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All terminology will be smooth. A submanifold K2n c * > M2n + 2 is taut 

if TTjiU, dU) = 0 for i < n, where U = (Af-neighborhood K). Examples are: non-
singular algebraic hypersurfaces in CPn (this follows from the Lefschetz theorem 
on hyperplane sections), simple knots (see [L] ), the spines (see [M] ). Every co-
dimension-2 homology class contains taut representatives (see [K-M] ), and the set 
of taut submanifolds is closed under connected sum (of pairs) with (Sn x Sn 

d û ^ £2H+2) j a u t submanifolds are "almost canonical" in the sense of [Q], 

and from this viewpoint it is readily seen that if n > 3, every K2n c • M2n + 2 

with i «-connected is concordant to K2n C-L^ M2n + 2 taut. 
If M2n + 2 is simply connected, the homology groups of K2n, taut, are com­

pletely determined by the homology of M2n + 2 except for Bn(K
2n). A lower 

bound on Bn(K) in terms of i#[K2n] and the cohomology ring of M2n + 2 has 
been obtained in [T-W]. In [Fl] we have proven Theorem 1, which provides a 
partial converse to Theorem 2.2 of [T-W] for M s CPn+1 ,n>2 odd, and 
i+[K] = a prime, p, multiple of the generator of H2n(CPn + 1 ; Z). Interestingly, 
if p > 3, the nonsingular algebraic hypersurfaces V are not the simplest taut sub­
manifolds in their homology class, but may be decomposed as V = K # ; 

Sn x Sn, I > 0, for some taut submanifold K. 
We do not know if this is true for n = 1. If it were, there would be sur­

faces imbedded in CP2 with genus smaller than that of the nonsingular algebraic 
hypersurfaces to which they are homologous. This would contradict Thorn's 
conjecture. 

Statement of Theorem 1. Let M2n + 2 be a simply-connected, oriented, 

smooth (2n 4- 2}manifold, nodd> 1. Let x eH2(M2n + 2',Z) generate a free 

summand ofH2(M2n+2 ; Z). Let p be any prime. Set 

5"even = max{4, (cosh(p - 2k)x)(sech(px))(L(M))[M] \0<k <p\ 

7o d d = max{3, (cosh(p - 2k)x)(sech(px))(L(M))[M] |0 < k < p\ 

where L is the Hirzebruch polynomial 

For all integers h> 0, there exists a taut submanifold Kh
 c • M with 

(1) Mnpx = U[Kh], 

AMS (MOS) subject classifications (1970). Primary 57D95; Secondary 57D65. 
Copyright © 1975, American Mathematical Society 

1067 



1068 M. F. FREEDMAN 

and 

Bn(Kh) = âeven + 6Tn(M) - 2Bn(M) + Bn + l(M) 4- 2A, 

if Bn . AM) is even. 
(2) 

= *odd + 67W(M) - 2£„(M) + £„ + 1(M) + 2A, 

if£„+1(Af)/sotta, 

5n(M) = rank i/„(M; Z)/Torsion, r„(M) = rank Hn(M) = rank tf„(M; Z). 

We now state two theorems, proved in [F2], which indicate to what extent 
the diffeomorphism class of a taut submanifold is fixed by Bn(K). 

THEOREM 2. If M2nJr2 is a compact, simply connected, smooth (2n + 2)-
manifold,nodd>3,andK2n <-^-+ M2n + 2 and K2n c - ^ M2n + 2 are n-
connected inclusions of closed submanifolds with (i0)*[K0]

 = Oi)*[^il ^ 
H2n(M2n + 2; Z), then if Bn(K0) = Bn(Kx), K0 is diffeomorphic to Kt. 

THEOREM 3. Assume M2n + 2 is a simply-connected smooth (2n + 2)-mara-
fold, n even, > 2, with Hn(M\ Z) = 0. If i0 and ix are as above, then if the inter­
section pairings on Hn(K0; Z)/Torsion and Hn(K1\ Z)/Torsion are isometric, K0 

is diffeomorphic to Kt. 

If M2n + 2, n odd, > 3, is simply-connected, it follows from Theorem 2 that 
there is a simplest taut submanifold representing i*[K], K0, and every other is of 
the form Kt = KQ #/.copies Sn x Sn. This, together with a previous remark, 
yields a complete classification of taut submanifolds in a homotopy CPn + i ,n 
odd, > 1, representing a prime multiple of the generator of H2n(CPn + * ; Z ). 
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