence and can be analytically continued to a
strip containing the positive real axis. Moreover:

S(λ)=\]e~blλB(b)db. (V.3)
A 0

To prove that the Schwinger functions are Borel summable we have to show
that for α > 0 small enough :

1) The Schwinger functions are analytic in the domain Dα. This, the hard part
of the proof, is given in Sects. V.2 and V.3.

2) The bound (V.I) holds. This is easier and proven in Sect. V.4.
We start by explaining why the analyticity in Dα is not an easy generalization of

the previous construction. The problem resides in the domination. On the circle
bordering Da we have Reλ = \λ\2/2a. The domination argument can only use the
positive part (Re/l)φ4 of the interaction in the exponential. Each domination of a
low momentum field costs therefore a factor (Re/l)~ 1/4 ^(2α)1/4(Im/l)~ 1/2. A vertex
produced by our derivation rules comes equipped with a factor λ = Re /I + ilmλ and
has at most 3 low momentum fields. The Re λ part is no problem, but by the cost
remark above, in the Imλ part we can dominate at most 2 fields.

The natural way out is to remark that a vertex with one high momentum field
and three low momentum fields violates conservation of momentum. However to
see this non-conservation this vertex must be integrated over a region of size
corresponding to the low momenta. (Recall that to have exact conservation of
momentum at a vertex it must be integrated over all space.) This is not the case
under our previous expansion rules, since a derived vertex is integrated over its
localization cube and under the old rules the localization cube is often of the scale
of its highest momentum leg. The requirement that the interaction be positive
(even at intermediate values of the interpolating parameters ί) determined rather
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rigidly these rules. However since we are now dealing with the imaginary part of
the interaction, we no longer have this requirement, and we can therefore alter the
rules. This is done in Sect. V.2.

Another related problem is that the cutoffs (1.9) which define our slices do not
have good momentum conservation properties: they do not vanish at p2 = Q.
Hence we must change the cutoffs. However the momentum-conserving cutoffs
have a strong 0 at p2 = 0, and consequently cannot be inverted as is required in
Theorem II. 1. This forces us to change and indeed complicate the cluster and
Mayer expansions. These complications (which are described in Sect. V.3) would
have appeared unnatural and obscured even further the convergence proofs of the
previous sections. Therefore we preferred to delay them until this chapter.

V.2 The Modified Momentum Coupling Expansion

In the proof of the convergence of the expansion there are only two things which
are sensitive to λ being complex: the fact that \λ{\ « ί/i and, as discussed above, the
domination of the low momentum fields by exp[ — Re/lφ4].

Let us first verify that:

ReΛ>0 => |;^inf[|40(l)/f|. (V.4)

This is a consequence of the fact that the recursion relation λi + 1=λi — cίλf
+ 0(λf), with ct >0 almost constant in i, still holds for λ complex.

Let us now consider the domination problem. We decompose at each scale
each vertex into its real and imaginary parts.

λiφ
4 = (RQλi)φ4+ί(lmλί)φ4.

For the real vertices we can dominate three fields per vertex.

For the imaginary vertices we can dominate only 2 fields per vertex and still obtain
a small factor (2α)1/2 per vertex:

We modify the expansion such that it is convergent with the above restriction
for domination. To exploit translation invariance, we have to create imaginary
vertices localized in cubes corresponding to the scale of the leg of second highest
momentum. To do so we must change the ί-dependence in the imaginary part of
the interaction. (As remarked above we have no reason to preserve the positivity of
the imaginary part of the interaction.) For a vertex whose frequencies are
il ^ i2 :g ϊ'3 ̂  i4 the ordinary ί-dependence, apart from an inessential combinatoric
factor and apart from the x-dependence through the functions a is just (see 11.28):

α-^-i^ πωV 1 π ωv2 π ωva π ^ (v.s)
j = l k = j k = iι + l k = i 2 + l k = i 3 + l

In the real part of the interaction we leave this ί-dependence unchanged. For
the imaginary part of the interaction we replace all the ίfc's with iί^k^i2 by a
single parameter ί(/1? z'2) which couples therefore a cube of scale i2 to the set of all
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the cubes of scale iί contained in it:

Π
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(V.6)

This dependence is as good as the one of Sect. II.2 to perturb the coupling
between fields of different momenta, but it doesn't preserve the positivity.

Since the ί-dependence above scale i1 is unchanged, renormalization works just
as before and the flow of λ is unchanged.

The ^-expansion in the ordinary parameters ti is performed as before (up to fifth
order); for each new parameter t ( i ί 9 i 2 ) we will perform a Taylor expansion up to
order M4(i2~lί + 1}. This is done so as to ensure that we still have a small factor for
each cube (even those of scale ij in the support of a Mayer graph. This Taylor
expansion is performed over all scales before the other decoupling and cluster
expansions. In the Taylor remainder [at i(z 1 ? / 2 ) + 0] we have a new type of link
called T-link (compare to the "open gates" of Sect. I). This T-link is pictured in
Fig. 2 and joins a cube of frequency i2 to all the cubes of frequency ^ contained in it.
It is then natural to consider all these cubes of frequency i x as a single region when
the cluster expansion of scale ί l is applied. The main difference between this
expansion and the old one is the following. While the number of vertices produced
is roughly the same as before, they have been produced in a cube of scale z'2, and
consequently they are no longer constrained to belong to different cubes of scale iί.
This restores conservation of momentum down to scale i2. We shall briefly show
that when i2 > z l 5 the very small factors resulting from the violation of momentum
conservation make up for the loss due to the bad domination (only 2 fields per
vertex) and to sloppy estimates for the gaussian integration in scale ί l .

The first remark is that with the dependence (V.6), imaginary vertices created
by derivations with respect to the ordinary ίfc's are o.k. Indeed in (V.6) there remain
only two classes of ordinary ί's: the ones with scale k>i2 (differentiation with
respect to these ί's give vertices having at most 2 badly localized legs to be
dominated) and the ones with scale k<ίί (differentiation with respect to these ί's
give only "counterterms" hence vertices with coupling constant δλk « λj:, for which
domination of all the legs is straightforward).

Scale i

Scale \2

Fig. 2. A "Γ" link of Sect. V
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It remains to bound the vertices created by the t ( i ί 9 z*2) derivations. They can be
isolated from the others through a Schwarz inequality. Let us call n = M4('2 ~ l l + 1}.
Using in a standard way the exponential decrease of the propagator in a slice the
factorials generated by the cluster expansion, the gaussian integration and the
domination of fields hooked to these vertices may be bounded by nk where k is
some fixed power.

Let us use momentum conservation to compensate this bad factor. For a cube
A of scale z'2 :

(Z)(-pl-p2-p3-p4)φίί(p1)φi2(p2)φi*(p3)φί4(p4)

I P i l
(V.7)

Assuming that one uses a slice cutoff which vanishes at p2 = 0 as psk it is easy to
extract from (V.7) the desired factor M~4 k ( l 2~ l l + 1). Indeed when we contract the
field φil the factor \p^k in the denominator of (V.7) leads to a factor M4ίl in the
bound. Multiplied by 3, the factor \p±\4k in the numerator leads to a factor M~4kl2.

V.3 The Modified Cluster and Mayer Expansions

We have first to make a choice for the momentum-conserving cutoffs. A good
choice is:

which obviously vanishes at p = 0 at least as fast as p8k. Since the covariance Cl(s) ~ 1

does not satisfy Theorem II. 1, we replace the simplified cluster expansion of the
previous sections by the inductive version explained in [28]. However to preserve
the analysis of 1 PI 2-point subgraphs of Sects. Ill and IV, we have to push this
expansion until the one particle irreducible structure between cubes has been made
entirely visible. This generalization of the cluster expansion is explained in full
detail in [39], so we do not repeat it here. The price to pay is that in the ordinary
Mayer expansion the 5 dependence of the mass counterterms does not match that
of the 1PI 2-point graphs. This problem was resolved using the inverse covariance
to restore the s-dependence. Such a cheap solution is no longer available, so we
modify the Mayer expansion itself. We will describe these modifications and give a
consistent chain of arguments to solve all difficulties, but we do not present the full
corresponding formalism.

The development generates terms, each of which consists of 2PI kernels, linked
through chains of 1PI 2-point subgraphs and mass counterterms, none of which
can overlap. In a first stage we show how to define the portion of the mass
counterterm required to renormalize 1PI 2 point subgraphs which do not
themselves contain any other 2-point insertions (subgraph or counterterm). After
that the rest of the computation of the mass counterterm is inductive and follows
exactly Sect. II.4.

In Fig. 3 we show a typical 1PI subgraph, and a mass counterterm. To perform
the cancellation, we use the following steps. First we add and subtract the local
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IPI 2-point subgraph

dm2 counterterm

Fig. 3. The 1 particle irreducible structure

part of the IPI subgraph, i.e. we write:

J K2(x, y) φ(x) φ(y)dxdy = J K2(x, y) [_φ2(x] + φ2(y)]/2 dxdy -1 /2 f K2(x9 y) [_φ(x) - φ
(y}-]2dxdy. (V.9)

The second term is renormalized as desired. The first term has its two external legs
localized in a single cube and must be cancelled against the counterterm. However
the counterterm is supported in a single cube A, whereas the local part in (V.9) may
still have a large support S = S'vA', where A' contains the two external legs. To
cancel these two terms when A=Af, we need to remove the non-overlap
constraints involving S'. This is done with an ordinary Mayer expansion on S'. We
remark that since there are still disjointness constraints between all the squares of
type A and A', the local factorials remain controlled by the exponential decay of the
propagators.

By this procedure we have cancelled all the mass counterterms that are not
contained inside 2PI kernels. To compensate the remaining counterterms inside
these kernels, we have to remove the disjointness constraints between the squares of
type A' and these kernels. It is here that we meet the announced difficulty that the
naive s-dependence of the two propagators exiting from A is not the same as the
5-dependence of propagators inside the kernels. This is an artificial problem
because we are not bound to keep the naive s-dependence in the terms which we
create by removing the disjointness constraints. Typically instead of writing
exp[-F(β,F)] = {exp[-F(£,5')]-l} + l as in (IL31)-(IL32) we can equally
well write

where

exp [ - 7(5, £')] = (exp [ - V(B, F)] - g(B9 B'9 s)} + g(B, B'9 s), (V.10)

(V.ll)g(B,B',s) =

By cleverly choosing the function /(s) we can restore the desired s-dependence in
all cases. All the counterterms inside a given 2PI kernel are generated either by
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explicit cluster derivations or by expansion of the exponential exp(<5m2φ2). In the
first case the s-dependence is somewhat messy, in particular because we use here
the inductive cluster expansion of [28] in which the 5 parameters are not assigned
to specific pairs of cubes. This introduces complicated (although straightforward)
problems of notation. Hence as an example we will only describe what to do in the
second case. There we have to remove the disjointness constraint between the
support Σ of a 2 PI kernel K and the cube A' of a 1 PI subgraph with external legs
C(x, y t) and C(x, y2) (hence xeA' and y± e Σ, y2 e Σ}. But in the cluster expansion of
[28], the s-dependence of a propagator C(x,y;s) is just a product of s parameters
which depends on the cubes to which x and y belong, and which we call h(x, y; s). In
the formula (V.ll) we can then simply take f ( s ) = h(x,yl 9 s ) h ( x , y 2 ' , s ) . The reader
can check that one can now use (11.34) and achieve the desired cancellations. The
rest of the bounds follow as in Sect. Ill and IV.

VΛ The "Uniform Taylor Remainder" Bound

We will be brief since large order estimates are now relatively standard [7, 9, 10, 15,
32].

Using repeatedly the formula (11.35):

we can "undo" effective coupling constants, which means writing

We continue until either all coupling constants are λ or the total number of
coupling constants λ explicitly appearing is n + 1 . Note that the coupling constants
that we "undo" in priority are the coupling constants of vertices or counterterms
produced by the expansion; if these coupling constants are exhausted before order
n + 1 is reached, we write a Taylor expansion of the exponential of the interaction
to first order, and in the remainder term we "undo" the coupling constant of the
created vertex. We repeat this until order n + 1 in λ is reached.

After subtracting the perturbative expansion in λ up to order n, the Taylor
remainder is given by a big expansion similar to the one of previous chapters, and
is bounded in the same way. The only difference is that a certain number p of new
vertices have been created and a certain number q of coupling constant
renormalizations are missing. Since we stopped our development as soon as order
n + 1 in λ is reached, we must have p + q ̂  n + 1 .

The q missing renormalizations create q logarithmic divergences; in a graph
with lowest momentum scale i these divergences give at most an additional factor iq

to the usual bounds. But there is at least one global exponential decrease M~l/2 in
any term of the development (see Theorem III. 3). Then we use

This is a factorial of "renormalon" type [12].
Finally the p additional vertices are no longer produced according to the

cluster and momentum expansion rules. They can therefore accumulate in small
regions of phase space, hence create factorials of "instanton" type [12-15]. To
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bound them, we remark that if p= £ p(Λ\ where p(Λ) is the number of vertices
A

localized in A, we have a factor Γf] P(^)Π~1 fr°m the Taylor formula. Moreover
A\— _ι

these additional vertices give an additional contribution O(l)p times \\\ p(/l)!]2 to
LA J

the bounds. Clearly this results in a factor at most 0(\)pp\. Combining this factor
with the one of (V.I3) we get (V.I).
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