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EXPLICIT ESTIMATES OF SOLUTIONS OF SOME
DIOPHANTINE EQUATIONS

Robert Juricevic

Abstract: Let k be a fixed non-zero integer, and let x and y be integers such that

y2 = x3 + k.

We show that

log max{|x|, |y|} < min
(c,d)∈S

{c|k|(log |k|)d},

where

S = {(10181 , 4), (1023, 5), (1019, 6)}.
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1. Introduction

Baker [1] established the first explicit estimate for the solutions of the Mordell
equation. In particular, Baker showed for any non-zero integer k, all solutions of
the Mordell equation

Y 2 − X3 = k,

in integers x and y satisfy

log max{|x|, |y|} < 10105 |k|104

.

Following Baker’s work, Hall Jr. [12] advanced the following conjectures based on
extensive computations.

Conjecture 1.1 (Hall Jr.). For every ǫ > 0, there exists a constant c(ǫ) > 0 such
that

0 < |y2 − x3| < c(ǫ)|x|1/2+ǫ

for infinitely many integers x and y.

Conjecture 1.2 (Hall Jr.). For all integers x and y such that y2 6= x3,

|y2 − x3| > (1/5)
√

|x|.
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Conjecture 1.3 (Hall Jr.). For all integers x and y such that y2 6= x3, and for
some absolute constant c > 0,

|y2 − x3| > c
√

|x|.

Danilov [8] showed that

0 < |y2 − x3| < (432
√

2)
√

|x|

for infinitely many integers x and y, and thereby resolved Conjecture 1.1. Despite
more computational evidence in favour of Conjecture 1.2 (see [11]), Elkies [9]
discovered the equation

y2 − x3 = −1641843,

with solution

(x, y) = (5853886516781223, 447884928428402042307918),

where
|y2 − x3|√

x
= (0.0214 . . .) <

1

5
,

and thereby resolved Conjecture 1.2. Conjecture 1.3 remains open.
Stark [20] made the first giant step in the direction of Conjecture 1.3. In

particular, Stark showed that given any ǫ > 0, there exists a constant c(ǫ) > 0
such that

log max{|x|, |y|} < c(ǫ)|k|1+ǫ.

Sprindzuk [19] later showed that Baker’s [2] estimate implies there exists an abso-
lute constant c > 0 such that

log max{|x|, |y|} < c|k|(log |k|)6.

We show that
log max{|x|, |y|} < min

(c,d)∈S
{c|k|(log |k|)d},

where
S = {(10181, 4), (1023, 5), (1019, 6)}.

The main new ingredient in establishing our result is a lemma due to Bombieri
and Cohen [5] which enables us to apply sharp estimates for linear forms in 2
logarithms obtained by Laurent, Mignotte, and Nesterenko [13]. We note that
Bilu and Bugeaud [4] have made use of this lemma for another purpose.

The article is organised as follows. In section 2, we establish an explicit lower
bound for max{|x|, |y|} satisfied by infinitely many integers x and y. In section
3, we establish an explicit upper bound for max{|x|, |y|} assuming the truth of
a conjecture due to Baker. Finally, in section 4, we establish our main stated
explicit upper bound for log max{|x|, |y|}. We remark that the notation of every
conjecture, definition, lemma, and theorem is self contained.
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2. Explicit Lower Bound

In this section we establish an explicit lower bound for the naive height of the
integer solutions of the Mordell equation satisfied by infinitely many integers. We
follow Danilov’s approach using Elkies’ identity.

Theorem 2.1. Let k ∈ Z, k 6= 0. There exist infinitely many integers x and y
such that y2 − x3 = k and

max{|x|, |y|} > (0.1671 . . .)|k|2.

Proof. Since 125v2 − 114v + 26 = u2 has an integer solution (u, v) = (61,−5), it
has infinitely many integer solutions from the theory of Pell’s equation, which we
label (un, vn), n ≥ 1. Let

xn = 3125v2
n − 3000vn + 719,

and let
yn = un(15625v2

n − 15375vn + 3781).

Using Elkies [9] identity

(125t2 − 114t + 26)(15625t2 − 15375t + 3781)2

= (3125t2 − 3000t + 719)3 − 27(2t− 1),

we deduce that
0 < |y2

n − x3
n| = |54vn − 27|.

Since

vn = ±
(

xn + 1

3125

)1/2

+
12

25
,

it follows by the triangle inequality that

|54vn − 27|

=

∣

∣

∣

∣

± 54√
3125

(xn + 1)1/2 +
648

25
− 27

∣

∣

∣

∣

<

(

54

√

2

3125
+

27

25

)

√

|xn|. �

3. Explicit Conjectured Upper Bound

Recently, Baker [3] explored the connections between the abc conjecture, and the
theory of linear forms in logarithms, and due to some computations completed at
ETH Zurich using known abc examples, formulated a version of the abc conjecture
with an explicit constant. In this section we make use of Baker’s explicit abc
conjecture in order to establish an explicit conditional upper bound on the naive
height of the integer solutions of the Mordell equation. In order to apply Baker’s
conjecture, we need a technical result established by Pethö and de Weger.



174 Robert Juricevic

Conjecture 3.1 (Baker [3]). If a, b, c ∈ Z such that a+b+c = 0 and gcd(a, b, c) =
1, then

max{|a|, |b|, |c|} <
6

5

G(log G)w

w!
,

where G =
∏

p|abc p and w is the number of distinct prime factors of abc.

Lemma 3.1. Let a ≥ 0, h ≥ 1, b > (e2/h)h, and x ∈ R be the largest solution of
x = a + b(log x)h. Then x < 2h(a1/h + b1/h log(hhb))h.

Proof. See Pethö and de Weger [18], Lemma 2.2. �

Theorem 3.1. Assume the truth of Conjecture 3.1. Let k be a non-zero integer
and let x and y be integers such that y2 − x3 = k. Then

max{|x|, |y|} < c1(|k|(log |k|)w)3,

where
c1 = (2c2 log( w

√
ec2))

2w + 1/2,

c2 = 10w

(

6

5w!

)1/w

,

and w is the number of distinct prime factors of

x3y2(x3 − y2)

(gcd(x3, y2))3
.

Proof. Assume first that x ≥ 3, y ≥ 3, |k| ≥ 3, and |y − x3/2| < 1/2. Let

d = gcd(x3, y2),

a = y2/d,

b = −x3/d,

c = (x3 − y2)/d,

G =
∏

p|abc

p,

and let w be the number of distinct prime factors of abc. Note that

a + b + c = 0

and
gcd(a, b, c) = 1.

By Conjecture 3.1, and the inequality

G ≤ |xy||k|
d

,
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it follows that

max{|a|, |b|, |c|} <
6

5w!

( |xy||k|
d

)(

log

( |xy||k|
d

))w

.

Multiplying inequalities for |a| and |b| together, we obtain

x <

(

6

5w!

)2

|k|2
(

log

( |xy||k|
d

))2w

. (3.1)

Since |y − x3/2| < 1/2, and |k| = |y − x3/2||2y − (y − x3/2)|, it follows that
|k| < |y| + 1/4. We deduce from y < x3/2 + 1/2 and |k| ≤ |y| that

log

( |xy||k|
d

)

< 5 log x. (3.2)

Substituting (3.2) in (3.1), we deduce

x < 52w

(

6

5w!

)2

|k|2(log x)2w.

It remains to apply Lemma 3.1 and the inequality max{|x|, |y|} < |x|3/2 + 1/2.
Finally, we let M = max{|x|, |y|}, and note that in case

1. x ≥ 3, y ≥ 3, and |y2 − x3| > 1/2, then M < 2|k|.
2. |k| < 3, then, by classical results of Gauss, Euler and Wantzel, M < 6.

3. 0 < x < 3, then M < max{3,
√

|27 + k|}.
4. 0 < y < 3, then M < max{ 3

√

|9 − k|, 3}.
5. y ≤ 0, then by symmetry can use results for y > 0.

6. x ≤ 0, then M < |k|.
�

4. Explicit Upper Bound

In this last section, we explore three different trails branching out from Baker’s
garden with regards to establishing explicit upper bounds for the naive height of
the integer solutions of the Mordell equation. Along one trail, we follow Baker’s
approach, and apply Matveev’s recent refinements for linear forms in n logarithms.
Along the other two trails, we explore Bombieri and Cohen’s lead, already explored
by Bugeaud, and Bilu and Bugeaud in another context, in order to obtain our ex-
plicit upper bounds unconditionally. We group this section into three subsections,
the first of which consists of the preliminary lemmas and definitions, while the sec-
ond consists of the three lemmas, corresponding to the three trails above, which
we use in the last subsection in order to establish our main result.
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4.1. Preliminary Lemmas and Definitions

Lemma 4.1. Let K be an algebraic number field of degree d = r1 + 2r2 = 3, and
let RK and DK denote the regulator and discriminant of K, respectively. Then

RK < (0.0736)
√

|DK|(log |DK|)2.

Furthermore, if |DK| = 108|k|, where |k| ≥ 3 is an integer, then

RK < (24.7)
√

|k|(log |k|)2.

Proof. By Dirichlet’s class number formula,

RK ≤ hKRK =
wK

√

|DK|
2r1(2π)r2

κK.

Suppose r1 = 3 and r2 = 0. Then wK = 2 and (see [15])

κK ≤ 1

8
(log |DK|)2.

It follows that
RK < (0.0314)

√

|DK|(log |DK|)2.
On the other hand, suppose that r1 = 1 and r2 = 1. Then wK = 2 and (see
Louboutin [14])

κK ≤
(

e log |DK|
2(d − 1)

)d−1

.

It follows that
RK < (0.0736)

√

|DK|(log |DK|)2.
Let |DK| = 108|k|. Then

(0.0736)
√

|DK|(log |DK|)2

= (0.0736)
√

108(log 108 + 1)2|k|(log |k|)2

< (24.7)|k|(log |k|)2. �

Definition 4.1. Let K be an algebraic number field, α ∈ K. The minimal polyno-
mial of α is

f(X) =

d
∑

j=0

ajX
j = ad

d
∏

j=1

(X − α(j))

where f(X) is non-zero and of smallest degree which has α as a root, has coprime
coefficients, and has positive leading coefficient.

Definition 4.2. The Mahler measure of α is

M(α) = |ad|
d
∏

j=1

max{1, |α(j)|}.
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Definition 4.3. The absolute logarithmic Weil height of α is

h(α) =
1

d
log M(α).

Lemma 4.2. Let K be an algebraic number field of degree d ≥ 2. There exists in
K a fundamental system of units η1, . . . , ηr with the following properties:

r
∏

j=1

h(ηj) ≤ c1RK, (4.1)

h(ηj) ≤ c2RK, (4.2)

|(eij)1≤i,j≤r | ≤ c3, (4.3)

where eij are the entries of the inverse matrix of (log |η(i)
j |)1≤i,j≤r, and for every

non-zero α ∈ OK, not a root of unity, and every integer m ≥ 1, there exists a unit
η such that

M(ηmα) ≤ |NK(α)|1/d exp(mc4RK), (4.4)

where NK(α) is the norm of α, c1 = (r!)2/(2r−1dr), c2 = c1(λ(d))1−r , c3 =
c1d

r−1/λ(d), c4 = rr+1(dλ(d))−(r−1)/2, and where λ(d) > 0 is any of the ex-
isting functions of d which satisfy the inequality h(α) > λ(d). In particular, we use
Voutier’s estimate, and take λ(d) = 2/(d(log 3d)3).

Proof. See Bugeaud and Györy, [6], and Voutier [21], Corollary 2, page 84. �

Definition 4.4. Let α1, . . . , αn denote n ≥ 2 non-zero algebraic numbers, K =
Q(α1, . . . , αn), D = [K : Q], b1, . . . , bn denote rational integers, and let

Λ = b1 log α1 + · · · + bn log αn,

where log α1, . . . , log αn are the principal values of the logarithms.

Lemma 4.3. If Λ 6= 0, then

log |Λ| > −c(n, χ)D2 log(eD)Ω log(eB),

where B = max1≤j≤n{|bj|}, Aj , j = 1, . . . , n are positive real numbers such that
log Aj ≥ max{Dh(αj), | log αj |, 0.16}, Ω =

∏n
j=1 log Aj ,

χ =

{

1 if K ⊆ R,
2 otherwise,

and

c(n, χ) = min{ (en/2)χ30n+3n3.5

χ
, 26n+20}.

Proof. See Matveev [17], Corollary 2.3. �
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Lemma 4.4. Suppose that α1 and α2 are multiplicatively independent algebraic
numbers, b1, b2 are positive integers, and Λ = b2 log α2 − b1 log α1. Further, let
D′ = [Q(α1, α2) : Q]/[R(α1, α2) : R], A1, A2 be real numbers greater than 1 such
that log Ai ≥ max{h(αi), | log αi|/D′, 1/D′}, i = 1, 2, and b′ = b1

D′ log A2
+ b2

D′ log A1
.

If Λ 6= 0, then

log |Λ| ≥ −30.9(D′)4 log A1 log A2(max{log b′, 21/D′, 1/2})2.

Proof. See Laurent, Mignotte, and Nesterenko [13], Corollary 1. �

Lemma 4.5. If 0 ≤ θ < 1 and z ∈ C such that |z − 1| ≤ θ, then

| log z| ≤ 1

1 − θ
|z − 1|,

where log z denotes the principal part of the complex logarithm.

Proof. This is Exercise 1.1 (b), [22]. �

Definition 4.5. Let A > e be a positive real number. We define f(x, y) =
∑3

i=0 aix
iy3−i to be a monic irreducible binary cubic form with nonzero discrimi-

nant, and integer coefficients |ai| ≤ A.

Lemma 4.6. Let ni, di, gi, i = 1, . . . , τ be rational integers, let T = |
∑τ

i=1 dini|,
and let λi, i = 1, . . . , τ be positive real numbers with

∏τ
i=1 λi = 1. Let U, V, W be

positive integers with V > maxλτ
i , and W ≥ 2TUV.

Define ∆ =
√

1 +
∑τ

i=1(diλi)2V −2/τ . Further, let q1 be a rational prime number.

Then there are rational integers v∗ ≥ 2, gcd(v∗, q1) = 1, 1 ≤ p0 < 2UV ∆, and
pi, i = 1, . . . , τ and a rational number w with |w| ≤ 1 such that

ni − v∗pi = v∗(p0
ni

W
− pi) + w

ni

v∗ + w
,

∑τ
i=1 dipi = 0,

∑τ
i=1 gipi ≡ 0 mod U, W/p0 − 1 < v∗ ≤ W/p0 + 1, and

|p0
ni

W
− pi| ≤ λiV

−1/τ .

Proof. See Bombieri and Cohen [5], Lemma 6.1. �

Lemma 4.7. Let α1, α2, . . . , αn be non-zero algebraic numbers in an algebraic
number field K of degree D over the rationals. Let w(K) denote the number of
roots of unity in K and define λ(D) as in Lemma 4.2. Suppose that there are
rational integers b1, b2, . . . , bn, not all zero, such that

n
∏

i=1

αbi

i = 1.
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Then there are integers q1, q2, . . . , qn, not all zero, such that

n
∏

i=1

αqi

i = 1,

and for k = 1, . . . , n

|qk| ≤ (n − 1)!w(K)
∏

j 6=k

(Dh(αj)/λ(D)).

Proof. See [16], Theorem 3A. �

4.2. Three Fundamental Lemmas

The first lemma corresponds to the Baker approach using Matveev’s estimate for
linear forms in n logarithms.

Lemma 4.8. Let f(x, y) =
∏3

j=1(x − α(j)y) be defined by Definition 4.5, R′ =

max1≤j≤3 RK(j) where RK(j) is the regulator of K(j) = Q(α(j)), and let m 6= 0 be
an integer. Then all solutions in integers x and y of the Thue equation

f(x, y) = m (4.5)

satisfy

max{|x|, |y|} < (A + 1 + |m|)X0(2X2)
X1 (log[X0(X1X2)

X1 ])X1 ,

where

X0 = 3
√

2|m|28(A + 1)7,

X1 = (14 × 1015)R′(log(4(A + 1)2) + (44/3)R′),

X2 = 22e(44R′ + log[(A + 2)(A + 1 + |m|)] + 1).

Proof. By changing signs if necessary, we may assume that x and y are non-
negative. In case xy = 0 we obtain a stronger bound. Let

f(x, y) =

3
∏

j=1

β(j) = NK(β(j)),

where β(j) = x − α(j)y, K(j) = Q(α(j)), [K(j) : Q] = 3, K = Q(α(1), α(2), α(3)),

[K : Q] ≤ 6, and let η
(j)
1 , . . . , η

(j)
r denote a system of fundamental units of K(j).

Note that for all integer solutions of equation (4.5), the element β(j) ∈ OK(j) has
a fixed norm, for each j = 1, 2, 3. Therefore, by Lemma 4.2, multiplying β(j) by a
suitable unit η(j) of O

K(j) gives a number γ(j) whose Mahler measure is bounded
in terms of RK(j) . More precisely, Lemma 4.2 implies for γ(j) = β(j)η(j) that

M(γ(j)) < exp(22RK(j)). (4.6)
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We now consider the equations

β(j) = x − α(j)y, j = 1, 2, 3. (4.7)

Equations (4.7) with j = 1, 2 imply

y =
β(2) − β(1)

α(1) − α(2)
. (4.8)

Substituting equation (4.8) into equations (4.7) with j = 1, 3, implies

β(3) = x − α(3)y

= β(1) +
α(1)(β(2) − β(1))

α(1) − α(2)
− α(3)(β(2) − β(1))

α(1) − α(2)
,

from which we easily deduce the linear dependence relation between the β(j)’s used
by Siegel, namely

(α(1) − α(2))β(3) − (α(3) − α(2))β(1) − (α(1) − α(3))β(2) = 0. (4.9)

Without loss of generality, we let

β(1) = min
1≤j≤3

|β(j)|.

Dividing equation (4.9) by (α(1) − α(3))β(2), we obtain

z − 1 =
(α(3) − α(2))β(1)

(α(1) − α(3))β(2)
. (4.10)

where for some integers b1, . . . , br,

z =
(α(1) − α(2))β(3)

(α(1) − α(3))β(2)

= αr+1

r
∏

j=1

α
bj

j , (4.11)

αj = η
(2)
j /η

(3)
j , j = 1, . . . , r, (4.12)

and

αr+1 = ± (α(1) − α(2))γ(3)

(α(1) − α(3))γ(2)
. (4.13)

Since
NK((α(i) − α(j))) ≥ 1,

and

|α(i)| <

(

1

1 − |α(i)|−1

)

A
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provided |α(i)| > 1, we deduce by the triangle inequality for i 6= j, 1 ≤ i, j ≤ 3,
that

[2(A + 1)]−5 < |α(i) − α(j)| < 2(A + 1). (4.14)

Furthermore, by the triangle inequality, we deduce for j = 2, 3 that

|β(j)| > 2−6(A + 1)−5|y|, (4.15)

provided
|y| ≥ 26(A + 1)5|m|, (4.16)

and we observe that

|β(1)| ≤ |m|
|β(2)||β(3)| . (4.17)

Substituting (4.14), (4.15), and (4.17) in (4.10), it follows that

|z − 1| < 224(A + 1)21|y|−3|m|, (4.18)

provided (4.16), and hence that |z − 1| < 1/2 provided

|y| ≥ 256 3
√

2|m|(A + 1)7. (4.19)

By Lemma 4.5 we have that

|z − 1| ≥ 1

2
|Λ|, (4.20)

where

Λ = log z =

r
∑

j=1

bj log αj + br+1 log αr+1 + br+2 log αr+2, (4.21)

bj , j = 1, . . . , r are defined by (4.11), αj , j = 1, . . . , r are defined by (4.12), αr+1 is
defined by (4.13), br+1 = 1, αr+2 = −1, and br+2 is an even integer. Since z 6= 1,
it follows that Λ 6= 0, and by Lemma 4.3 we deduce

log |Λ| > −c(r + 2, χ)D2 log(eD)Ω log(eB), (4.22)

where

B = max
1≤j≤r+2

|bj |,

D = [Q(α1, . . . , αr+2) : Q],

Ω =
r+2
∏

j=1

max{Dh(αj), | log |αj ||, 0.16},

c(r + 2, χ) = min{ (e(r + 2)/2)χ30r+5(r + 2)3.5

χ
, 26r+32}.

Inequalities (4.20) and (4.22) together imply

|z − 1| >
1

2
exp(−c(r + 2, χ)D2 log(eD)Ω log(eB)). (4.23)
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Combining (4.18) with (4.23) implies

|y| < 3
√

2|m|28(A + 1)7 exp((c(r + 2, χ)/3)D2 log(eD)Ω log(eB)), (4.24)

provided (4.19). By definition,

c(r + 2, χ) < 2 × 1013, (4.25)

and
D ≤ 6. (4.26)

By the properties of the absolute logarithmic Weil height and Lemma 4.2, it follows
that

Ω ≤ 30.37R′(2 log[2(A + 1)] + (44/3)R′). (4.27)

By (4.6), the inequalities

|β(i)| ≤ (A + 2)max{|x|, |y|},
max{|x|, |y|} ≤ (A + 1 + |m|)|y|,

and Lemma 4.2, it follows that

B < 22(44R′ + log[(A + 2)(A + 1 + |m|)|y|]). (4.28)

Substituting (4.25), (4.26), (4.27), and (4.28), in (4.24), we deduce that

|y| < X0 exp(X1 log X ′
1),

provided (4.19), where X0 and X1 were defined at the outset, and

X ′
1 = 22e(44R′ + log[(A + 2)(A + 1 + |m|)] + log |y|).

Since |y| ≥ 3, we note that
X ′

1 < X2 log |y|,
where X2 was defined at the outset, and hence that

|y| < X0X
X1
2 (log |y|)X1 .

Since the smallest regulator of any number field is 0.2052 (see [10]), we may apply
Lemma 3.1 in order to deduce

|y| < X0(2X2)
X1(log[X0(X1X2)

X1 ])X1 ,

provided (4.19). It remains to note that in case (4.19) is false we obtain a stronger
bound. �

The second lemma corresponds to the Bugeaud approach, following Cohen’s
direction.
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Lemma 4.9. Let f(x, y) be defined by Definition 4.5, f(α, 1) = 0, K = Q(α),
d = [K : Q], RK be the regulator of K, and let m 6= 0 be an integer. Then all
solutions in integers x, y of the Thue equation

f(x, y) = m

satisfy
log max{|x|, |y|} ≤ c1(A, m, d, RK) + c2(d, RK),

where

c1(d, RK, A, m) = 1022dd10dd3d(log d)8dRK log[(A + 1)|m|],
c2(d, RK) = 1045dd20dd8d(log d)16dR2

K
.

Proof. This follows directly from Bugeaud [7], Theoréme 3, with r ≤ d, the height
of α less than A + 1, and the height of m equal to |m|. �

Finally, the third lemma corresponds to the Baker, Bilu and Bugeaud ap-
proach, using Laurent, Mignotte, and Nesterenko’s estimate for linear forms in 2
logarithms.

Lemma 4.10. Let f(x, y) =
∏3

j=1(x − α(j)y) be defined by Definition 4.5, R′ =

max1≤j≤3 RK(j) where RK(j) is the regulator of K(j) = Q(α(j)), and let m 6= 0 be
an integer. Then all solutions in integers x and y of the Thue equation

f(x, y) = m

satisfy

log max{|x|, |y|} < log(A + 1 + |m|) + 4(
√

a +
√

b log(4b))2,

where

a = log c1,

b = c2c3(max{1, 6 log(2(A + 1 + |m|)), R′})2,
c1 = 3

√

2|m|28(A + 1)7,

c2 = (30.9/3)64(3(3
√

2 + 1/160)(16/3 + 1 + 44) + π)×
(3(3

√
2 + 1/32)(16/3 + 1 + 44) + π),

c3 = (max{1 + log c4, 21})2,
c4 = (c5/c6) + (1/c7),

c5 = 176(44 + 2) + 1,

c6 = 3(3
√

2 + 1/32)(16/3 + 1 + 44) + π,

c7 = (3(3
√

2 + 1/160)(16/3 + 1 + 44) + π)max{1, 6 log(2(A + 1 + |m|)), R′}.
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Proof. We recall the setup and notation of the proof of Lemma 4.8, and the def-

initions αj =
η
(2)
j

η
(3)
j

, j = 1, . . . , r, αr+1 = ± (α(1)−α(2))γ(3)

(α(1)−α(3))γ(2) , αr+2 = −1. Furthermore,

with respect to the notation in Lemma 4.6, and the notation of the proof of Lemma
4.8, let

ni = bi, i = 1, . . . , r + 2,

di =

{

1 if bi ≥ 0,
−1 otherwise,

gi ∈ Z,

T =

r+2
∑

i=1

|bi|,

λi =

{

1/T i = 1, . . . , r + 1,
T r+1 i = r + 2,

U = 1,

V = 20T (r+1)(r+2),

W = 2TUV,

∆ =

√

√

√

√1 +

r+2
∑

i=1

(diλi)2V −2/(r+2),

q1 ∈ {2, 3, 5, 7, . . .}.

By Lemma 4.6, there are rational integers

v∗, p0, p1, p2, . . . , pr+2,

and a rational number w such that v∗ ≥ 2, gcd(v∗, q1) = 1, 1 ≤ p0 < 2UV ∆,
|w| ≤ 1,

ni − v∗pi = v∗(p0
ni

w
− pi) + w

ni

v∗ + w
,

∑r+2
i=1 dipi = 0,

∑r+2
i=1 gipi ≡ 0 mod U,

W

p0
− 1 < v∗ ≤ W

p0
+ 1,

and
|p0

ni

W
− pi| ≤ λiV

−1/(r+2).

We define
I = αp1

1 · · ·αpr+2

r+2 ,

J = αb1−v∗p1

1 · · ·αbr+2−v∗pr+2

r+2 ,

and
Λ = log J + v∗ log I.
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We note that Λ 6= 0. We assume first that I and J are multiplicatively independent
algebraic numbers. In particular, not all pi are zero. It follows by Lemma 4.4 that

log |Λ| = log | log J − v∗ log I−1|
≥ −30.9(D′)4 log A1 log A2(max{log b′, 21/D′, 1/2})2,

where D′ = [Q(I−1, J) : Q]/[R(I−1, J) : R], A1, A2 are positive real numbers such
that

log A1 ≥ max{h(I−1), | log I−1|/D′, 1/D′},
log A2 ≥ max{h(J), | log J ||/D′, 1/D′},

and

b′ =
v∗

D′ log A2
+

1

D′ log A1
.

From the proof of Lemma 4.8, for sufficiently large y, we deduce that

|y| (4.29)

< 3
√

2|m|28(A + 1)7 exp((30.9/3)(D′)4 log A1 log A2(max{log b′, 21/D′, 1/2})2).

Since I−1, J ∈ Q(α(1), α(2), α(3)), we have that

1 ≤ D′ ≤ 6. (4.30)

We proceed to determine log A1 and log A2. Since h(I) = h(I−1),

max{h(I−1), | log I−1|/D′, 1/D′} = max{h(I), | log I|/D′, 1/D′}.

Moreover, it follows from well known inequalities between sizes and heights (see
[22]) that

| log I| ≤ | log |I|| + π

≤ | log max{den(I), house(I)}|+ π

= |s(I)| + π

≤ deg(I)h(I) + π,

and a priori that

| log I|
D′

≤ den(I)h(I)

D′
+

π

D′
≤ h(I) + π.

Hence,

max{h(I), | log I|/D′, 1/D′} ≤ max{h(I) + π, 1} = h(I) + π.

Similarly,
max{h(J), | log J |/D′, 1/D′} ≤ h(J) + π.
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Plainly,

h(I) ≤
r+2
∑

i=1

|pi|h(αi),

and

h(J) ≤
r+2
∑

i=1

|bi − v∗pi|h(αi).

Notice h(αr+2) = 0. By Lemma 4.2, we deduce for i = 1, . . . , r that

h(αi) ≤ 2

(

(r!)2

2r−1dr

(

2

d(log(3d))3

)1−r
)

R′,

from which it follows for i = 1, . . . , r that

h(αi) ≤ (8/3)R′.

By the properties of the logarithmic Weil height and the bound on the Mahler
height of γ(j) implied by Lemma 4.2, we deduce

h(αr+1) ≤ 2(max
i6=j

h(α(i) − α(j)) + max
j

h(γ(j))

h(α(i) − α(j)) ≤ 3 log[2(A + 1)]

h(γ(j)) ≤ log exp(22R′),

and hence
h(αr+1) ≤ 2(3 log[2(A + 1)] + 22R′).

Furthermore, for i = 1, . . . , r + 1,

|bi − v∗pi| ≤ v∗|p0
bi

W
− pi| +

|w||bi|
|v∗ + w|

≤ v∗λiV
−1/(r+2) +

|w||bi|
|v∗ + w| ,

and

|pi| =

∣

∣

∣

∣

bi − bi + v∗pi

v∗

∣

∣

∣

∣

≤ |bi|
v∗

+ λiV
−1/(r+2) +

|w||bi|
v∗|v∗ + w| .

We may assume p0 > V , for otherwise

|pi| ≤ |p0
bi

W
− pi| + |p0

bi

W
|

≤ λiV
−1/(r+2) + 1/2

≤ 1/
4
√

20 + 1/2

< 1,



Explicit estimates of solutions of some Diophantine equations 187

which implies pi = 0 for all i = 1, . . . , r + 2, a contradiction to our assumption
that I and J are multiplicatively independent. It follows that

v∗ <
W

p0
+ 1

<
2TUV

V
+ 1

= 2T + 1.

Moreover, since T ≥ 2, for i = 1, . . . , r + 1,

v∗λiV
−1/(r+2) <

2T + 1

20T 3

≤ 1/32,

while
λiV

−1/(r+2) ≤ 1/160.

On the other hand,

|bi|
v∗

< T/v∗

< ∆(1 + 1/v∗)

≤ (3/2)
√

2,

|w||bi|
|v∗ + w| ≤

T

v∗ − 1

<

(

v∗ + 1

v∗ − 1

)

∆

≤ 3
√

2,

and
|w||bi|

v∗|v∗ + w| ≤ (3/2)
√

2.

We set

log A1 = (3(3
√

2 + 1/160)(16/3 + 1 + 44) + π)max{1, 6 log[2(A + 1) + |m|], R′},
log A2 = (3(3

√
2 + 1/32)(16/3 + 1 + 44) + π)max{1, 6 log[2(A + 1) + |m|], R′}.

Furthermore, we note that

b′ ≤ 2T + 1

log A2
+

1

log A1
,

and
T ≤ 4B,
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where we recall that

B < 22(44R′ + log(A + 2) + log(A + 1 + |m|) + log |y|).

For y sufficiently large, it follows that

(max{log b′, 21/D′, 1/2})2 < (max{1 + log c4, 21} log log |y|)2,

where c4 was defined in the statement of this Lemma. It follows from (4.29) that
for y sufficiently large (quantified by (4.19)),

|y| < c1 exp(c2c3(max{1, 6 log[2(A + 1) + |m|], R′})2(log log |y|)2),

where c1, c2, and c3 were defined in the statement of this Lemma. It remains to
apply Lemma 3.1 in order to deduce our result. As before, in case (4.19) is false,
we obtain a stronger bound.

We are left to consider the case that I and J are multiplicatively dependent. In
this case there exist integers s and t, not both zero, such that IsJ t = 1. Suppose
first that t 6= 0. Note that s/t 6= v∗, and log I 6= 0, as otherwise we obtain a
contradiction with v∗ log I + log J 6= 0 on one hand, and (s/t) log I + log J = 0 on
the other hand. Since J = I−s/t, we deduce that

|y|3 < 225(A + 1)21|m| |t|
| log I||v∗t − s| .

By Lemma 4.7, we may bound |t| in order to obtain a stronger bound in comparison
to (4.29). Suppose now that t = 0. Then s 6= 0, so that I = 11/s = 1, and
| log J | 6= 0, from which we deduce the stronger bound

|y|3 < 225(A + 1)21|m| 1

| log J | . �

4.3. Main Theorem

In this section we put the pieces of the last section together in order to obtain our
main result.

Theorem 4.1. Let k be a fixed non-zero integer, and let x and y be integers such
that y2 = x3 + k. Then

log max{|x|, |y|} < min
(c,d)∈S

{c|k|(log |k|)d},

where
S = {(10181, 4), (1023, 5), (1019, 6)}.

Proof. In case |k| < 3, it follows by classical arguments of Euler, Gauss, and
Wantzel that log max{|x|, |y|} ≤ log 5. We assume |k| ≥ 3. Baker [1] shows that
the binary form

f(X, Y ) = X3 − 3xXY 2 − 2yY 3
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of discriminant
Df = −27(−2y)2 − 4(−3x)3 = −108k,

is equivalent (f ∼ F for some integers p, q, r, s, ps− qr = ±1) to a reduced binary
cubic form

F (X, Y ) = a3X
3 + a2X

2Y + a1XY 2 + a0Y
3,

in which a3 6= 0 and each coefficient has absolute value at most
√

108|k|. Using
the identities

f(pX ′ + qY ′, rX ′ + sY ′) = F (X ′, Y ′),

and
±f(X, Y ) = F (sX − qY,−rX + pY ),

Baker [1] obtains
a3s

3 − a2s
2r + a1sr

2 − a0r
3 = ±1, (4.31)

±3x = 3(a0rp
2 − a3sq

2) + 2pq(a2s − a1r) + a2rq
2 − a1sp

2,

and
±2y = a3q

3 − a2pq2 + a1p
2q − a0p

3,

from which he deduces that

3|x| ≤ 12
√

108|k|max{|r|, |s|}(2
√

108|k|max{|r|, |s|}2)2, (4.32)

and
2|y| ≤ 4

√

108|k|(2
√

108|k|max{|r|, |s|}2)3. (4.33)

By inequalities (4.32) and (4.33), we deduce

max{|x|, |y|} ≤ 16(108|k|)2 max{|r|, |s|}6. (4.34)

In case the left hand side of equation (4.31) is reducible, Baker obtains

max{|r|, |s|} ≤ 6(108|k|)7/2. (4.35)

Substituting (4.35) in (4.34), we obtain

max{|x|, |y|} ≤ 16(108|k|)2(6(108|k|)7/2)6 < 5 × 1052|k|23,

from which we deduce

log max{|x|, |y|} < 2791 log |k|. (4.36)

On the other hand, in case the left hand side of equation (4.31) is irreducible, we
apply Lemma 4.8, Lemma 4.9, and Lemma 4.10, to

(a3s)
3 − a2(a3s)

2r + a1a3(a3s)r
2 − (a0a

2
3)r

3 = ±a2
3,

in order to deduce three bounds for

log max{|a3s|, |r|}
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from which we deduce our desired result from (4.34), or more precisely, since
|a3| ≥ 1, from

log max{|x|, |y|} ≤ log 16 + 2 log(108|k|) + 6 log max{|a3s|, |r|}. (4.37)

It remains to establish our three bounds. We set A = (108|k|)3/2, and note
|m| ≤ 108|k|, and R′ < (24.7)

√

|k|(log |k|)2. By Lemma 4.8,

max{|a3s|, |r|} < (A + 1 + |m|)X0(2X2)
X1(log[X0(X1X2)

X1 ])X1 ,

where X0, X1, and X2 are all defined in the statement of Lemma 4.8. Note

A + 1 + |m| < exp(ξ1 log |k|),

where

ξ1 = log[1083/2 + 1 + 108] + 3/2

= 8.615 . . . ,

X0 < exp(ξ2 log |k|),
where

ξ2 = log[ 3
√

2(108)28((108)3/2 + 1)7] + (1/3 + 21/2)

= 67.338 . . . ,

X1 < ξ3|k|(log |k|)4,
where

ξ3 = (14 × 1015)(24.7)(log[4((108)3/2 + 1)2] + 3 + (44/3)(24.7))

= (1.31 . . .) × 1020,

and
X2 < ξ4

√

|k|(log |k|)2,
where

ξ4 = 22e(44(24.7) + log[(1083/2 + 2)(1083/2 + 1 + 108)] + 3 + 1)

= (6.60 . . .) × 104.

It follows that

(2X2 log[X0(X1X2)
X1 ])X1 < exp(ξ5|k|(log |k|)5),

where

ξ5 = ξ3(log 2 + log ξ4 + 1/2 + 2 + log ξ2 + 1 + log ξ3 + 1 + 4+

log(log ξ3 + 1 + 4 + log ξ4 + 1/2 + 2) + 1)

= (1.00 . . .) × 1022.
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Hence,
max{|a3s|, |r|} < exp(ξ6|k|(log |k|)5),

where

ξ6 = ξ1 + ξ2ξ5

= (1.00 . . .) × 1022.

From (4.37) we deduce

log max{|x|, |y|} < ξ7|k|(log |k|)5,

where

ξ7 = log 16 + 2 log 108 + 2 + 6ξ6

= (6.00 . . .) × 1022.

On the other hand, by Lemma 4.9, we deduce that

max{|a3s|, |r|} < ξ10|k|(log |k|)4,

where

ξ8 = 1022(3)310(3)33(3)(log 3)8(3)

= (9.56 . . .) × 1086,

ξ9 = 1045(3)320(3)38(3)(log 3)16(3),

= (6.66 . . .) × 10179,

ξ10 = ξ8(log[108(1083/2 + 1)] + 5/2) + ξ9,

= (6.66 . . .) × 10179.

From (4.37) we deduce

log max{|x|, |y|} < ξ11|k|(log |k|)4,

where

ξ11 = log 16 + 2 log 108 + 2 + 6ξ10

= (3.99 . . .) × 10180.

Finally, by Lemma 4.10,

log max{|a3s|, |r|} < log[(108|k|)3/2 + 1 + 108|k|] + 4(
√

a +
√

b log[4b])2,

where a and b are defined in the statement of Lemma 4.10. We deduce

a < ξ12 log |k|,
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where

ξ12 = log( 3
√

2(108)28((108)3/2 + 1)7) + (1/3 + 21/2)

= 67.33 . . . ,

b < ξ13|k|(log |k|)4,
where c2 and c3 are defined in the statement of Lemma (4.10), and

ξ13 = c2c3(24.7)2,

and
log[(108|k|)3/2 + 1 + 108|k|] < ξ14 log |k|,

where

ξ14 = log((108)3/2 + 1 + 108) + 3/2

= 8.61 . . . .

It follows that
log{|a3s|, |r|} < ξ15|k|(log |k|)6,

where

ξ15 = ξ14 + 4(
√

ξ12 +
√

ξ13(log(4ξ13) + 1 + 4))2

= (8.37 . . .) × 1017.

From (4.37) we deduce

log max{|x|, |y|} < ξ16|k|(log |k|)6,

where

ξ16 = log 16 + 2 log 108 + 2 + 6ξ15

= (5.02 . . .) × 1018. �
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