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Using modern theory for semi-parametric models, we provide details for an argument of Robins et al.

showing ef®ciency of the standard logistic regression estimator applied to data from case±control

studies. Our elaboration of this argument, and of a related one by Bickel et al., includes a constructive

new proof of the result.
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1. Introduction

Logistic regression is widely used for the analysis of data from case±control studies in

epidemiology (Breslow 1996). Two principal reasons for this popularity are that the regression

coef®cients in the logistic model have a desired interpretation in terms of log-odds ratios; and

that odds ratios in models for disease probabilities are estimable from case±control samples.

Anderson (1972) made the remarkable discovery that maximum likelihood estimates of

logistic regression parameters from case±control samples could be obtained by ®tting the

standard logistic regression model to the case±control data, ignoring the outcome-dependent

nature of the sampling and treating case±control status as a `random' outcome variable. His

results were limited, however, by the requirement that the explanatory variables were discrete

so that the joint distribution of outcome and explanatory variables could be speci®ed using a

®nite number of parameters. Prentice and Pyke (1979) removed this restriction and

demonstrated that, whatever the marginal distribution of the explanatory variables, the

regression coef®cients obtained by ®tting the standard logistic model were nonparametric

maximum likelihood estimates (NPMLEs). Further argument is required, however, to

conclude that the NPMLE achieves the ef®ciency bounds of modern semi-parametric theory.

Cosslett (1981) showed that the variance of the NPMLEs of parameters in binary

Bernoulli 6(3), 2000, 447±455

1350±7265 # 2000 ISI/BS



response models achieved a semi-parametric lower bound under case±control sampling. He

speci®cally excluded multiplicative intercept models of which the logistic is the paradigm,

however, because of the non-identi®ability of the intercept. Robins et al. (1994) provided a

proof of semi-parametric ef®ciency for the standard logistic regression coef®cients under

case±control sampling in the course of a treatise on missing data problems. Their

arguments are elaborated further below. Rabinowitz (1997) showed that ef®cient estimates in

non-multiplicative intercept models result if one ®rst enlarges the parameter space to

include a multiplicative intercept term.

Bickel et al. (1993, Section 4.4) considered case±control sampling as the ®rst of four

concrete examples that illustrated their general theory of biased sampling models. They

derived a formula for the ef®cient scores that involved projecting the parametric logistic

regression scores onto the sum of two linear function spaces, one of which is one-

dimensional. Although they noted that this projection can be evaluated explicitly, they stated

that `the formula is uninstructive'. One purpose of this paper is to show that, on the

contrary, calculation of the ef®cient scores for the biased sampling model using the Bickel

et al. approach con®rms that the standard estimator achieves semi-parametric ef®ciency. We

also argue that this calculation could have been avoided entirely had they adopted the more

abstract approach of Robins et al.

2. The standard logit model

Let Y denote a binary outcome variable taking values y � 1 (for diseased) and y � 0 (for

non-diseased) and let Z denote a p-vector of explanatory variables. As a binary response

model we assume the logistic relationship

Pr(Y � yjZ � z) � f (yjz; è) � expfy(á� zTâ)g
1� exp(á� zTâ)

,

where è � (á, âT)T. Nothing is assumed regarding the marginal distribution H of Z except

that it belongs to the collection H of distributions that have densities h with respect to some

measure m. This de®nes a semi-parametric random sampling model Q � (Q (è, H) : è 2 R p�1,

H 2H g. We suppose that the data (yi, zi), i � 1, . . . , n, constitute a random sample from

the joint distribution Q(Y , Z) with density

q(y, z; è, h) � f (yjz; è)h(z): (1)

The scores for the parametric part of the model, _lè � (_lá, _lTâ)T, are given by

_lè � Z efY ÿ E(Y jZ; è)g (2)

where Z e � (1, ZT)T. The `tangent space' of scores for the nonparametric part of the model

equals L0
2(H) � fa � a(Z)jE(a) � 0, var(a) ,1g. Since the parametric scores (2) have

conditional mean zero given Z, they are orthogonal to L0
2(H) and thus are the ef®cient scores

for è in the semi-parametric model where h is unknown. This also follows trivially from

Proposition 2 of Bickel et al. (1993, Section 4.3). Using standard parametric theory (Bickel et

al. 1993, Section 2.4), the ef®cient scores for the odds-ratio parameters â of primary interest are
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l�â � _lâ ÿ Iâá Iÿ1
áá

_lá

� Z ÿ EfZ var(Y jZ)g
Efvar(Y jZ)g

� �
fY ÿ E(Y jZ)g, (3)

where Ièè � E(_lè_lTè) � EfZ e var(Y jZ)(Z e)Tg denotes the Fisher information. The information

for â at Q � Qá,â, H in the model Q is thus given by

I(Qjâ, Q ) � EQ Z ÿ EQfZ varQ(Y jZ)g
EQfvarQ(Y jZ)g

 !
2

varQ(Y jZ)

24 35: (4)

The usual logistic regression coef®cients è̂ � (á̂, â̂T)T, obtained by applying standard

computer programs to the data f(yi, zi), i � 1, . . . , ng, solve the score equations

corresponding to (2), namelyXn

i�1

ze
ifyi ÿ E(Y jZ � zi; è)g � 0: (5)

The in¯uence function and asymptotic variance for â̂ alone are determined by (3) and (4).

Compare with equation (20) of Bickel et al. (1993, p. 111).

3. The biased sampling model

Whereas the standard model assumes random sampling from (Y , Z), the model for the case±

control or retrospective study involves sampling from Z given Y . Speci®cally, suppose that

n1 cases are drawn from the conditional distribution (ZjY � 1) and n0 controls are drawn

from (ZjY � 0). Because separate samples of ®xed size are drawn from two subpopulations,

this set-up does not strictly correspond to the theory developed by Bickel et al. (1993), for

which the observations are independent and identically distributed (i.i.d.). Thus we modify

the usual de®nition of the case±control study slightly so that it involves a simple random

sample of size n from a biased sampling model, as follows. First, select a case or a control

with probabilities ë1 and ë0 � 1ÿ ë1, respectively. Then sample Z from the appropriate

conditional distribution given Y � 1 or Y � 0. A similar modi®ed sampling design was

proposed for choice-based sampling in econometrics by Manski and Lerman (1977) and for

case±control studies in epidemiology by Weinberg and Sandler (1991), who call it the

randomized recruitment design. It is also known as Bernoulli sampling. The essential

difference between it and the usual two-sample retrospective design is that the numbers of

cases and controls, n1 and n0 � nÿ n1, are random variables that result from binomial

sampling with probability ë1. The asymptotic distributions of the resulting estimators are the

same, whether the subsample sizes are regarded as ®xed or random. McNeney (1998)

demonstrates that ef®ciency properties under the i.i.d. set-up also extend to subsamples of

®xed size.

The semi-parametric model P just described is a special case of Example 1 of Bickel et

al. (1993, Section 4.4): P � fPë1,è, H : è 2 R p�1, H 2H g where Pë1,è, H has density
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p(y, z; è, h) � ë y

f (yjz; è)h(z)�
f (yju; è)h(u) dm(u)

(6)

and the marginal probabilities P(Y � y) are ®xed at ë y by the experimenter. The constant

term á is not identi®able in P , which con®rms that á is not estimable from case±control

data, and the ef®cient score l�á is identically zero (Bickel et al. 1993, p. 118). As will be

shown in the next section, this model is strictly contained in Q and can be extended to

P � � Q by allowing ë1 to vary freely in (0,1).

As shown in equation (15) of Bickel et al. (1993, Section 4.4), the ef®cient score for â is

l�â (Y , Z) � ZY ÿ E(ZY )ÿ ACE(ZY jZ, Y ): (7)

Here ACE(:jZ, Y ) denotes the orthogonal projection onto the direct sum of two Hilbert

spaces, L0
2(H) as de®ned earlier and, since Y takes only two values, the one-dimensional

linear space spanned by Y ÿ E(Y ). (All expectations in this section are taken with respect to

the biased sampling distribution P 2 P .) According to Appendix A.4 of Bickel et al. (1993),

especially equations (32)±(37), the projection is given by

ACE (bjZ, Y ) � E(bjZ)ÿ E(b)� ë(b)[Y ÿ E(Y jZ)],

where

ë(b) � E[bfY ÿ E(Y jZ)g]
Efvar(Y jZ)g :

Applying this formula with b(Y , Z) � ZY , we have

ë(b) � E[ZYfY ÿ E(Y jZ)g]
Efvar(Y jZ)g � EfZ var(Y jZ)g

Efvar(Y jZ)g :

Inserting these expressions into (7) yields

l�â � ZY ÿ E(ZY )ÿ Z E(Y jZ)� E(ZY )ÿ EfZ var(Y jZ)g
Efvar(Y jZ)g fY ÿ E(Y jZ)g

� Z ÿ EfZ var(Y jZ)g
Efvar(Y jZ)g

� �
fY ÿ E(Y jZ)g: (8)

The information for â at P � Pá,â, H in the model P is thus given by

I(Pjâ, P ) � EP Z ÿ EPfZ varP(Y jZ)g
EPfvarP(Y jZ)g

� �
2

varP(Y jZ)

" #
: (9)

Comparison of equations (3) and (8) shows that the ef®cient score for â in the random

sampling model Q has exactly the same form as the ef®cient score for â in the biased

sampling model P . Consequently, the information for â also has the same form (equations

(9) and (4)). These are precisely the identities anticipated by Robins et al. (1994) from the

fact that P � and Q correspond to two different parametrizations of the same model. The

only difference is that expectations in the random sampling model are taken with respect to

Q as de®ned in equation (1), whereas expectations in the biased sampling model are taken
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with respect to P as de®ned by equation (6). The scores for one model need not, and

generally will not, have expectation zero under the other model. We next consider in some

detail the arguments of Robins et al.

4. Alternate parametrizations and the Robins et al. approach

The semi-parametric model (1) can be characterized as the set Q of all distributions of

(Y , Z) that have ®nite second moments and for which the logarithm of the odds ratio is a

linear function of Z (Prentice and Pyke 1979). More explicitly, using the well-known

invariance property of the odds ratio (Corn®eld 1951), (1) is equivalent to

OR(z) � f (Y � 1jZ � z) f (Y � 0jZ � 0)

f (Y � 0jZ � z) f (Y � 1jZ � 0)

� f (Z � zjY � 1) f (Z � 0jY � 0)

f (Z � zjY � 0) f (Z � 0jY � 1)
� exp(zTâ): (10)

Writing the joint distribution as the marginal of Y times the conditional of Z given Y , it

follows that the densities of distributions in Q may be re-expressed

q(y, z; è, h) � ð ycy e yzTâ g(z) (11)

where cÿ1
y �

�
exp(yuTâ)g(u) dm(u). The parameters (á, â, h) and (ð, â, g) are related via

ð y � Pr(Y � y) �
�

f [y, u; è(á, â)]h(u) dm(u) and g(z) � h(z)

1� eá�âT z
:

As noted by Prentice and Pyke (1979), (1) and (11) are precisely equivalent, and are also

equivalent to (10), provided that the two sets of parameters are unrestricted. Re-expression of

the densities in the form (11) provides the reparametrization P � of Q obtained by extending

the biased sampling model, as mentioned earlier.

Somewhat more generally (Bickel et al. 1993, Section 3.3), the odds-ratio parameter â
may be viewed as the value of a mapping í : Q ! R p. Robins, et al. correctly point out

that this alone is suf®cient to conclude that the semi-parametric ef®cient scores, in¯uence

function and variance bound for the common interest parameters â are identical regardless

of which equation is used to de®ne the model. Indeed, as shown explicitly in Proposition 2

of Bickel et al. (1993, Section 3.4), the ef®cient in¯uence function ~lâ equals _í(Q), where _í
is the pathwise derivative of í. Regardless of the parametrization, a regular estimator with

this in¯uence function is the semi-parametric ef®cient estimator of â. Consequently, as

argued by Robins et al., if one has demonstrated already that â̂ is semi-parametric ef®cient

for model (1), it follows that â̂ is semi-parametric ef®cient in model (11), and vice versa.

Ef®cient in¯uence functions and estimators are usually not determined by taking

functional derivatives but rather by working with the scores that arise from the semi-

parametric model. The advantage of (1) for random sampling is that the covariates z are

ancillary for è and hence, as noted earlier, ef®cient estimation of â need only consider the

parametric part of the model speci®ed by f (yjz; è). The advantage of the alternate
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parametrization only becomes evident for biased sampling. The biased sampling model (6)

is equivalent to

p(y, z; â, g) � ë ycy e yzTâ g(z), (12)

which is identical to (11) except that ð1 � Pr(Y � 1) is now ®xed at ë1. In fact an

equivalence class of random sampling models (1) with parameters (ã, â, ~h) generates the

same biased sampling model (12). Roeder et al. (1996) calculated explicitly the relationship,

depending on the associated marginal probabilities ð1 and ~ð1, that must hold between two

different members of this class with parameters (á, â, h) and (ã, â, ~h), respectively. One

member has ~ð1 � ë1, the sampling fraction speci®ed by the biased sampling design.

The advantage of the alternate parametrization for biased sampling is that the case±

control indicator y is ancillary for (â, g). Robins et al. (1994) conclude in their Lemma 6.1

that the ef®cient scores, in¯uence functions and variance bounds for â are therefore

identical whether one treats ë1 as a free parameter to be estimated from the data or instead

®xes it at the known true value. (This result is implied more formally by Corollary 1 to

Theorem 4.4.1 of Bickel et al. (1993).) Inferences made about â from the biased sampling

model P (12) therefore are identical to those from the alternate parametrization P � of the

random sampling model (11) applied to the case±control data. As already noted, these are

in turn identical to the inferences made by applying the original model (1) to these same

data. This is the remarkable result ®rst established by Anderson (1972) for discrete Z and

later by Prentice and Pyke (1979) for arbitrary Z through their derivation of â̂ as the

NPMLE in the biased sampling model.

Although we now know already that this must equal (3), the alternate parametrization

also leads to a simple proof of Bickel et al.s formula (our equation (7)) for the ef®cient

score. One readily calculates from (12) that the â score is _lâ � Y [Z ÿ E(ZjY )] and that the

nuisance tangent space is _P 2 � fa(Z)ÿ E[a(Z)jY ] : a(Z)åL0
2(P)g. Following Bickel et al.

(1993, Section 4.4), and using the fact that _lâ is orthogonal to the space spanned by

Y ÿ E(Y ), the projection of _lâ onto _P 2 is simply ACE(_lâjZ, Y ) and the formula follows.

The Appendix contains explicit calculations which con®rm that application of the

estimating equations (2) to the case±control sample leads to a consistent, asymptotically

linear estimate for â whose variance achieves the semi-parametric lower bound. According

to what has been argued above, a `corollary' is the well-known fact (see, for example,

Chamberlain 1987) that the same estimator is consistent, asymptotically linear and ef®cient

under simple random sampling.

Appendix: Consistency, asymptotic linearity and ef®ciency

Throughout this Appendix we make use of the reparametrization Pá,â, H � Qã,â, ~H that equates

the biased sampling model with a speci®c member of the equivalence class of random

sampling models. Suppose the data f(yi, zi), i � 1, . . . , ng are a random sample

from P0 � Pá0,â0, H0
2 P , corresponding to Q0 � Qã0,â0, ~H0

2 Q . Let Pn be the empirical
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distribution of f(yi, zi) : i � 1, . . . , ng, and let D(~è, Pn) be the term of the log-likelihood

corresponding to ~è:

D(~è, Pn) � D(ã, â, Pn) � Pn log f (yjz; ã, â) � 1

n

Xn

i�1

log f (yijzi; ã, â):

De®ne è̂ to be the maximizer of D(~è, Pn) and note that D(~è, Pn) is strictly concave in ~è if

z1, . . . , zn are not all in a linear subspace of R p. It follows from Theorem 7.4.1 of Bickel et

al. (1993, p. 325), that the estimator è̂ satis®es the score equations (5), and is consistent for
~è0 � (ã0, â0), provided that Z is not concentrated on any hyperplane in R p under the

marginal distribution ~H . Hypothesis (2) of the theorem follows from concavity of the

functions in

F � flog f (yjz; ~è) � y(ã� zTâ)ÿ log(1� eã�zTâ) : ~è 2 K � R p�1g

for K compact via Theorem II.1 of Andersen and Gill (1982). Alternatively, it follows from a

standard Glivenko±Cantelli theorem for the class F .

Next we examine the asymptotic linearity of â̂ obtained by solving the system of

equations (5) with è replaced by ~è � (ã, â). These equations can be rewritten as

Xn

i�1

zi yi ÿ expfã̂(â)� zT
i âg

1� expfã̂(â)� zT
i âg

" #
� 0 (13)

and

Xn

i�1

yi ÿ exp(ã� zT
i â)

1� exp(ã� zT
i â)

" #
� 0, (14)

where ã̂(â) solves (14). Dividing equation (14) by n and taking the limit shows that, with

probability one, ë1 �
�

f (1jz; limn ã̂, â) p0(z) dm(z) for any limit point of ã̂ and thus that

ã̂(â)! ã(â) where ã(â) satis®es ë1 �
�

f (1jz; ã(â), â)~h0(z) dm(z). Set ~p(yjz; â) � f (yjz;

ã(â), â). Linearizing the same equation as a function of ã̂ at ã( â̂),

ã̂( â̂)ÿ ã( â̂) �
P

ifyi ÿ ~p(1jzi; â̂)gP
i ~p(1jzi; â̂)~p(0jzi; â̂)

� op(nÿ1=2):

Similarly linearizing equation (13), we ®nd
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0 �
Xn

i�1

zifyi ÿ ~p(1jzi; â̂)g ÿ
Xn

i�1

zi ~p(1jzi; â̂)~p(0jzi; â̂)fã̂( â̂)ÿ ã( â̂)g � op(n1=2)

�
Xn

i�1

zi ÿ
Pn

j�1z j ~p(1jz j; â̂)~p(0jz j; â̂)Pn
j�1 ~p(1jz j; â̂)~p(0jz j; â̂)

8<:
9=;fyi ÿ ~p(1jzi; â̂)g � op(n1=2)

�
Xn

i�1

fzi ÿ Cgfyi ÿ ~p(1jzi; â̂)g � op(n1=2)

�
Xn

i�1

Ø(yi, zi; â̂)� op(n1=2),

where

Ø(Y , Z; â) � (Z ÿ C)fY ÿ ~p(1jZ; â)g
and

C � EfZ var(Y jZ)g
Efvar(Y jZ)g

with var(Y jZ; â) � ~p(1jZ; â)~p(0jZ; â). This shows that â̂ is an asymptotic M-estimator

(Bickel et al. 1993, Sections 7.2, 7.3) with in¯uence function ÿfE _Ø(Y , Z; â0)gÿ1Ø(Y ,

Z; â0), where

_Ø(Y , Z; â0) � @

@âT
Ø(Y , Z; â)jâ�â0

� ÿ(Z ÿ C)~p(1jZ; â0)~p(0jZ; â0)(ZT � @ã=@âT):

Note ®rst that Ø(Y , Z; â0) equals the ef®cient score l�â (Y , Z) for the biased sampling

model as derived in equation (8). Next, since Ef(Z ÿ C) var(Y jZ)g � 0, we have the

expected identity

ÿEf _Ø(Y , Z)g � varØ(Y , Z) � Ef(Z ÿ C) var(Y jZ)(Z ÿ C)Tg:
Thus the in¯uence function for â̂ equals the ef®cient in¯uence function fE(l�â l�T

â )gÿ1l�â and���
n
p

( â̂ÿ â) has an asymptotic normal distribution whose variance attains the semi-parametric

lower bound:

fE(l�â l�T
â )gÿ1 � [Ef(Z ÿ C) var(Y jZ)(Z ÿ C)Tg]ÿ1: (15)
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