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Abstract. Some properties of finite volume Green’s functions are obtained, and the
infinite volume limit is shown to exist for the multi-time Green'’s functions of a dilute Bose
gas, constructed with the operators of the quasi-local algebra (see Theorem IV.5).

0. Introduction and Notations

For our study of a quantum system of identical bosons, we need:

— A Fock-space 4, associated to each bounded open set A of the
configuration space R*:#,= (P #}”, where A" =1I1%(A") is the
nz0
Hilbert space of complex square integrable functions with support in A",
symmetric with respect to the arguments.

— A Hamiltonian H,, defined from a two-body potential ¢ depend-
ing on the relative position x € R”, and satisfying the following properties:

1) ¢ is a real function, continuous outside of the origin (everywhere
ifv=1).

2) ¢ is stable: 3 Bz 0 such that Vn>0,V x,, ..., x,eR":

Ulxy,...,x)= Y ¢(x,—x)= —n-B.
1<j
3) In the end of part IIL, and in part IV for Theorems 2 and following

we need also that ¢ is square integrable in the whole space. Then for each
2

n=0, H", formally equal to —pu-n+ Z 2p— + U(xy, ..., x,) is a self-
i=1

adjoint operator with domain Z(H{"), bounded from below, defined by
use of the Wiener integral and the Feynmann-Kac formula [1] Now an

essentially self-adjoint operator is defined by z P — Z HP
n=0 n=0
where N < cc and v e Z(HY"), and the Hamiltonian H, is the closure

of this operator with domain Z(H,)= {we Hy Y ||H,ﬂ"’1p‘"’{|2<x}.

n0
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In the following we assume u+ B <0 in order to apply some results
quoted in references, and then HY" is a positive operator.

-— A density operator on #,, in the grand-canonical formation for a
system of particles in thermal equilibrium in A: 9, =Z ' exp{—f-H,}
where Z ,=Tr,, exp{— fH,} and f is the inverse temperature.

— The operators a(p) and a(p)*, for any @ e [*(Ay), AgCA. As
creation and anihilation operators of bosons are unbounded, it is useful
sometimes to work with bounded operators U(g) which define the
C*-algebra. The operators U(¢p) are defined in the following way: for
any pel*(A,), a(p)+ al)* is symmetric and U(g) is the exponential of i
times the unique self-adjoint extension. Formally

Ulp) = expifa(p) +alp)*} .
(The operators U(p) define the same C*-algebra as the well-known
operators U(p) = €' *“ and V(@) = €™ with ¢ real.)
We give now some notations in order to define the finite volume
Green’s functions:

r

if xeR?”, yeR" we set A(x,y)= ﬂa* . ﬂ a(y,)

ji=1 k=

if pel*(AY), pe L*(A}) we set A(p, )= [(x)-p(y) A(x,y) dxdy

if p>0 and Xq, Zl——N we set X = (
=t - =(h .¥,) where y,eR™
=(¢y ... ¢,) Where @€ *(A%)

Xy...x,) where x;eR""

lI/_(L,u1 ...p,) where y,e [*(AF).

If the chemical potential y is low enough, i.e. if the gas is dilute, then
the following Green’s functions are well defined [2] for

(Pe2:2={"eC":Re(, <Rel, < <Rel,<f+Rel}, 451,
Gu(X, Y () =Z 3 Try {Alxy, y e @7 L A(x,p e Pratnfiay,
G (@, W (7 =27 Tr,y LA(yp e @A A p,)e G -iHay

Besides Green'’s functions of creators and anihilators, we shall study
Green’s functions constructed with the exponential operators generating
the local C*-algebra. Using these, we work with bounded operators but
we loose linearity with respect to test functions.

Let @ € [7(A,), Ay €A and U(p)= expi{a(p)+ a(@)*}. If p>0 we set
®=(¢py,...,p,) where qo, € [*(Ay). Then the following Green’s functions
are well defined for {? € & (closure of &):

(gA(@;Cp):ZEITr” {U( )e~(éz—41)HA . Ulp )e—(ﬂ+§1—CP)HA} )
A P p
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In Sections I, Il we study some properties of finite volume Green’s
functions of both types G (&, ¥; (*) and ¥ (P (7).

In Sections I, IV we study the corresponding infinite volume limit,
in order to give sense to the multitime infinite volume Green’s functions.

I. Finite Volume Green’s Functions G ((®, ¥ {?)

In this section, we are interested in the existence, continuity and
analytical properties of G (@, ¥; (¥) with respect to (¥ and in the con-
tinuity properties with respect to ¢ and V.

Theorem I.1. G (D, ¥;(?) is an analytic function with respect to
(P € 9, which extends to a continuous function on 9.

We shall see, that using the spectral projectors of the particle-number
operators, we can replace first the operators A(g, p) by bounded operators
on 4. The corresponding result is given in Lemma 1.2 and will be used
again in Section [I.

Lemma 1.2. Let # be a Hilbert space, H a positive self-adjoint operator
such that ¥ >0, Z(f)=Tr{e ""} <. Let Ay,...,4, be bounded
operators on #'. Then G((P) = Z () Tr{Ae” @708 4 e~ Fra=tnty
is an analytic functions of (P € & which extends to a continuous function
on 9.

Proof of 1.2. H has a discrete spectrum with finite degeneracy: then
e~ *H is strongly analytic in the half complex plane Re/ >0 and strongly
continuous at the boundary. Let {i;};.,; be a basis of eigenvectors of H,
with Hy; = e,p; and let

G =Z(p) "y, Aye” @00 em G0l g p ). em Brhmte
G,({)is analytic in Z and continuous on & as we see by the two follow-
Ing arguments:
— F()=(p, A e em -4 y) is analytic with respect to
4=(4y,....7,)eC?~ " and Re /; > 0. This comes from Hartog’s theorem [3].
— F/(2) is continuous for Re/; = 0. In fact:

p—1 k—1 p—1
Fl(/)“Fz(/vl): Z (wi’n Ajemi"HAk[e";"“H—e_“"H] H Aje*uJHAplpi)'

k=1 j=1 J=k+1
Using Schwartz’s inequality and positiveness of H, we get:

p—1n—1 : ) ‘ . )
F2) =Fl=s Y T[4 - [AdLe =" —emmH] ¢, |
Ah=1j=1
p—1
where ¢, = [[ A;-e ""A, p, depends only of point . Continuity
j=k+1

of F,(4) at point u comes from strong continuity of e~ *#.
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Now, we have G({?)= ) G,({?) where G,({?) is analytic in & and con-

el
tinuous on &. The uniform convergence of the series expansion of G({?)

on & completes the proof of the lemma:

let @k={Cp€§iRe(Ck+1—Ck)>%}> k<p

= {C”e@:ﬁ+Re(Cl—Cp)> —B—}
2p

p —_—
Then2C \) 2,=2

We prO\_/e now that the expansion of G({?) is normally convergent on
any Z,. For instance, if ("€ 2,

p B
G 2ip) [ ) e 0wz zip [ faf e "
and ! "

P)| : -1, i
> G [1 145 ) z( 4] <.

Proof of 1.1. Let E, be the projector on #{"; formally we get:

GA((py q,’ CP)
=751 Y Trg AE Al pi) e @7 (g, ) e 00Ty,

nz0

As H, does not change the number of particles, we can replace in each
term of the expansion A(g;, p,) by E,_y.,+x A(@,, ¥,) E(,_y 4+ Which
is bounded, and H, by

n+N p )4
E(n—N,n+N)HAa Wlth E(rz—N,pz+N): Z Ej’ and N: Z Qi= Z rl :
Sup{0,n— N} i=1 =1

Using Hdélder’s inequality [7], we find:
[Tty AE,Al@y,p,) - e~ &mo0Ha Alg,, v,) e~ PHL i Hay

P
< H “E(n—N,n+N)A((pi7lan)“ 'TrMA{E(n—N,n+N)e‘BHA}

i=1

)4 n+N )
é n HE(H‘N,H*-N)A((piawl')H Z Z%)
i=1 Sup{0,n—N}

where Z9 = Tr,, {E; e /H4}.

It follows from properties of creation and anihilation operators that:
Gitr

HE(HAN.n-%N)A QP H <(l’l+N) 2 H@l” . ”wz” .
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Then
Try AE,Al@y,py) e~ @ 0 e A(q, ) e PHE—tay
14 n+N )
S(n+ N ﬂllfpi“ lwd Y z9.
= Sup{0,n—N}

As u+ B <0, H, is positive and by Lemma 1.2, we know that each
term of the expansion of G (@, ¥'; {?) is analytic in & and continuous on
Z. We check now that expansion converges normally, i.e.

n+N
Yo (n+ NN Y ZP<w.
nz0 Sup{0,n— N}
Let z=¢’* and ZY =2/ Q. It follows from [4] that the expansion

m

Z(z)=) z/ QY hasanon-zero convergence radius. Then z” - e
J> 0 =

Z ji—=1)...(—m+1)-2/QY has the same convergence radius. It is

Z 4(2)

Clear ‘then that ¥ N >0and V k the expansion Y (j + k) Z{(z) converges

jzo
n+N
for |z| small enough and the same holds for Y (n+N)V Y Z{(z),
nz0 Sup{0,n— N}

concluding the proof.

The following theorem gives a necessary condition to apply the basic
tool of Sections III and IV, namely Vitali’s theorem, used to prove the
existence of the infinite volume limit.

Theorem 1.3. G (P, ¥ (?) is bounded on ReZ and ., uniformly with
respect to A for p low enough. Furthermore the family G (&, W ;") for
any A2 Ay, and for any (Pe Re D or (P e M, is an equicontinuous family
of functionsof & and V.

The set M, introduced in [5] has the following definition:

{C”eg Re((3 ()= — 4 Re(C4—~fz):g,-~
Re(f+{—(,- )zg e(ﬁ+C2‘Cp)gé}~

Proof 1.3. Formally we have
Gu(X. Vi) =Z " Try {Alx ) e @70 L A(x,, y,) e Prameilay,

It follows from Gruber’s results [6, p. 263] that if /e ReZ and u low
enough this kernel defines a bounded operator G ((7) on I*(IR"*) such
that

[GApH| <C-KN-N!, VpreReZ.
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Following Ruelle [5]. if (Pe.#, wr split A(p,,p,)e 2 ¢0Ha
Alp,,p,) e” P74 in a product of operators:

I s
. . ———H, ———H,4 _ _
QHHAA((p, w)e itHa e 4n : ¢ 4n e””"A(q),w)e tH and P AH 5

with Re/ >0.
Using Holder’s inequality [ 7], we get:

P 1

[GA(P, 00 = ﬂ G+

where B
1 % — 2 Ha 2n
Z4 Tr.//‘,l{[A (@i, ) - Alg,,p)e 1%
G(/lll)((pn l,Uz) =Jor

by,
Z/I ! Trv//‘;A{[A((Pn lpz) : A*((pis lpl) e 2 ]2'1} .

Furthermore |G'Y(¢;, )l = C - k2" [ 2nlg; + )] (o] - [w.[)*" a
then ) .
P p -
|G (D, ¥ ()| <CH kN n {2nlg; + )] !}4” H(Pz“ ]I‘Pi“ .
=1
So G (P, ¥;{?) is bounded on ReZ and .#, uniformly in A and it
follows from linearity that the family of G,(®, ¥ (") for any 4241,
and any (Y e ReZ or (" e .#, is equicontinuous with respect to @ and .

II. Finite Volume Green’s Functions % ,(®; (?)

We shall get for Green’s functions of exponential results similar to
those in Section I for Green’s functions of creators and anihilators.

Theorem I1.1. 4 (@ (P) is an analytic function with respect to ("€ &
which extends to a continuous function on &, bounded by 1.

Proof. This follows readily from Lemma 12 and [|U(e)| =1,
¥oe I2(A,).

The proof of equicontinuity with respect to @ requires some more
technical computation. We first prove the following theorem:

Theorem IL.2. The family G (@ (") for any A2 A, and any f* € ReZ
is an equicontinuous family of .funmons with respect to &, when  is
low enough.

Proof. Using the formal expansion U(g)= /@@ . ¢la@ o= tlioll* we

get: v
-4 Z [lall? 2N
'Cp)zé' (= (N)
N0 g4 4lr!

G (@

G4 (L)
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where ) ™ runs over all g =(q,, ..., q,) and r=(r, ..., r,) in N? such that

q,r

p b P P
lal=Y ai=Irl= > n=N: q'=[lg: ri=][r

1=1 i=1 =1 et
G‘lA’r((D, ﬁl’): Z; 1 Tr;fA{Cl((Pl)*qla((ﬂi)”e‘(ﬁz'ﬁ‘m/l
oal ) a(ep,yre WHi b Ay

We show now that this expansion of 4 ,(&; ) is correct.
Firstly, 4 ,(®: 7)) = Y %P(P; ) where

ve NP

GL@ ) =25 Trp (Uly) Ey e 00 U, By e 070 Pty

and

and E, is the projector over the v-particles states. Since H E,2v -«
with o= —(u+ B)>0, |U(p) E, e *#4| <e™**" and then:

p—1
|/§(A\')(q§; [3")| gZ;‘ . n e—avl(ti,»fx—ﬂl)TrfA{Evpeﬂ/Hﬂl*ﬂp)HA} )
1=1
So the expression is absolutely convergent and sums up to 4 ,(®; ),
because taking the trace and summing up the series commute.
dl P
Secondly. 5T llpd jla+

g
GPD fP)=e 7 > S G (@ p7)

q.re NP
where

G D7) = 2,5 Ty Lalpy < alpy ) E, e P00
LE, e Wity

and we shall show that this series is absolutely convergent. In view of
that, we consider the definition of U(¢):

&
Ulp)Ey= Y. 7 lalol* +alo)}* - E,

keN
a normally convergent series.
Using normal reordering, we get:

&
i
Ulp) E,= ) m Y I} ,ale)*a(e)E,
keN © q,reN
where I}, arises from combinatorics and contractions. This new expan-
. r o~ Hiol2
sion is also norm convergent when taken account of* k“' L= e
. ! q'r!

and norm estimates of creators and anihilators. Resuming in k we get
) iq+r
U(p)E,= e illellz z _

q.reN q"‘

! This comes out from the well-known algebraic equality: e¥e¥ =Xt Y 3IX1 4f
[X,Y]eC.

alpy*a(e) E,
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which is also norm convergent and then we can commute the summation

and the trace, and this ends the second part of our proof.
ila+r

~ G‘,{"’”’(‘P; 7). We shall show

Thirdly we look at the series )

V.4, r

here that this expansion is absolutely convergent and we shall resume it

up. G§ 4" (@, BP) is a finite sum of terms of Gruber’s closed loop expansion

(cf. [6], p. 253). A bound of the absolute value of each of those terms gives
us the following estimate:

S G40 (@ ) < AN BY ][5t

v i=1

1
2 o LIGE @S AN T o (Z lle))

q,r Nz20

= atme(s($ ol |}

The expansion being absolutely convergent, we have now:

Then:

,Iq+r! 2N

Z Z G(vqr)((p /31] Z Z(N) !

v oogq,r Nz0 q.r

[ GaT(@:f7)

and this ends the proof of the expression

M

lloddi> L
1 Z Z() qu ;[317).

Nz0 q.r q"

1
2

gAUﬁ;WW=

Now we can use another bound of G%"(®; 7), which is independent
p

of A:|G4"(@; 7)< C-NIKN [] |l (cf. [6], p.263). This proves
i=1

that our expansion of 4 ,(®; ) is uniformly convergent with respect
to A and f? and then equicontinuity of G%"(®; f¥) with respect to &,
for 424, and f’eRe % implies the same property for 4 ,(®; 7). Q.E.D.

Now we can extend the continuity in & for any (* € .#, by use of
Holder’s inequality:

Theorem I1.3. The family 4 ,(®;(?) for any A2 A, and any [P € M
is equicontinuous with respect to @.

Proof. Let =(¢,,...,p,) and &' = (¢}, ..., @,)
|G 4(D"1C7) = G 4(P: L7)]

p
S N Y (O P NN X B 7 PN NN I SR 38 |
1=1
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Using Holder’s inequality, we get:
|G 4(@".07) — G 4(@: )]

1 p 1

» 1 1 1
< Z H 19 (0; l4" [T 192" 19001, @I*" = 3 1% 4l0f, o) *"

j>i i=1

where

_s
Zi Try,, {[U(q)j)*U(@j)e ot
g(/;l)(@j):" or

__LHA 2n
Z ' Try,, {[U(qoj)U(wj)*e 2 } }=1,

_ B\
Z3 Ty, {<[U(<pﬁ)— Ulp)1*[U(g) — Ulp)] e 27" ) }
‘(q(/;l)(q):vqox): or

Zy' Try, {([U(@) = Ule)] [U(e)— U((pi)]*eﬂzg;HA) zn}

and the result follows from Theorem 11.2.

I11. Infinite Volume Limit of Green’s Functions G ,(®, ¥; {?)

In this section, we merely recall some results concerning the infinite
volume limit of Green’s functions G (@, ¥; (). For details, see Ginibre
[1], Gruber [6], Ruelle [2].

If the chemical potential u is low enough, the following limit exists:

G(@,'P;C”):/}im G, V() V{Peg.

The convergence is uniform on the compacts of 2 and thus, G(®, ¥; {*)
is analytic in 2.

The multitime Green’s functions are obtained for (¥ on the
distinguished boundary of &, and the problem is to prove the con-
vergence of G (@, ¥ (?) on that part of &, and possibly to check some
property of continuity, as those obtained for finite volume.

Actually for Fermi systems, Ruelle has recently proved [5] that the
limit Green’s function is continuous on &.

For a dilute Bose gas, we have the following result: G(®, ¥; ()
extends to a continuous function on .#, and

G(®, lP;C")=/}im G P, ¥, VY{Ped

the convergence being uniform on the compacts of .Z,,.
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This follows from the uniform boundedness of 88 .

k

each A and {? € .#,; the demonstration uses previous Theorem 1.3 and

Lemma 1 in Ruelle [5]. This needs the stronger condition that the
potential is in L!(IR*)~ L2(IRY).

(@, ¥ %) for

IV. Infinite Volume Limit of Green’s Functions ¥ ,(®; (?)

The first result of this section follows from a theorem on functions
of complex variables, and shows that the infinite volume limit of
G (@, [P) exists and is analytic in 2. However the continuity of ¢ (P, {?)
on & is so far, of no use, for the infinite volume limit may not exist on the
boundary of &, and even if it exists, may not extend continuously the
limit in Z.

Actually the continuity will follow from a stronger assumption on
the interaction: we shall assume that the potential function is not only
in I'(IR") as before but also in I?(IRY). Then there exists a uniform bound

~

L 09
on the derivatives 4
k

(®; () for any A, {? € M4, and particular @. The

general result will use the equicontinuity proved in Section II.

Theorem IV.1. If the chemical potential is low enough, the following
limit exists for each
Ped: 9490, = Alim G (D, (7).
Furthermore the convergence is uniform on the compacts of 2 and 4(®; (P)
is analytic in 9.
Proof. For fi” € ReZ we have the expansion as in Section II:

GNP py=e

lloull2

1 Z Z(N) G“ r((p Bp

Nz0 g¢q,r

IR

We know from [1] and [6] that the followmg limit exists for any
preRez : GV (@ f7)= lim GG (P f7).
The absolute convergence of the expansion on Re & implies the existence of
G(D, p7)= ,}ijl;g/i((p; pr).
Then it follows from Vitali’s theorem that
(@i )= lim % ,(0:07)

exists for any {? e &, furthermore the convergence is uniform on the
compact of Z and 4(®; () is analytic in . The next result concerns
the derivatives of 4 ,(®, () for (P € M,
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Lemma IV.2. Assume that the potential function belongs to L*(IRY)
NI2(RY). Let ®=(¢p4, ..., ®,) where @, is of class C? with support in A.

Then the derivatives

cY,

e

(@ () are bounded on M, uniformly in A.

The proof is similar to the Ruelle’s paper one [5].

Proof. We have, using the technique of Lemma 1.2:

g

(P: ()= ZZ 1TYWA{U((P1) e (L= HA 5= (G Sk ‘)HA[U(%), HA]

,e"(lkn—ik)HA”.} .

Then using Holder’s inequality for (¥ € ./,

e

where

and

Now

where

09,

(®:LP)

1 1 1
= [T199(0)*" - 194" (@)1*" = 193 (@) *"
iFk
[ ——/LHA 2n
Z,IITY#A{ Ulp)*Ulg)e *" } }:1
GP(@;) = qor
_A_'B_HA 2n
zi ey v vior e ™} 1

Z3' Try, {([ Ulgy, HJ*[U(@y). H,] e“%‘”)z"}

91y = for

Z ' Try, K[U«pk), H,][U(¢y. H,J* e‘i”)} :

hn

[Ulg), Hyl = { 2

]
nz1 M-

Lalp)* + alg), HA]‘”’} Ulp)

[X. Y1V =[X. Y],
[X, Y] =[X,[X,Y]"" V],

As the Hamiltonian is given by a two-body interaction, we check
easily that the expansion of [U(¢), H,] ends at n=4 besides, using the
commutation relations to obtain the Wick ordering of creation and
anihilation operators, we get contractions involving either the free part
of H,, or the interaction part. The result is an expression of creation and
anihilation operators smeared with absolutely integrable functions, or
is a constant.

Now we use the fact ([6], p.270) that the kernels G (X, Y;p")

defined by:

Go(®, W B)=[dX dY G (X, Y: B?) B(X) p(Y)

are bounded functions of X, Y, uniformly in A, when f* € Re & is fixed.
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It follows then that ¢/{”(¢,) is bounded uniformly in A, and this
proves the lemma.

The uniform convergence of % (&, (") on compacts of &, and the
preceeding lemma yield that 4 ,(®, (") converges on .#,, but we can
get a stronger result.

Lemma IV.3. Let the potential in L'(R*)NI*(RY). Then %(®;(P)
defined on & extends to a continuous function on M, ; furthermore 4(®;(?)
is continuous with respect to &, uniformly in (e #, and G(P;(P)
= Aanl G (@ P) uniformly on compacts of M,,.

Proof. We first prove the lemma for ®=(¢,,...,p,), p,€ C* with
support in A,. Let K be any compact of .#,: then for any o >0 there
exists a compact K, of Zn.#, such that V(P e K, 3("?e K, [(P - ("?| <a
where we use for instance the euclidean distance. Then if (? e K and
{'Pe K, with |{? = {'?| <«

G (B:07) =G (D) S G 4(D: L) =G (DU HIG 4 (P:L7) =G 1 (@507
FG 4 (P07 =G (D7)

The first and third terms are bounded by C - o uniformly in 4 where C
is a bound on the derivatives of % ,(®; (7). The second term is arbitrarily
small for any (e K, if A and A’ are large enough. Thus there exists
G(P; ()= /111_{130 4 (& (") uniformly on compacts of .Z,; the continuity

of the limit in .#, follows from Theorem II.1.

Now using Theorem I1.3, we can extend these results to any
D=(¢y,...,p,) with ¢;e L*(A,), for the complex functions C* with
support in A, are dense in I*(A,), proving that 4(&; {?) is continuous
with respect to @, uniformly in (¥ € .4,,.

The last problem is to define the limit on & and to check the con-
tinuity. We just give the result, the proof being the same as in [5].

LemmaIV4. Let &= (¢p,,...,p,) be given and A, chosen large
enough. We assume that 1 <1< p, that K is compact inR and that (.. ,,...,(,

are such that 0 <Re(;,, <---<Re(, < /%
Given ¢ >0 there exists 0 > 0 such that :
Ig/l(¢v _i917 > _ielag[)-}-[a ~"’Cp)
_(gA((Da _iels-“a _I.GL—]’CI'CI'FL»""C;J)I<8

whenever A2 A, and 0,,(, satisfy 0,€ K, |{;+i0| <o, 0<Re{,<Re(;,;.
Furthermore % 4(®: —i0,, ..., —i0,,{; 1, ..., () hasalimit G(®; —i0,, ...
vy — 10,044, (,) when A— oo uniformly for (0,,...,0) e K.
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The main result then follows.

Theorem IV.5. Let the two-body potential be a real even function,
continuous outside of the origin (everywhere if v=1); assume it has the
stability property and belongs to L'(R*)nL*(IRY).

Then, for a Bose gas at low activity, the following limit exists:

G(D:.(")= lim G,(P.(P), VY{PeT
where Ao

G (D (")=27, 1 Tr;f,‘{U(Qol) e 27 lHA U((Pp) e B4 —Cp)HA}

d o) = expifale) +ale)). @€ [2(Ag),  AgCA

2 ={("eC?:Re(, <Rel, <---<Rel(,<f+Rel}.

Furthermore, the convergence is uniform on compacts of & and the
limit is continuous on .

So we have proved the existence and continuity of the infinite volume
limit multitime Green’s functions, constructed with exponential operators,
and so far all the quasi local algebra (defined as the norm closure of the
algebra generated by all U(p) with ¢ e I?(IR*) and with compact support).
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