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Abstract. We extend to “Euclidean” fields on a wide class of Riemannian
manifolds two results which have proven to be crucial in the construction of
interacting quantum fields in the flat case, namely local regularity properties of
the free covariance in two dimensions and Osterwalder-Schrader positivity.

1. Introduction and Outline

The peculiarity and the depth of the physical problems posed by Quantum Field
Theory on a gravitational background [17] and the need of providing models of
existing axiomatic proposals [2, 3], motivate the opportunity of a constructive
approach.

In this paper we extend some techniques of constructive quantum field theory
to the case of two dimensional properly Riemannian (“Euclidean”) manifolds.

The specific case of the two dimensional sphere (vs. two dimensional de Sitter
universe) was considered in [4]. Here we rather rely on general intrinsic properties
of the heat kernel on the manifold as the main tool to overcome the difficulties due
to the non-availability of explicit expressions for the free Green’s functions.

Our arguments which, because of the lack of translational invariance, must do
without the tool of Fourier transformation, shed, we hope, some light also on the
classical arguments for the conventional flat case.

The “Euclidean” approach of [ 1] is exceedingly convenient in the case (which
we will always be considering in the following) of a paracompact, complete, C*
Riemannian manifold M.

As pointed out in [ 5], the uniqueness of the free covariance C=(—4,,+m?*)~*
(4,, being the Laplace-Beltrami operator on M), which follows from the essential
self-adjointness of 4,, in C¥ (M) [6] gives an unambiguous starting point for the
“Euclidean” construction, as opposite to the ambiguities arising in the choice of a
free vacuum on a manifold of Lorentzian signature [7].
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In particular, the Gaussian random field ¢ of covariance C on M is uniquely
defined by the characteristic functional S:fe CZ(M)—S(f)=exp—3C(f,f) via
the Bochner-Minlos theorem.

The following representation of the free covariance C [1, 5]:

+ o0

C(x,y) = g e ™ p(t, x, y)dt, 1)

p(t, x, y) being the heat kernel on the manifold M, provides a convenient starting
point for the ultraviolet regularization in terms of the multiscale decomposition
of [8]. The covariance C(x, y) is given by

Cln)= 3 Cix.y), ®)

where, for some fixed constant y larger than 1,

o) = | (exp(—my¥1)—exp(—m™ >+ 20)p(t, x, y)dt )
0

is the kernel of the operator
Co=(—Ay+m*y*) " = (= Ay +m*y* )71 “)

We introduce the regularized covariance

(logyk)— 1

COx, y)= 2z, CAx.0), )

where, of course, k is such that log, k ranges on the positive integers. C* represents
the covariance of the field with length cutoff y(mk) !, the analog, in the flat case, of
a momentum cutoff of order mk. In this sense C* compares with the §,C6, of
[9, p. 124].

The following estimates extend to Riemannian manifolds in two dimensions
the local regularity (LR) properties of the free Euclidean covariance which in [9]
are at the basis of the control of the ultraviolet divergences in the two dimensional
flat case:

Theorem 1. If dim M =2, for every 1 <q< + oo and for every compact set K in M:

SUIB I C(x, )l pak,ary < + 0, (LR1)
ICW(-, )= C(, M x k, avoar) < Ok ™*"%), (LR2)
sup C¥(x, x) < O(log, k), (LR3)

xeK

where dV is the Riemannian volume on M.

The second result which we prove is Osterwalder-Schrader (O-S) positivity of
the free covariance C for manifolds with suitable symmetry. Asit is well known this
result implies O-S positivity for theories with P(¢), interaction.

Theorem 2. Suppose thati) M =V, uV_udV, where V. are smooth submanifolds of
M with common boundary 0V ii) there exists an isometric map 0 : M — M such that
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OV, =V= and 80V =0V pointwise; iii) having set (8f)(x)=f(6x), 6 commutes with
Ay and n-grad0f = —n - gradf on 0V, where n is the outer normal to 0V_, then
C(6f, f/)=0 for every fe C¥(M) with suppfCV,.

Theorem 1 is proven in Sect. 2, Sect. 3 will deal with the proof of O-S positivity,
while Sect. 4 will address itself to open problems.

2. Local Regularity Properties

LR1 and LR3 reflect the logarithmic nature of the singularity of the covariance
C(x,y) at coinciding points (C(x, y)~— ;—nlogemd(x, y) >, which, in turn,
follows from the asymptotic behavior of the heat kernel as ¢ | 0 [10, 11]:

d(x, y))

4t ©)

p(t,x, y)~ (4nt) "2 H(x, y) GXP(—
uniformly on all compact sets in M x M which do not intersect the cut locus of M.
Here v=dim M, d(-, ) is the geodesic distance and H(-, -) the Ruse invariant.
The more technical property LR2, essential in the removal of the ultraviolet
cutoff in a P(¢), interaction, follows from the strong Markov property of the
Brownian motion on M having 4,, as generator and p(t, x, y) as density of the
transition semigroup with respect to the Riemannian volume dV.
Having fixed the compact set K C M, we define:

Ax(®)= sup Pp(t,x,y). ()
xeM, yeK
We observe, first of all, that there exists =#K)>0 such that:
By(f)= sup Ag(t)<+o0 ®)
0<t<f

(in the flat case, by direct inspection of the heat kernel, one has the stronger

estimate sup £"/%p(t, x, y)< + 0.
t,x,y

Notice that the local equivalence (6) only ensures the existence of positive
constants ¢(K), t(K), #(K) such that for 0<t=Z#(K), (x,y)eKxK and

d(x, y) < r(K): d*(x y)>

©

p(t, x, y) S e(K)t ™" exp ( ~ T u

Removing the last condition [x and y close enough, so that (x, y) is not in the
cut locus of M] requires Azencott’s argument [12] to propagate local estimates:

Lemma. If (x,y)e M x K, then there exists t(K)>0 such that:
r’(K)

p(t, x, ) S c(K)t~"? exp — 1

(10)

for 0<t<#(K) and d(x,y)>r(K).
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The proof, given in [12], is based on the strong Markov property of the
Brownian motion on M starting at x with respect to the first hitting time of a
sphere centered at y and with radius smaller than r(K).

The inequalities (9) and (10) then imply (8).

Next we prove that, for every ¢ >0,

By(t) < By(D)2"?Loe2mex (i = By (1) f (7). 1n
Indeed, by the Chapman-Kolmogorov equation, for (x,y)e M x K:

t t t\ "2 t
p(t’ x?y)'_‘ iflp(i’ X, Z>p<—2-, z, y>dV(Z)§ <§> AK(E) (12)

Therefore:
AK(o;zvﬂAK(;_-), (13)
and, by iteration on n:
A2 A <2L) (14)

so that (11) follows, for ¢ > £, from the choice n= | log, < )] , the smallest integer

o~

larger than log, (—%) .

Set, now

F(t,x,y)=1""p(t, x, y) (15)
and

du(t) =N~ (exp—m?*t—exp—m?y*t)t~*2dt, (16)
where N normalizes du to a probability measure on (0, + o) (for v <4, of course).
Equation (11) implies then that:

+
Cx, )7 INB(® | f(O)du(t)=consty = (17
0
because dy falls off exponentially and f(¢) is polynomially bounded.
In particular, for v=2,

sup C®(x, x) < 0(log, k). (18)

xeK
For 1=g< + o0, ye K, Jensen’s inequality implies:

(Clx, y))I <Y/~ DN9B(7)*
e (19)
: {) F(y~t,x,y)f(y" 1) 'dp.

As f(y"*1)< f(t) and
[ FO™ 1%, YAV S (19>, (20)
K
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it follows that:

1€ gy Scomsty O 7274, 1)
As
Cl)= X Chx.), )

Minkowski’s inequality implies then, for v=2:
SUAI; 1CCe, M Lag,avy < + 00, (23)
namely LR1 holds.

As to LR2, if K, and K, are compact sets in M, the previous estimates show
that:

Z(v—2— r
1CA s Mirak, x ks, av@ar) = V(K,)!"consty ( 1 ) (24)
Therefore, for v=2:
IC(-, - )—C¥(-, M ra, x K, av @av)

0
<comnst Y y *M=0(k™?1),
¢=logyk

(25)

which proves LR2.
As a side remark to the previous considerations we wish to observe that in the
multiscale decomposition of the free field, the conventional scaling law:

CAx,y)=Co(¥'x,7%y) (26)

is to be supplemented by the observation that any length R appearing in the theory
through an expression of the metric tensor as

R X
= = 27
gaﬂ(x) g ap < R> ( )
gets itself involved in (26), which is therefore better rewritten as:
Colx, y, R)=Co(y'x, 7'y, ¥’R). (28)

So, at least in this sense, fields on different scales are carried by similar but different
Riemannian manifolds.

One interesting question in this respect is whether the comparison theorems in
stochastic differential geometry [13], giving local growth estimates of the heat
kernel and, therefore, of the free covariance with the curvature, extend to some
class of interacting models and whether they admit a consistent reinterpretation in
terms of correlation inequalities.

3. Osterwalder-Schrader Positivity

Much in the same spirit as the electrostatic example of [ 14] and the considerations
of [15], the proof of Theorem 2 shows that O-S positivity is a simple potential
theoretic fact relative to the operator — 4, +m?.
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Let f be a real smooth function with compact support contained in V, and
U=(—A4y+m*)~'f the potential of f.
From the hypothesis [0, 4,,1=0 and Green’s formula, it follows that:

COf.S)= | 6f (= dy+m?) " fdV= | 6{UdV
= | U=y +m*)0UaV = T [U(= Ay +m)0U —0U(— Ay +m*) ULV

§ (U gradU — U grad@U)- ndS . (29)

v -
Furthermore, as U =U and n- grad0U = —n-gradU on oV_:
COf,f)=2 | UgradU -ndS. (30
v
By Gauss’ theorem:

b ZS g}% +m2U2) av. (31)

| UgradU-ndS= | div(UgradU)dv= | <g
ov - V- V-
In the last step we have used the fact that A,,U=m?U in V_.
From (30) and (31) the requested result follows:

ﬁgg% +m2U2> dv=0. (32)

cwrn=2] (s

As a final remark, we observe that 6’s satisfying hypotheses of Theorem 2 do
exist for two dimensional Riemannian manifolds which are surfaces of revolution
and are realized as reflections with respect to planes through any axis of symmetry.
Such manifolds possess, at least, an SO(2) symmetry and are the natural
“Euclidean” analogues of the manifolds with Lorentz symmetry considered in [2].

4. Conclusions and Outlook

What Theorems 1 and 2 really prove is the feasibility of the construction of two
dimensional interacting “Euclidean” fields also on curved properly Riemannian
manifolds following the strategy familiar in the conventional flat case.

One major problem is open, namely the absence, as far as we know, of a
reconstruction theorem for the quantum theory in the physical curved space-time.

Difficulties of such a reconstruction program are very well explained, for
instance, in [16].

In some sense the theory is at the same stage as it was, in the flat case, at the
beginning of the Euclidean program in the early proposal of Symanzik [17]. The
“Euclidean” approach, once the reconstruction program is accomplished, should
select one distinguished state of the quantum theory (a “vacuum”) which, as tested
on a submanifold with static metric of the space-time (for instance the exterior
Schwarzschild region in the Kruskal space-time), should exibit the thermal
properties analyzed by Hawking.
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Note added in proof. As to the reconstruction problem, we observe that the properly
Riemannian construction on the manifolds considered in Sect.3 provides a periodic (in the
imaginary time coordinate on a static wedge) O-S positive stochastic process, one for which the
general analysis of A.Klein and L.Landau in J. Funct. Anal. 42, 368 (1981) ensures the
possibility of uniquely reconstructing a stochastically positive KMS system. Otherwise stated,
Theorem 2 substantiates assumption C.2 of G.Sewell, Phys. Lett. 79A, 23 (1980), providing a
whole class of models for which suitably adapted “Euclidean” axioms, including O-S positivity,
hold.








