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Abstract. We establish necessary and sufficient conditions for Euclidean Green's
functions to define a unique Wightman field theory.

Contents

1 Introduction 83
2. Test Functions and Distributions 85
3. The Axioms, Main Theorems 87
4. TheoremE->R 90

4.1. Construction of the Wightman Distributions 90
4.2. Lorentz Covariance and Spectrum Condition 94
4.3. Positivity 94
4.4. Cluster Property 96
4.5. Locality 97

5. Theorem R->E 97
6. Arbitrary Spinor Fields 102
7. Application 105
8. Technicalities . . 105

1. Introduction

In a relativislic quantum field theory the indefinite metric of
Minkowski space causes many problems which could be avoided by
replacing the time t by it or the energy E by iE, thereby passing from
Minkowski space to Euclidean space. This idea was first used by Dyson
[3] in perturbation theory. He continued the Feynman integrands
analytically to imaginary energies in order to move the paths of integration
away from the mass shell singularities of the causal propagators.
Schwinger [21,22] studied the analytic continuation of time ordered
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Green's functions to imaginary times and their transformation properties
under the Euclidean group. He determined the Euclidean Green's
functions (Schwinger functions) as solutions of certain differential
equations. In axiomatic field theory it followed from investigations by
Wightman [28], by Hall and Wightman [10] and by Jost [13] that the
Green's functions (Wightman distributions) are boundary values of
functions (Wightman functions) which are analytic in the permuted
extended tubes. The Euclidean Green's functions could then be defined
as the restriction of the Wightman functions to points with imaginary
time and real space components [20, 24]. Symanzik [24, 25] advocated
a purely Euclidean approach to quantum field theory: he realized, that
given a formal Lagrangian density, the construction of Euclidean Green's
functions might be simpler than the direct construction of Wightman
distributions. Postponing the problem of continuing back to real time
he studied the Euclidean Green's functions for models with boson
self-interaction and established a useful connection to classical statistical
mechanics. An abstract formulation was introduced by Nelson [15,17].
He described Euclidean boson quantum field theory as a Markoff
process: the Euclidean fields are random variables and the Green's
functions are expectations of products of random variables. Starting
from a Euclidean Markoff field, which in addition satisfies certain
regularity conditions, Nelson reconstructed a relativistic quantum field
theory obeying the Wightman axioms.

In this paper we give necessary and sufficient conditions under which
Euclidean Green's functions have analytic continuations whose boundary
values define a unique set of Wightman distributions. These conditions
are

(E0) Temperedness,
(E1) Euclidean covariance,
(E2) Positivity,
(E3) Symmetry,
(E 4) Cluster property.

Surprisingly, Wightman's spectrum condition is a consequence of
(E 0), (E1) and (E 2). Using (E 2) we construct a Hubert space X. By (E1)
there exists a semigroup T\ t ^ 0 , on X, whose matrix elements by (EO)
grow at most polynomially as t goes to infinity. Hence V is a contraction
semigroup and V = e~tH, where H^O. This gives the spectrum condition.
Furthermore T\ Reτ^O, defines a holomorphic semigroup which we
use to construct the analytic continuation of the Euclidean Green's
functions and the Wightman distributions. All the Wightman axioms
follow easily. The Hubert space X turns out to be the Hubert space of
Wightman's reconstruction theorem. The following chart connecting
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the Euclidean axioms and the relativistic (Wightman) axioms gives the
main theorem of this paper.

Euclidean Relativistic

Temperedness
Covariance
Positivity

Temperedness
Covariance
Positivity

Spectrum

[ ] + Symmetry < > [ J + Locality

[ ] + Cluster < > [ ] + Cluster

Some of our methods have been inspired by Nelson's work [16].
Properties (El),(E3) and (E4) are obvious "continuations" of the
Wightman axioms and have been known for a long time, [21,24].
Symanzik [25] has introduced a positivity condition which is different
from (E2). His condition is necessary for the existence of Euclidean
field operators. It is probably true only for a restricted class of models
and does not necessarily allow a reconstruction of the Wightman theory.

Our paper is organized as follows. In Chapter 2 we introduce some
test function spaces and their duals. In Chapter 3 we formulate the
axioms for Euclidean Green's functions and state our main theorems,
which we prove in Chapters 4 and 5. Chapters 3-5 deal only with a
single hermitean scalar field. The generalization to arbitrary spinor fields
is given in Chapter 6. In Chapter 7 we make some remarks about
possible applications of our results to constructive field theory. In
Chapter 8 we give the proofs of some previously used technical lemmas.

2. Test Functions and Distributions

In this chapter we introduce some test function spaces and their
dual spaces. They are all related to Schwartz's space 8P.

We use the notation x for a point in 1R4 whose coordinates in a
fixed frame of reference are given by (x°, x1, x2, x3) = (x°,x) We call
the direction of e0 = (1,0) "time direction", all directions orthogonal to

3

e0 are "space directions". The scalar product x j ' = λ'oy°— £ χkyk

k-=l

= x°}'° —xv; is always the Minkowski inner product. We also use the
standard notation

D " = ( δ ί ? F ' ~ ( ^ r Γ ' w h e r e «=(«. «2.•••«•-)'



86 K. Osterwalder and R. Schrader:

otk ̂  0, |α| = Σα k . For fe Sf OR4") we define the ^-norm | / | m by

| / | m = sup |(l + |x|2Γ/2/(α)fe, . ^)U
x teIR4

where |x|2 - £ (4) 2 and / ( α ) = Dα/
ί./c

Let °^(IR4n) be the space of test functions / e ^(IR4") with the property
that / (x l 5 ... xn) together with all its partial derivatives / ί α )(x1 ? ... xπ)
vanish if xt = x ; for some 1 ̂  / < / ̂  n. °5^ (IR4π) equipped with the induced
topology of y(lR4") is a closed subspace of ,9?{RAn). We also define closed
subspaces of °^(IR4π) by S?JlR*n)=={fe^(1R4n)'Ji*)(xί,...xn) = () for
all α unless s < xj < x°2 < • • < x£ < ί},

all with the induced topology of i/flR4").
We define «9ΌR + )C^(IR) to be the space of the functions

with supp/clR + = [0, oo). By ^(IR 4 ) we denote the completed topologi-
cal tensor product ^(!R + )(g)^(lR3); i.e. /e^flR 4 ,) if / G ^ ( 1 R 4 ) and
supp/c{x;x°^0}. We also define «̂ (IR_) = {/G^(IR);supρ/c{x:x^O}}.

Finally we introduce the topological quotient space
= ^(IR)/^(1R_), see e.g. [19], Chapter V. Let / be an element in y
then the equivalence class {/ + Sf (1R_)}, denoted by / + ? is an element in
^(1R)/^(1R_). We think of/+ as being the restriction /(x)|ΊR+ of f(x)
to the right half line 1R + . Because ^(IR) is a Frechet space and y(lR_)
is a closed subspace, £f(JR + ) is again a Frechet space and thus complete,
[19], Chapter VI, Proposition 13. The topology of y(IR+) is given by
the denumerable set of seminorms

The seminorms (2.1) are not very convenient for actual calculations,
but by Lemma 8.1 they can always be replaced by the equivalent set

of seminorms , r .„ ίΛ ?χm/9 , w w ,
| / + 1 ; = sup (1 + x2f / 2 |/(«)(χ)|. (2.2)

The space <Ŝ(1R + ) is isomorphic to the space of all functions defined on
[0, oo) that are infinitely differentiable (right derivatives at x = 0) and
of fast decrease at infinity, if we equip this space with the topology defined
by the seminorms (2.2). Without danger of confusion we may simply
identify this space with y(ΪR + ). An element in the dual space ^/(1R+) is a
distribution in ^'(IR) with support in IR+ = [0, oo). We also define
Sf$k\) as the completed topological tensor product Γ^(ΪR+)(§)^(1R3).
An element /+ e ^ 0 R 4 ) is thus the restriction of some / e ^ ( ΐ R 4 ) to
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IR+ xIR3. Let 5^ be one of the lest function spaces introduced above.
Then we denote by ® π ^* the n fold completed topolojgical tensor
product of ,9ς. We abbreviate ®nSfQR%) by ^flR4"") and ®ny{jk\) by
y(!Rt""). All the spaces introduced here are nuclear spaces, [5] I, §3.6.
Thus e.g. any continuous bilinear functional T on £f(\R+) x5^0R3)
defines a unique distribution in ^'(IR4), etc.

We also introduce the spaces ^ , ^ + , ^ < and ίfOR4.')- An element /
in ̂ ( ^ , ^ ( l f ) ) is a sequence/ - {/0,/i,/2? .••} wilh/0 e <C,/πe^(lR4π)
(y+(1R4π),5^(Et'")),«= 1,2,..., and all but finitely_many /π's are equal
torero. We equip the spaces £?,¥+,£?< and SfORt') with the direct
sum topologies induced by the topologies of ̂ (1R4"),^+(1R4"),^<(1R4")
and SfφXn) respectively, and we write ^ = 0 ^ ( 1 R 4 " ) , etc. These

topologies have the property that a linear map t from 6f {¥

into a convex space J^ is continuous if and only if [t o /J is a continuous
map from ^(1R4") ψ>% (ΪR4/ί), «^(Kί"")) into #", for n = 0, 1, 2 .... We have

denoted by ./„ the natural injection of ^(1R4 M) (^+(lR4"),^(R4n)) into

^(^+,^(ΪRi)) See [19], Chapter V,§ 6, and also [1], appendix.

On ^ we define involutions

/ - / * by / * ( 2 ί i , . . . ^ ) = / Λ ( ^ , . . . X i ) ,
and

f-Θf by ( 0 / U x , . . . x , ) - / , ^ ! , . . . 5xn),

where Sbc = ( —x°,x) and " means complex conjugation. Following
[1] for/,0 6 5̂ , we define/ xge^ by

n

(/X£)π= Σ fn-kX9k-
k = 0

In particular f o r / ^ 6 5^+, we find that (Θf*) xg e ^ < .
Finally we introduce some notational conventions. If / is in some

space 5^ and T is in the dual space Sf'^ of 5^ then we use both T(f)
and J T(x 1 ? . . . x j/(x 1 ? . . . xM) <^4nx to denote the value of T in /.

Let fe ^(IR4"), JR e S 0 4 , α e 1R4 and let π an element in Pn, the group
of permutations of n objects (the letter 6 n will be used elsewhere). Then
we define /(?>jR) and fπ by / ( 5 . Λ ) ( ^ l 5 . . . ^cj = /(Rx 1 + α , . . . jRx« + α), and
/ % i , . . . ^ J = / U π ( i ) , . . . ^π(,)) Also we define /+(x 1 ? . . . xn) to be the
restriction of/(x l 5 . . . xn) to the subset {x1?... x n ;x?^0, . . . x °^0} of
1R4", and we sometimes write f+(xu... xn) a s/(x l 5 . . . xΠ)|"{x°^0}.

3. The Axioms, Main Theorems

In this chapter we formulate the axioms for the Euclidean Green's
functions {SΠ}. We also state our main theorems.
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We shall assume that {SJ^ = 0 is a sequence of distributions
Sπ(x 1 ?... xn) with the following properties (n= 1,2,...):

EO: Distributions

rx — 1 fee ^Cf"ίλQ^n\

E 1: Euclidean Invariance

E2: Positivity

Σ SB+m(θf* x /J £ 0, for all fe,?+.
n, m

E3: Symmetry

®n(/)=Sn(/π)> for all permutations π e P n , all /e°y(IR 4 / l).

E4: Cluster Property

Km X {Sn + m(Θ/n* x ^m (, 0, υ ) - $„(©/*) Sm(0 m)} = 0 ,

for all j\geS/+, Q = (0,a), aelR3.

For completeness we also list the axioms for the Wightman distributions
{$Bn}^o as they are given on p. 117 of [23]. The ΪBΠ are supposed to be
distributions with the properties

R0: Temperedness,
R 1 : Relativistic invariance,
R2: Positivity,
R3: Local commutativity,
R4: Cluster property,
R5: Spectral condition.
We do not list hermiticity as an extra condition, because we do not

have to make a distinction between linear and nonlinear conditions.
The main results of this paper are the following theorems.

Theorem E->R. To a given sequence of Euclidean Green's functions
satisfying E0-Έ4, there corresponds a unique sequence of Wightman
distributions with the properties R0—R5.

Theorem R-^E. To a given sequence of Wightman distributions
satisfying R0-R5, there corresponds a unique sequence of Euclidean
Green's functions with the properties E 0—E 4.

Remarks

1. The choice of ^ '(IR 4 ") as distribution space for the SΠ is natural
because it makes the correspondence between { 6 J and {2BJ unique.
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Indeed, two sequences {6 „} and {SJ,} of Euclidean Green's functions with
the properties that (£n and <5'n are in y (lR4n) and that SM — SJ, has support
in {x1?... xn;xt = Xj for some 1 ̂  / < / ̂  π}, lead to the same set of
Wightman distributions. Equivalently we may say that the Wightman
distributions tell us nothing about the Euclidean Green's functions
in points of coinciding arguments.

2. Even if the properties (E2) and (E4) seem to depend on the choice
of the "time direction" e0 in 1R4, property (E1) shows that this dependence
is only spurious and that (E 2) and (E 4) have to hold for any choice of
e0. We have chosen the non covariant formulation (E4) of the cluster
property only for convenience. Without any change in our results we
could replace (E4) by the following covariant condition.

E4': lim {Sn + m ( / x ^ f l i l ) ) - S n ( / ) S m f e ) } = 0, (3.1)
λ -* oc

for all /e°y c (IR 4 w ), g e°//c(JR4m), geJR4 .

(°yc(lR4n) is the set of all elements in °^(IR4n) with compact support).
However there seems to be no covariant formulation of the positivity

condition, because the "time inversion operator" Θ enters (E2) in a
crucial way.

We remark that exponential vanishing of the expression on the
left hand side of (3.1) is equivalent with a mass gap in the relativistic
theory, see Ref. [9].

3. It follows from the proofs of our theorems that property (EO)
could be replaced by the weaker - but non covariant - condition

EO': 6 π e ^ < ( I R 4 " ) .

This condition becomes important if we want to prove the equiv-
alence of subsets of the axioms, in particular if these subsets do not
contain symmetry (E3) and locality (R3) respectively. More precisely
our theorems remain true if we replace {EO—E4|R0—R5} by either of

(a) {EO',E1,E2|RO,R1,R2,R5},
(b) {EO-E3|RO-R3,R5},
(c) {EO', E1, E2, E4 |R0, R1, R2, R4, R5}.
(See also chart on p. 85). This follows from Chapters 4 and 5.
4. Obviously the translation scheme E<-»R may be extended to the

case where the theory has additional symmetry properties. In particular
the symmetries P, C and T of the relaίivistic theory can be expressed
as symmetry properties of the Euclidean Green's functions. The symmetry
property of the Euclidean Green's functions corresponding to PCT
is an immediate consequence of axioms (El) and (E3). This is the well
known PCTtheorem.
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4. Theorem E ^ R

In this chapter we prove theorem E-»R. Given a sequence of
Euclidean Green's functions satisfying (E0)-(E4) we construct explicitly
a sequence of Wightman distributions satisfying (R0)-(R5). The main
steps in this construction are the following:

a) Using (E0) and (E2) we define a positive semi-definite form
(f,β)= X &n + m{Θf* xgm) on &*+ x ^ + . After dividing out the vectors

n, m

of norm zero we obtain a pre Hubert space, whose completion we denote
by X.

b) By (E0) and (El) there exists a one parameter semigroup
[T* = e~tH}t>0 of self-adjoint contractions on jf, which can be extended
to a holomorphic semigroup Tτ, Re τ ̂  0. With the help of this holo-
morphic semigroup we show that the Euclidean Green's functions are
the Fourier-Laplace transforms of distributions 2BW in 9?l which have
certain support properties. We define 2Bn, the Fourier transforms of
2BΠ, to be the Wightman distributions. (R0) follows immediately.

c) Euclidean invariance (E1) of (Zn now implies relativistic invariance
(Rl) of 2Bn, and the support properties of %Bn give the spectrum condi-
tion (R 5).

d) Using positivity (E2) we prove positivity (R2), and we will show
that the Hubert space Jf, constructed at the beginning, is the Hubert
space of Wightman's reconstruction theorem.

e) Using the cluster property (E4) we prove the cluster property
(R4) and

f) Using symmetry (E3) and a theorem in Ref. [12], p. 83, we show
local commutativity (R3).

4Λ. Construction of the Wightman Distributions

Let {®n}^=o be a sequence of distributions satisfying conditions
(E0)-(E4). As a preliminary step of our construction we use (E0) and
the translation invariance (El) of S n to conclude that there exists a
unique sequence of distributions Sn(ξu ... ξn) in ^'(\RX'n) such that for
/( J ^ O 4 )

In the sense of distributions this means
(^n(^--^) = Sn_1(x2-x1,...xn-xn_1)ί for x?<x°< - <x°. (4.1)

The distributions Sn are invariant under S04 in a restricted sense:

W1,...Ry^flκ1,...y, (4.2)
provided ξ°k > 0 and (R ξk)° > 0, k = 1,... n.
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Now we define on <9% x 5^+ a sesquiiinear form by

(/•£)= Σ &n+JΘf,?xgm). (4.3)
n, m

This form is positive semidefinite due to (E 2), it is linear in g, antilinear
i n / and it satisfies (J,β) = (β,f), for all]\βeSf+. Denoting by Jί the
set of vectors in 5^+ of norm zero, Jί = {/e 5^+ | | / 1 | 2 = (/,/) = 0}, we
define X to be the Hubert space completion of the quotient space
5^+//K By v we denote the canonical injection of ξ£'+ into X. Then for

^- E ~+' (v(fl ^9))yr = (/>£) > (4.4)

and the range of i;, denoted by ^ 0 is a dense subset of jf". By (E0), ι? is a
continuous map from 5^+ onto ® 0 .

and α = fθ,α), we define t/s(α)/by

( ) fe - XJ = fn(Xi -Qτ> %n ~ Q) •

and

Thus extension of
(4.5)

by continuity leads to a unitary representation Us(a) in X of the three
dimensional translation group (translations in space directions).

For translations in the time direction the situation is different
because the sesquiiinear form (4.3) and hence the scalar product in X
involves a time inversion Θ. For ί^O we define the map Tr from ^ +

into itself by
( Γ / ) ( & , . . . xn) = fn(xi-t,...xn-t), (4.6)

where ί = (ί,0). By (El) and definition (4.3), for/,_g,esS?+ and ί^O,

(irβ) = (f%g). (4.7)

Furthermore for s,ί^0we have

By (4.1), we find that for/e ^ + ,

K/ 7"7)I = | Σ ί/«ί^n,... %,)/ M ί>Ί, . . . y j
I n , m
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for some polynomial P(ί), which depends o n / . This follows from the
facts that Sm+n^1 is in Sf'(1R%im f / l ~ υ ) , and that/has only a finite number
of nonvanishing components. We can improve inequality (4.8) by a
repeated application of the Schwarz inequality and of (4.7) and (4.8).

-°2 (Λf2"'/)2

for all ft = 1, 2,... Taking the limit as n-+oo we obtain

1|2. (4.9)

It follows from (4.9) that V maps one equivalence class mod Λr onto
another equivalence class mod j \ r . Thus for t ^ 0

defines a continuous one paremater semigroup {To}f>o of operators
on SJ0 C Jf and TQ is positive, symmetric and has norm smaller or
equal to one. Therefore TQ has a self-adjoint extension, denoted by T\
and {Tt}t>Q is a weakly continuous one parameter semigroup of self-
adjoint contractions on X. Let H be the infinitesimal generator of V.
It is a positive self-adjoint operator on j f and we can define the one
parameter group of unitary operators γιs = eιsH, — oo < s < oo. This is the
unitary representation of the time translation group and we set

U(a) = Tίa° Us(a) , a = (a0, a) e 1R4 .

This defines a unitary representation of the four dimensional translation
group in JΓ.

The family Tτ=VTι\τ = t + is, is a holomorphic semigroup for
Reτ = f>0, uniformly bounded and strongly continuous for Reτ^O.
We can use this holomorphic semigroup to construct the analytic
continuation of the Euclidean Green's functions.

Let/ w = (0, ...,/w,0 ...) and_g = (O,...,0π,O ...) be vectors i n ^ V Then
/ m 6 ^ + ( l R 4 m ) , ^ G ^ + ( I R 4 π ) and Θf* xgne^(]R4{m + n)). Thus for ί^O
fixed and h e Sf (1R), the mapping

(Θf* xgn,h)-+S(υ(fm), Tΐ + ίsv(gn))y,h(s)ds (4.10)

defines a continuous linear functional on ^<(]R4(m + n))%)S/?(]R), by the
nuclear theorem. Moreover, for any a e 1R3, α° ^ 0,
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We conclude that the right hand side of (4.10) can be written as

s)ds

^gjy,,... yjh(s) (4.11)

where S^nlm^1(ξ1,... ξm + n-1 \s) is a distribution in the dual space of

<cf(]RX(m + π"l))(χ),(/(lR) and a continuous function of s when smeared in

all the other variables. Furthermore

Now let M ^ i - Cm-i. ίm, Cm + i, ... $m + n-i) b e a n element in

y ^ ' ^ ^ ^ ^ J R ^ y ί l R 4 ^ " " 1 1 ) and set for ί > 0

s ( m )(t = < £ , s | U = J s ! ^

It follows from (4.11) that for fixed hm, S(m)(ί, s|/im) is a distribution
in the dual space of t9

ί7(lR + )®ty
7(lR) and satisfies the Cauchy-Rie-

mann equation for ΐ > 0, — GO < s < GO. Hence by Lemma 8.7 there is a
distribution S{m){a\hm) in ^'(ΠL) such that S(m) is the Fourier-
Laplace transform of S{m). S{m)(t, s\hm)= \ e~*{t + is)Sim){a\hm)da, and
^ + π - i ( ί i . ••• (t, ξml ••• ξm + n-i\s) i s t h e analytic continuation of
Sm^.n_ί(ξu... (t,ξm\ ... ξm + Λ_i) in the time component of the m-th
variable. Lemma 8.8 shows that under these circumstances we can
analytically continue Sm + n_ι simultaneously in the time components
of all variables and that there exists a uniquely determined distribution
Wn(qu ... qn) in </"&%'") such that

- Σ (ξkVk - Hkgk) „

Sn(ξu... ξn) = \e — " " Wn(qu... qn)d*»q. (4.12)

Now we define the Wightman distributions %Bn by

Wn(xu...xn) = je l ^ i i k + ί *k)*kWn_ί(ql9...qn_1)d«n-l)q. (4.13)

According to the results of Chapter 2, [see the discussion following
Eq.(2.2)] Wn(qί9... qn) is a distribution in ^'(IR4") with support in
{</!,... g n ;^?^0, . . . 4π^0}. In Section4.2 we prove that for ΛeV+,
Wn{Λqx, ... Λqn)= Wn(q1, ... qn). Hence the support of Wn is in
{qx,... qn:q1eV+,... qneV+}, where V+ is the forward light cone.
This is the spectrum condition (R5). Temperedness (RO) follows from
(4.13).
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4.2. Lorentz Coυariance and Spectrum Condition

Translation invariance of 2Bn(x l5... xn) follows from definition (4.13).
Thus relativistic invariance (R 1) and also the spectrum condition (R5)
follow if we can prove that for all A e L\,

or equivalenlly if we can prove that for 0 ̂  i <j ^ 3,

XιJWn(q1,...qn) = 0, (4.14)

where Xtj are the operators

From Eq. (4.2) we conclude that for 0 g i <j ^ 3,

y, J .S B ( | I , . . .g = 0, (4.15)
where

v = y (piJ--£jJ
I ι j LJ ^k Ά y j ^ k 7\.

On the other hand we get from Eq. (4.12)

- Σ i&qί-iξkqk)

YιjSn(ξί,...ξJ = je - 1 "• XlJWn(qu...qn)d*nq, (4.16)

for 1 ̂  i < j ^ 3, and
- Σ (&qk-iξkqk)

YOjSn(ξu .ξJ = ίίe - i •• XOjWn(<lί9...qn)d*nq, (4.17)

for j = 1,2, 3. [To prove Eq. (4.16) we use the definitions of the Fourier
transform and of the derivative of a distribution; to prove (4.17) we also
need Lemma 8.4.]

Eq. (4.14) is now a consequence of Eqs. (4.15-17) and of the uniqueness
theorem for Laplace and Fourier transforms of distributions.

4.3. Positivity

In this section we prove the positivity condition (R2). We have to
show that for all fe ££

ΣW Jf*fJ (418)
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is nonnegalive. The idea of the proof is simple. We show that any element
/ e ^ defines a vector u(f) in the Hubert space jf, constructed in
Section 4.1, and that the norm of u(f) is given by (4.18). We also show
that the set ζdx = {u(f);feS?} is dense in jf. Hence X is the Hubert
space of Wightman's reconstruction theorem.

For fe &>+ (lR4n) we define p e 9>^%n) by

Then for/e5^+ we define/by

Λ(gi,.. ? J = i / « % , . . . U e ^ ^ l"k~k)d*»ξ\{qo

k^O}. (4.20)

Lemma 4.1. The map f-+f for f e^+ is a continuous map of ,9"+

onto a dense subset ££ of 5^(IR4'). The kernel of this map is {0}.

Proof. It suffices to show that for n = 1,2, ...,/„-•/„ is a continuous
map of f^VflR4n) onto a dense subset ^(IR 4 1 1 ) of .^flR4/") and that the
kernel of this map is {0}. The map / n ^ / J , defined by (4.19) is an iso-
morphism of 6?+ (IR4") onto £f (1R4/"), therefore the lemma follows if we can
prove that / J - > / π is a continuous map of 5^OR4,'") onto a dense subset
y+(R4n) of ̂ (ΪRt'") wίώ kernel {0}. But this is an easy consequence of
Lemma 8.2 and the fact that the Fourier transform is a homomorphism
ofί^IR) onto itself.

In Section 4.1 we have introduced a continuous map v from 5^+

onto a dense subset ^ 0 of Jf. By Lemma 4.1, the map w defined by

M'f) = v(f), for fe¥+, (4.21)

is a map from the dense subset 5^+ of 5^(1R4') onto S)0C^ί. We want
to show that w can be extended to a continuous map w from all of

4 ) onto a dense subset ®A of JΓ. This follows from

Lemma 4.2. T/ie map w is continuous.

Proof. Lelf,β e ¥+. Then, by (4.21) and by (4.3),

(4-22)

We rewrite the last expression of (4.22) in terms of fn and gm. By (4.1)
and (4.12) we find that this expression equals

Σ lϊUBx,,, -9ξn-u ..., - H J y t t L + ̂ ξ n + i , - L + m - i ) (4-23)

Σ (ξkqi -ίξuqk) ^
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Interchanging the order of integration in (4.23) we obtain

m-l)

(4.24)

For the space components ξ\'2'3 and ql'2"3 the change in the order of
integration is justified by the definition of the Fourier transform of a
distribution. For the time components ς° and q% we refer to Lemma 8.4.

By Lemma 4.1, / , and gm are elements in ^(ΪR4/'7) and ^(WX'm)

respectively, and thus fn(qn,... qjgjq,,,... qn + m-ι) is in ymt'in + m'l)y

On the other hand P Î + m _ 1 is a distribution in y / (Sf ( Λ + m ~ 1 ) ) . This

proves Lemma 4.2.

From Eq. (4.24) we conclude that for any h,ke ^(ΪR+')

(w®, w(k))χ (4.25)

Now let / e ££ and define / by {f)n = fn and

- i Σ qkCk

where fl is defined as in (4.19). Obviously /„ is the restriction to {q% ^ 0}
of a test function in 6^(]R4n) and is therefore an element in ,^(1R4")
Furthermore the set {/ / G ^ 7 } is equal to 5^(ίR4). Therefore we may
define a map u : !£ -> 3C by

/ -> u(f) = Mf) G Jf . (4.27)

The range of u is &1 {= range of w), which is a dense subset of <if.
Substituting (4.13) and (4.26) in (4.18) we find that f o r / e ^ ,

= Σ I / A , , . - . ^ ) / m ( ? , P ••• qn + m-ι) ^ B + m - i ( ? i . ••• 17,, + m

/ / - («(/), «(/)),,., (4.28)

where the second Eq. in (4.28) follows from (4.25). From Eq. (4.28)
we now get the positivity condition (R2). The density of Q)γ in Jf implies
that Jf is the Hubert space of Wightman's reconstruction theorem [23].

4.4. Cluster Property

In this section we derive the cluster property (R4) from the cluster
property (E4). Using (4.22) we rewrite (E4) in vector notation:

lim (vv(/), Us(λa) w(β))x = (vv(/), Ω)* (Ω, w(g))^ , (4.29)
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for / , g e ^ + . The vacuum vector Ω is defined to be ι;({ 1,0,0,...}). By
continuity (4.29) remains true if we replace w{f) and w{g) by arbitrary
vectors in jf, in particular we find that for all h,ke £f

lim (u{hl U&(λa) u(k))# = (M(Λ), Ω)^ (Ω, u(k))χ-. (4.30)
Λ-> 00

Eq. (4.30) is the cluster property (R4) in vector notation.

4.5. Locality

For Re2^=0, Imzfc = 0 and z f c -z f e ,φ0, if fcφk', we define the
Wightman function by

Then 3BM(z1 ... zn) is symmetric in its arguments and has an V+ invariant,
single valued, symmetric analytic continuation into the domain
$ n ={z l 5 . . . zn\(zπ(k)- zn{k_l))e%k = 1,... n, for some permutation
π(l),. . . π(ή) of 1,... n}. X is the forward tube {z Imze V+}. This follows
easily from the symmetry property (E2) for the Euclidean Green's
functions and Eqs. (4.1), (4.12) and (4.14). Using the Bargmann Hall
Wightman theorem, [10], we conclude that Wβn{zi,... zfI) allows even a
single valued, symmetric L + ((C) invariant analytic continuation into
the domain S^ = (J AStr Now we use a theorem in Ref. [12] (p. 83,

AeL+ (<C)

second theorem) to conclude that the boundary distributions 2Bn(x l5... xn)
of %βn(zu ... zn) satisfy the locality condition (R3).

5. Theorem R ^ E

In this chapter we start from a relativistic field theory given by a
sequence {2Bn}£=o °f Wightman distributions, satisfying axioms
(R0)-(R5), and we construct a sequence {S,,}^=0 of Euclidean Green's
functions with the properties (E0)—(E4).

It is well known that the Wightman distribution sIBn is the boundary
value of the Wightman function Wn(z1, ...,z,,) which is analytic, single
valued, symmetric and /L + (C) invariant for (zλ,..., zn)e Sζ, see [12],
p. 83. S^ contains the set

^° = {(zls... ztt):lm(zk-zk_ί)eV+ for all i<k^ή\,

and it is invariant under permutations of ( z l 9 . . . zn). Hence it contains
the set Sn = {(z,,... zn): Rez°k = 0, lmzk = 0, zk Φ zw for all 1 ̂  k < k' ^ ή).
Points in Sn are called Euclidean points. The restriction of the Wightman



98 K Osterwalder and R. Schrader:

functions to Euclidean points defines the Euclidean Green's functions.
We set 6 0 = 2B0 = 1 and

for (xx,... xn) e Ωn = {xx ... xn xf Φ x7 for all 1 ̂  i </' ^ w}.
The ®π, n = 0,1,. . . , are the Euclidean Green's functions and we have

to verify that they have the properties (E0)-(E4). By (5.1), S π (x 1 ? . . . xn)
is an analytic function, invariant under permutations of the arguments
x l 9 . . . xn, which is (E3). It is invariant under translations, because 2BM

is. It is furthermore invariant under the action of the subgroup of those
elements in L+((C) which map Euclidean points in Euclidean points.
But this subgroup of L+ ((C) is just the group of Euclidean rotations. This
proves (E1).

Now we prove (E0). Obviously the linear space °^C(IR4") of all func-
tions in 5^0R4") with compact support in Ωn is dense in °^(1R4"), and
®π(x 1 ? . . . xΛ) is a continuous, uniformly bounded function on any
compact subset of Ωn. Hence the Riemannian integral

Sn(f)=\Sn(x1,...xn)f(xι,...xn)d4nx (5.2)

defines a linear functional on °5^(1R4"), which is symmetric under permuta-
tions of the arguments xx,... xn and invariant under iSOA. (Note that
(x 1 ? . . . xn)->(Rx1 + g,... Rxn + g\ ReSO^, αelR4, maps a compact
set K in Ωn onto another compact set K1 in Ωn.)

Proposition 5.1. For n— 1,2,..., there exists a constant c and a number
m such that for all /e°^ c(lR4")

l®Λ(/)l^c|/|m. (5.3)

Postponing the proof of the proposition, we use it together with the
density of Vc(lR4n) in V(IR 4 n) to extend ®M to a distribution in ^ ( I R 4 " ) ,
proving (E0). By continuity this distribution, again denoted by ®M, has
the in variance property (E1) and the symmetry property (E3). Positivity
(E2) follows from the arguments given in Section 4.3. Let fe^+. Then
according to (4.22) and (4.24)

n,m

Axiom (R2) implies that (5.4) is nonnegative because f o r / e ^ V , /„ is in
^(IR4^^ and can therefore be interpreted as the restriction to {q%^0} of
some function gn(ql9... qt) in ^(1R4"). The cluster property (E4) follows
from (R4) by the arguments of Section 4.4: (R4) implies that
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lim UF, Us(λa) G) - (F, Ω) (Ω, G)] = 0 for all F , G e / , and this
Λ-»oo

implies (E4).
Now we return to Proposition 5.1. Its proof has a geometrical and an

analytical part. Let us do geometry first.

Lemma 5.2. For n = 2, 3,... there exist N = N(n) < oo unit vectors
el9 ... eN in IR4 and a constant Λ>0, depending on n, such that for all
(xu...xn)eΩn

i | < > l t e ) 1 (55| < & 5 f > l
k i< j

where <, > is the Euclidean scalar product, and

(

Proof. Pick N > 3 2~ ι n(n — 1) vectors e1,... £N such that any four
of them span IR4. Now take (x l 5 . . . xn) e Ωn and define 2~ίn(n—l) unit
vectors

Then each of the vectors ftj is orthogonal to at most 3 vectors er, es, et,
and because of the choice of JV, <eM, / 0> φ 0 for at least one
M e {1,2,... N} and all / i j r i.e.

h ( / ) = m a x m i n | < e f c , / i j > | > 0 for all / = {/12,... /B. l B} .

As (x l 5 . . . xn) varies over Ωm f varies over the 2~1n(n— 1) fold tensor
product of the unit sphere in IR4, which is a compact set, and we have
h(f)>0. Thus there is a constant A>0 such that h(f)^A, for all /,
i.e. for all (x 1 ? . . . x j e β π

max mm
k ίj

Using the inequality ρ(xΛ ... xn)^\xi — x^1 for all l^i<j^n, we
prove (5.5).

We choose N unit vectors as in Lemma 5.3. These vectors remain
fixed for the remainder of the proof. Then we define N n! open subsets

Ωfcπ={(x1,... xn):<ek,xπU+1)-xπU))>0 for all i^j<n},

where π is an element in the permutation group Pn of n elements and
k=l,... N. The Ωkπ obviously cover Ωn.

For the analytic part of the proof of Proposition 5.1 we have to
define a partition of unity on Ωn: Let τe C°°(1R) be such that Orgτrg 1
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and τ(x) = 0 for x<j\ τ(x)=l, for x ^ l . Then we define χ f e π^0 on

β-by

Zk«(^l,. *n) = Π T ( X - ^ ( X 1 5 . . . XnXgfc^πO + D - ί π O )))*

where A is as in (5.5). Obviously suppχkπc Ωkπ. From Lemma 5.2 we now

conclude that for any (x1 ? ... x j e Ωw there exists fc, π such that

Z**(*i .••&,)= 1, a n d therefore

Σ Xkn(Xl>' ^ J ^ 1

fe,π

on Ωn. Now we can define

and χkπ is well defined and nonnegative on Ωn\ Σ Z/cπ= 1 o n ^«5 i e Zfcπ
k,n

defines a partition of unity on Ωn. For /e°^(IR4n) we can now write

£„(/)= Σ ^ ( χ k π / ) , (5.7)
k,π

and for a proof of Proposition 5.1 it suffices to estimate a single term
in the sum on the right hand side of (5.7). Using (5.2), and the symmetry
and S04 in variance of S n we write

(χkj)=^(xux)(χkf)(x1...xn)d4nx

where π' is the inverse permutation of π and R e S 0 4 is chosen such that
jR" xe k is the unit vector in the time direction, i.e. R~ 1 e k = (l,0). As χkπ

has its support in Ωkπ, (χkπf)*o R) has its support in Ω < = {x l J... xn;
x ? + 1 - x ? > 0 , 7 = 1 , . . . n - l } 5 and is therefore in ^<(!R 4 n )n^ c ( lR 4 n ) .
To finish the proof of Proposition 5.1 we need two more lemmas

L e m m a 5.3. The restriction of ® n ( x i , ••• x«) to Ω< defines a distribu-
tion in ^ ( I R 4 " ) .

Lemma 5.4. For α// mx ^ 0 there exist constants c and m depending
only on m l 5 such that

\lkπf\my<C\f\m>

forallk=l,... N,

We use Lemma 5.3 to show that there exist constants c and m1 such
that (using 5.8)

\&n(XkJ)\=\&n((Xknf)?O,R))\

Sc\(χkπf%,R)\mχ = c\χkπf\mi,

and Proposition 5.1 follows from (5.7), (5.9) and Lemma 5.4.
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Proof of Lemma 53: For (x 1 ? . . . xn)eΩ< we can write

- Σ (ξ

where ξk = xk + i —xfc and ξ ? > 0 for (x l 9 . . . i J e Ω < . It suffices to prove

that S W Ί!(£!, . . . ^ _ i ) is in y'(IR+"). By the nuclear theorem and the

support properties of Wn_ι{q1,... qn-ι) we only need to show that for

W(q) e «?"flR + ) and gξ(q) = e'ξq(q ;> 0), the function S{ξ) = P^^^) f (ξ > 0)

defines a distribution in .5̂ /flR + ). But for £ > 0

dq«

for some constants c{ and m. Now let / e ^ ( I R + ). Because /(x) vanishes
together with all its derivatives /(α)(x) at x = 0, we can write it as

x
f(x)= —rf(n)(yx) for any n^O and some yx, 0^yx^x. Then we find

that for some constants c,

\f{ξ)W{gξ)dξ
o

f i m ) (Jcj sup {(l \f(ξ)\} + sup
0 m I

This proves the assertion and thus Lemma 5.3.
Proof of Lemma 5.4. We use the following estimates on derivatives

lv ( α ) ίΎ Y)\<ΓΠ(Y T \lαl
l A k π V ^ l ϊ x n ) \ = C a Q \ £ l i ••• ^ n i

< / y i γ . _ γ ι-ι*ι

Then the lemma follows from arguments similar to those given at the end
of the proof of Lemma 5.3.
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6. Arbitrary Spinor Fields

In this chapter we generalize the axioms (E0)-(E4) to include
arbitrary spinor fields. We also show how to modify the arguments of
Chapters 4 and 5 to prove theorems E->R and R->E in this general
situation.

The Wightman distributions are given by

Here ψ^z)(Xj) stands for one of the finite number of fields that describe the
theory. vt represents a set of dotted and undotted indices ( α 1 ; . . . amk,
β\-> ••• βnk)

 a n d describes the spinor character of the field labeled by kt.
Finally v stands for the set v1 ?... vn and k stands for the set fc1? ... kn.

Let S(Ay B) be a finite dimensional analytic representation of
SL{2X) x SL(2,0, the universal covering group of L+(C). Then
S(̂ 4, ,4) is a representation of SL(2, (C), the universal covering group of
V+, and all finite dimensional continuous representations of SL(2, <C)
may be obtained in this way. The transformation properties of the fields
are given by

U{{g, A}) ψikι)(x) U({g, A})~* = £ S ( k ι ) U" S Λ~^ψ Ά

a e 1R4, 1̂ e SL(2, C). (7 is a unitary representation of the inhomogeneous

»SL(2,(C) and Sikι)(A, B) is a finite dimensional analytic representation of

SL(2,(C)xSL(2,C). Furthermore Λ04,5) is given by A(AJΪ)z=AzBτ

3

where z = ^ zμσμ and z e (C4. For notational convenience we denote
μ = 0

the adjoint fields ψ^ixf by ψ[*kι)(x\ where vf = (βx,... ^ ά l 9 . . . άm k).

We have to require that S(kι)(A, B)v

μ\ = Si~kι){A,B)vJt. Relativistic co-
variance leads to

(Rl) ΏSvk(xι,...χn)=ΣSk(A-\A-1rvWμk(Λxγ + a,...Λx» + a),
β

for all AeSL(2Xl αelR 4 Here A=Λ(A,A) and Sk(A,B) is a finite
dimensional analytic representation of SL(2, C) x 5L(2, <C). Again using
formula (5.1) to define the Euclidean Green's function we find that the
covariance axiom (E1) becomes

(El) ® v f c (^ , . . . χJ=ΣSk(V-1,V-1y;<5μk(Rx1 + Q,...Rχn + q),

for all U,VeSU(2\ gelR4. Here R = R{U,V) is defined by
A(U,V)(-ixo,x) = (-i(Rx)°,Rx) and is a homomorphism of Sl/(2)
x S U(2) onto S 0 4 . Note that S (7(2) x S U(2) is the universal covering
group of S04. Hence Sk(U9 V) defines a continuous finite dimensional
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(one or two valued) representation of S04. Axiom (E0) remains of course
unchanged and its derivation from the Wightman axioms is as in
Chapter 5. Axiom (E3) becomes

\CJ) w v J c ^ 1 ? . . . xn) = σ ^ f c ^ Λ π ( 1 ) , . . . Λ π ( Π ) j

for all permutations π. Here σ = + 1 and v —(vπ ( 1 ),... vπ(n)),
k = (fcπ(1)5... kπ(n)), [14]. A reformulation of the nonlinear axioms (E2)
and (E4) requires some modifications of the notation introduced in
Chapter 2. In the following 5̂ + will denote the set of all finite sequences
/ = (/o»/i>/2> •••) where / o e C and each /„ is a sequence of elements
fn,vkG ^+(lR4nX with vk as before. Also for Je^+ we redefine f* by

( f*\ (x x \— 7 (γ γ \ (fi 7\
\J )n, v/cV 5 l ' ••• Xn) ~ J n. v*k*\Xiv •• xl) •> l° ZJ

where v* = (v*,... vf) and k* = ( —kΠ,... — k j . Furthermore for gelR4

we define / ( ? ) by

The remaining axioms can now be written as

(E2) £ SvμU(Θ(f*)ntVkxfmttι^0, forall / e ^ + .
M, m
vk

(E4) lim X {SVίl

n, m
vk

forall f,g e £f+, α = (0,α), α e IR3.

(E2) and (E4) follow from the Wightman axioms as in Chapter 5.
To reconstruct the Wightman distributions from a set of Euclidean

Green's functions obeying (E0)-(E4) we proceed as in Chapter 4. The
only step which has to be modified is the derivation of Lorentz co-
variance of 2Bvfc from Euclidean covariance of 6 v k . Given the Euclidean
covariance of Svk(ξ1,... ξn_1)= S v k (x 1 ? . . . xn), ί, = xi + 1 — xn ξ® >0, we
have to prove the Lorentz covariance of Wvk(qγ,... qn), where

S v k ( ξ l 5 . . . ξn)=$e *^qiC l"k-k)Wvk(qu... qn)d*nq. (6.3)

First we note that any element A in SL(2,C) can be written as A = UH,
where U e S 1/(2) and H is positive. Hence it is sufficient to prove that

Wγk(qs,...qJ=YjSk(U,UTvWμk(Λ-1(U,U)qί,...Λ-1(U,U)qJ, (6.4)

and

, (6.5)



104 K. Oslerwalder and R. Schrader:

for all UeSU{2) and all positive H. Eq. (6.4) follows immediately from
(6.3) and (El) with V replaced by (7, because Λ(U, U) leaves the zero
component invariant. To prove Eq. (6.5) we consider the one parameter

group H(φ) = C o s h — -f Sinh —-e σ of hermitian operators, where e

is a fixed unit vector in R3 and — oo <ψ < oo. Then it suffices to show
that for Λ(φ) = Λ(H(φ), H(φ)\ the expression

dφ 7

μ

*,β

\ dΨ d dφ

vanishes.
dφ

Wμk(qi,...qn) (6.6)

Let V(φ) = cos — + / sin —- e-σ be a one parameter group in S (7(2)

with e fixed, as above. Then Euclidean covariance of Svk implies that for

= yίdK

7\ ^
, B)μ

y +
BSk

dφ

Wli— P

•U,^)ϊ

From the definition of H(φ) and K(φ) we get

(6.7)

dHn

and

Furthermore

Σ

dφ

dVnaβ

dHr

(6.Ϊ
aβ

dφ
— i= i(es),β •

and

Σ

dφ dq*

1 ζif <5

dφ 3ξ? r I dξ{

(6.9)

1 ^ J ̂  3
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Now we insert (6.8) and (6.9) in (6.6) and (6.7) respectively. Then the
vanishing of (6.6) follows from (6.3) and (6.7) by the arguments of Section 3.

7. Application

By theorem E—>R, a relativistic quantum field theory model can be
obtained by constructing a set of Euclidean Green's functions, satisfying
(E0)-(E4). Formally the Euclidean Green's functions are given by

where ΩE is the Euclidean no particle state, Aι(x^) are free Euclidean
fields and V is the Euclidean action, [21] and [18]. By introducing
a volume cutoff h and an ultraviolet cutoff κ we make Sn>h>κ well defined
objects. We define S n as the limit of S n h>κ as κ->oo, and / I - > 1 . To
complete the program we would have to show that this limit exists and
has properties (E0)-(E4). Euclidean covariance (El) follows once the
uniqueness of the limit is established. All the other axioms are expected
to hold for the cutoff Green's functions, independently of κ and h.
Estimates are needed to prove this assertion for (EO) (distribution
property) and (E4) (cluster property). For superrenormalizable models
the necessary techniques have been developed by Glimm and Jaffe [7, 8]
and by Dimock, Glimm and Spencer [9, 2]. On the other hand, for
models involving boson-fermion interactions, (E2) (symmetry) and (E3)
(positivity) are trivially satisfied for a large class of cutoffs. The symmetry
property follows from the fact that free Euclidean bose and fermi fields
commute, respectively anticommute, with or without ultraviolet cutoff.
If there is no ultraviolet cutoff in time direction then positivity (E3)
follows from the Feynman-Kac formula and the relation connecting the
Euclidean action V with its adjoint, [18].

8. Technicalities

In this chapter we state and - where necessary - prove some technical
lemmas, used in earlier chapters.

Lemma 8.1. (see p. 86). The set of seminorms on

m = l , 2 , . . . is equivalent to the set of seminorms \f+\'m

Proof. Obviously for /

\
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Thus it remains to prove that for a given m we can find c and n such that
forall/e^flR),

'm^c\f+ζ. (8.1)

Let ^{m)(R-) be the closure of y(1R_) with respect to the | |m-norm. Then

| / + L = ^ ( m f ( R \f + g\m. (8.2)

Let φ(x) be a C00 function such that 0 ^ φ(x) ^ 1, φ(x) = 0 for x :g — 1,
φ(x) = 1 for x ^ — ̂ . Now we define

— — / ( x ) , /<9Γ X ^ 0 ,

10, /or x > 0 .

Certainly g e Sf{m+ 1}(1R_), and

m + 1 ^.α

^ C l sup

(8.3)

for some constants cx. and c, depending on φ and m but not on /. Ineq.
(8.1) follows from (8.2) and (8.3). Our proof of (8.3) is an adapted version
of Hormanders proof of Whitney's extension theorem see [27] and [11].

Lemma 8.2. Suppose g(x) e ^flR+) and define g by

Then ge5f(lR+) and g-^g is a continuous map of ^0R+) onto a dense
subset S? of «9*(ίR + ). The kernel of this map is {0}.

Proof. The integral [ e~qx g(x) dx is uniformly convergent for q ^ 0,
/ d \m

ihus (I+ q)mD*g(q)= \e~qx 1+ - — ((-x)ag(x))dx \ {q^O}. In par-
\ dx I

ticular (see (2.2))
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for some constants c1 and c2. Ineq. (8.4) proves that g e yflR+) and that
the map g-+g is continuous. In order to prove that the range £f of this
map is dense in &?(1R+) we take a distribution We£f'(lR+) with the
property that W(g) = 0_ϊov all ge^(]R+) and show that this implies
W = 0. As W is in &"(&+) it is a distribution in 5^(IR) with support in
[0, oo) and its Fourier-Laplace transform \ eιzqW(q)dq=W{z) is an
analytic function in {z :Imz>0}. Now we need the following well
known lemma.

Lemma 8.3 ([26], p. 23). Suppose We&"(lR) and suppWc [0, oo).
Then

W= Σ D*μΛ9 (8.5)

where μα(g) are measures of power increase with support in [0, oo).

Remark. We say a measure μ is of power increase of order a if
J |dμ(x)| (1 + |x|)~α < oo for some α ̂  0.

Using (8.5) and the definition of ^ we now can write for ge 6f(JR+)

W(9)= Σ S($e-«xx*g(x)dx)dμΛ(q) (8-6)

We claim that
ί ( ί | e-^x α ^(x) |dx) |dμ α (^) |<oo, (8.7)

thus by Fubini's theorem we can change the order of integration in (8.6)
and obtain

= Σ i(ϊe-*xD*dμa(q))g(x)dx
l=M ° (8.8)

- J W(ix)g(x)dx,
o

and we suppose (8.8) to vanish for all ge6^(lR+). As W(ix) is a real
analytic function of x > 0, (8.8) implies that W(ix) = 0 for x > 0 and hence
W(z) — 0 for Imz > 0. By the uniqueness of the Laplace-Fourier transform
we conclude that the distribution W is identically zero, which proves the
density of £f in ^(IR + ). The last statement of the lemma is obvious.
It remains to prove Ineq. (8.7). Suppose μα is of increase of order β > 0 .
Then

j{\e-«x\x*g(x)\dx)\dμa(q)\

^ sup((l + qf f e-*x\x* g(x)\ dx) f \dμa(q)\ d

\x*g(x)\dx (8.9)
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for some constants cv, γ. Hence it suffices to show that sup \xk g(x)\

is finite for any integer k. For nonnegative k this is trivial as g e
For negative k we use the fact that g(x) vanishes with all its derivatives

x~k
x

at x = 0 and can be written as g(x) = -—— g{ k+1)(yx), where yx e [0, x).
( ~ k)l

Hence

This proves inequality (8.7).
The first part of the following lemma is equivalent to Eq. (8.8).

We leave out the proof of the second part.

Lemma 8.4 Suppose We^'flR) and supp WC [0, oo) and denote by
fx(q) the restriction of e~qx to {q^O}. Then W($ fx( ) g(x) dx)

= jg(x)W{fx(-))dx for all geS?(R + ). Furthermore — W(fx(-))
(X X

\dx Jx

Remark. Lemmas 8.1-8.4 can immediately be generalized to the case
of several variables.

Lemma 8.5 ([26], p. 31). Let T(t,s) be a distribution in the dual
space of y(IR + )® ^(IR) and suppose that for ί > 0 its real and imaginary
parts satisfy the Cauchy-Riemann conditions

/Ί s) pi p\

—— Re T = —— Im T, —— Im T — — — - Re T.
dt ds dt ds

Then T(t, s) = G(τ), τ = t + is, for some function G which is analytic in the
open right half plane {τ : Reτ > 0}.

Lemma 8.6 ([26], p. 239). Let G(τ) be a function, analytic in the open
right half plane, satisfying the inequality

|G(τ)|^M(l + | τ | / r α , (8.10)

for some positive constants M, α, β and for t = Reτ > 0. Then G(τ) is the
Fourier-Laplace transform G(τ)= \ e~x*G(a) da of some distribution

Lemma 8.7 Let T(t, s) be as in Lemma 8.5. Then there is a distribution
Ge y'(lR + ), such that T is the Fourier-Laplace transform of G,

T(t,s)= $e-*{t + is)G(a)da=G{τ) for ί > 0 , τ = t + is.

G(τ) is holomorphic for R e τ > 0 .
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Proof. By Lemma 8.5, T(ί, s) = G(τ) for some function G which is
analytic in the open right half plane. We prove that G(τ) satisfies in-
equality (8.10) for some positive constants M, α, β. Then Lemma 8.7
follows from Lemma 8.6. Let τ 0 = ί0 -h is0, t0 > 0. Then for all r e (0, ί0)

G(τo) =
1 2 π

2π

3 ίn

Let h(r) be a C00 function with compact support in [^,f] and suppose

J h(r)r dr = 1. Then /zίo(r) = t$2h{tQ 1 r) has its support in

\htQ{r)rdr=l. Furthermore by Fubini's theorem

and

G(τ0) 2π

2 π

- ^ is)h f0(l/ί2 + s2) dt ds

2π
J T(ί, 5) Af0(]/(ί - ί 0) 2 + (s - s0)

2) dt ds .

Hence by the properties of T there is an y'-norm
such that

, and a constant c,

Inequality (8.10) follows from (8.11). This proves Lemma 8.7.

Lemma 8.8 Let Sn(ξ1,... ξn) be a distribution in &"(lR%'n), and set for
m= 1,2,... n,

/or ^ e ^ ί l R t ^ " 1 ^ ® . ^ ^ 3 ) ® ^ ^ ' ^ " ^ ) . ŝt/m^ ί/iαί /or α// fm

and w = 1,2 ... n, S(

n

m)(^»/m) cαw fee extended to a function S{™\ίlJm)

which is analytic in {ζ° = £° + / ^ , ξ° >0} and ί/iαί S^m) /s ί/ίe Fourier-

Laplace transform of a distribution Sί,m)(̂ m»/m) / Π ^'flR+),

Then Sn{ξl7... ξn) is the Fourier-Laplace transform of a distribution

~ Σ (
? k - 1 Wn(qί-q,,)d*"q. (8.12)
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Proof. We prove the lemma for n = 2; the proof for arbitrary n is
then straightforward. Let / ^ , ξ2) e ^(ΪR3)® ̂ (\R%) and Λ(ξ?) e cŜ (lR + ).
Then

S 2 (Λx/ 1 )=ίS 2 (ξ 1 , ξ 2 ) f t (ξ?)/ i ( i i | 2 )^ ί i^ξ2
(8.13)

for some distribution S (

2

1 ) (^I,/I)G <5̂ '(IR + ), according to the assumption
of the lemma. By Lemma 8.4 we can change the order of integration in
(8.13) and obtain

ί ^ ? 1 ) ^ ? (8.14)

where % ? ) = \ e'^^hiξ^) dξl \ {q^O} is an element in ^0R+). By
Lemma 8.2 the right hand side of (8.14) defines a bilinear continuous
functional on y(ΪR + ) x (^0R3)(g)^(lRt)) and thus by the nuclear theorem
a unique distribution ^ ( g ? , £x, ξ2) in the dual space of ^(IR + )® ̂ (1R3)

R+). Taking the Fourier transform with respect to ξ9 we obtain

where W2(qι, ξ2) is now a distribution in the dual space of
«^(Rt)®^(IRt). Now take /(^) G ^(IR^), g(^) e .^(1R+), /i(ξ2) G 5̂ (1R3).
Then /(gi)= j / ~ ' ! ^ ~ l i l i l /(ξi) ^ 4ξi \ {q°ι ̂  0} is in ^(1^) and
^2!/ x 9 x fy^W^if x 9 x h). According to the assumption of the
lemma,

is a real analytic function in ξ°2 >0 and it can be written as W2{f, ξ2, h)
= J e-^«S ^ 2

2 (/ , q°2, h) dq°2 for some distribution Wi(f, q°2, h) in «9"(ΪR+).
As before we obtain

S2(/ x 0 x Λ) = j g(q°2) WHf, q°2, h) dq°2 , (8.15)

and the right hand side of (8.15) defines a bilinear continuous functional
on ^(lt)><^(^-f)_><^(IR3)_and^thus a distribution Wiiq^q^ξi) i n

the dual space of ^flRt)® (̂1R + )® ̂ (1R3). Taking the Fourfer transform
with respect to ξ2 we finally obtain

qJdUιd
4q2, (8.16)

where W(qliq2) is now a distribution in y(ΪR+'2), and h is the Fourier
transform of h. Again by Lemma 8.4 we obtain (8.12) from (8.16).
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