ON THE CLASSIFICATION OF TAUT SUBMANIFOLDS

BY MICHAEL FREEDMAN

Communicated by Samuel Eilenberg, April 28, 1975

All terminology will be smooth. A submanifold $K^{2n} \stackrel{i}{\smile} M^{2n+2}$ is taut if $\pi_i(U, \partial U) = 0$ for $i \le n$, where U = (M-neighborhood K). Examples are: non-singular algebraic hypersurfaces in $\mathbb{C}P^n$ (this follows from the Lefschetz theorem on hyperplane sections), simple knots (see [L]), the spines (see [M]). Every co-dimension-2 homology class contains taut representatives (see [K-M]), and the set of taut submanifolds is closed under connected sum (of pairs) with $(S^n \times S^n \stackrel{\text{ctandard}}{\longrightarrow} S^{2n+2})$. Taut submanifolds are "almost canonical" in the sense of [Q], and from this viewpoint it is readily seen that if $n \ge 3$, every $K^{2n} \stackrel{i}{\smile} M^{2n+2}$ with i n-connected is concordant to $K^{2n} \stackrel{i}{\smile} M^{2n+2}$ taut.

If M^{2n+2} is simply connected, the homology groups of K^{2n} , taut, are completely determined by the homology of M^{2n+2} except for $B_n(K^{2n})$. A lower bound on $B_n(K)$ in terms of $i_*[K^{2n}]$ and the cohomology ring of M^{2n+2} has been obtained in [T-W]. In [F1] we have proven Theorem 1, which provides a partial converse to Theorem 2.2 of [T-W] for $M \cong CP^{n+1}$, n > 2 odd, and $i_*[K] = a$ prime, p, multiple of the generator of $H_{2n}(CP^{n+1}; Z)$. Interestingly, if p > 3, the nonsingular algebraic hypersurfaces V are not the simplest taut submanifolds in their homology class, but may be decomposed as $V = K \#_{l\text{-copies}}$ $S^n \times S^n, l > 0$, for some taut submanifold K.

We do not know if this is true for n = 1. If it were, there would be surfaces imbedded in \mathbb{CP}^2 with genus smaller than that of the nonsingular algebraic hypersurfaces to which they are homologous. This would contradict Thom's conjecture.

Statement of Theorem 1. Let M^{2n+2} be a simply-connected, oriented, smooth (2n+2)-manifold, n odd > 1. Let $x \in H^2(M^{2n+2}; Z)$ generate a free summand of $H^2(M^{2n+2}; Z)$. Let p be any prime. Set

$$\overline{s}_{\text{even}} = \max\{4, (\cosh(p-2k)x)(\operatorname{sech}(px))(L(M))[M] | 0 < k < p\},$$

$$\overline{s}_{odd} = \max\{3, (\cosh(p-2k)x)(\mathrm{sech}(px))(L(M))[M] | 0 < k < p\},$$

where L is the Hirzebruch polynomial.

For all integers $h \ge 0$, there exists a taut submanifold $K_h \xrightarrow{c} M$ with

$$(1) M \cap px = i_*[K_h],$$

AMS (MOS) subject classifications (1970). Primary 57D95; Secondary 57D65.

and

$$B_{n}(K_{h}) = \overline{s}_{\text{even}} + 6T_{n}(M) - 2B_{n}(M) + B_{n+1}(M) + 2h,$$
if $B_{n+1}(M)$ is even.
$$= \overline{s}_{\text{odd}} + 6T_{n}(M) - 2B_{n}(M) + B_{n+1}(M) + 2h,$$
if $B_{n+1}(M)$ is odd,

$$B_n(M) = \text{rank } H_n(M; \mathbb{Z})/\text{Torsion}, T_n(M) = \text{rank } H_n(M) = \text{rank } H_n(M; \mathbb{Z}).$$

We now state two theorems, proved in [F2], which indicate to what extent the diffeomorphism class of a taut submanifold is fixed by $B_n(K)$.

Theorem 2. If M^{2n+2} is a compact, simply connected, smooth (2n+2)-manifold, n odd ≥ 3 , and $K_0^{2n} \xrightarrow{i_0} M^{2n+2}$ and $K_1^{2n} \xrightarrow{i_1} M^{2n+2}$ are n-connected inclusions of closed submanifolds with $(i_0)_*[K_0] = (i_1)_*[K_1] \in H_{2n}(M^{2n+2}; Z)$, then if $B_n(K_0) = B_n(K_1)$, K_0 is diffeomorphic to K_1 .

THEOREM 3. Assume M^{2n+2} is a simply-connected smooth (2n+2)-manifold, n even, ≥ 2 , with $H_n(M;Z)=0$. If i_0 and i_1 are as above, then if the intersection pairings on $H_n(K_0;Z)$ /Torsion and $H_n(K_1;Z)$ /Torsion are isometric, K_0 is diffeomorphic to K_1 .

If M^{2n+2} , n odd, ≥ 3 , is simply-connected, it follows from Theorem 2 that there is a simplest taut submanifold representing $i_*[K]$, K_0 , and every other is of the form $K_l = K_0 \#_{l\text{-copies}} S^n \times S^n$. This, together with a previous remark, yields a complete classification of taut submanifolds in a homotopy CP^{n+1} , n odd, ≥ 1 , representing a prime multiple of the generator of $H_{2n}(CP^{n+1}; Z)$.

REFERENCES

- [F1] M. Freedman, Surgery on codimension-2 submanifolds (to appear).
- [F2] —, Uniqueness theorems for taut submanifolds (to appear).
- [K-M] M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimension two. I, J. Math. Soc. Japan 24 (1972), 586-608. MR 46 #6369.
 - [Q] F. Quinn, Almost canonical inverse images, Comment. Math. Helv. (1974).
- [L] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244. MR 39 #7618.
- [M] Y. Matsumoto, Knot cobordism and surgery in codimension 2, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 253-317.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720