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FULLY NON-LINEAR ELLIPTIC EQUATIONS ON
COMPACT HERMITIAN MANIFOLDS

Gábor Székelyhidi

Abstract

We derive a priori estimates for solutions of a general class of
fully non-linear equations on compact Hermitian manifolds. Our
method is based on ideas that have been used for different spe-
cific equations, such as the complex Monge–Ampère, Hessian and
inverse Hessian equations. As an application we solve a class of
Hessian quotient equations on Kähler manifolds assuming the ex-
istence of a suitable subsolution. The method also applies to anal-
ogous equations on compact Riemannian manifolds.

1. Introduction

Let (M,α) be a compact Hermitian manifold of dimension n, and fix
a real (1, 1)-form χ. For any C2 function u : M → R we obtain a new
real (1, 1)-form g = χ+

√
−1∂∂u, and we can define the endomorphism

of T 1,0M given by Aij = αip̄gjp̄. This is a Hermitian endomorphism
with respect to the metric α. We consider equations for u that can be
written in the form

(1) F (A) = h,

for a given function h on M , where

(2) F (A) = f(λ1, . . . , λn)

is a smooth symmetric function of the eigenvalues of A. Such equations
have been studied extensively in the literature, going back to the work
of Caffarelli–Nirenberg–Spruck [5] on the Dirichlet problem in the real
case, when α is the Euclidean metric and M is a domain in Rn.

We assume that f is defined in an open symmetric cone Γ ( Rn, with
vertex at the origin, containing the positive orthant Γn. In addition,

(i) fi > 0 for all i, and f is concave,
(ii) sup∂Γ f < infM h,

(iii) For any σ < supΓ f and λ ∈ Γ we have limt→∞ f(tλ) > σ.
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Assumption (ii) ensures that the relevant level sets of f do not inter-
sect the boundary of Γ. Assumption (iii) is satisfied by many natural
equations, for instance, if f is homogeneous of degree 1 and f > 0 in Γ.

Definition 1. We say that a smooth function u is a C-subsolution of
(1), if the following condition holds. At each x ∈ M , define the matrix
Bi
j = αip̄(χjp̄ + ∂j∂p̄u). Then we require that for each x ∈M the set

(3) {λ′ ∈ Γ : f(λ′) = h(x) and λ′ − λ(B(x)) ∈ Γn}

is bounded, where λ(B(x)) denotes the n-tuple of eigenvalues of B(x).

In Section 2, we will describe the relationship between this notion
and that introduced by Guan [20]. Our main result is the following.

Theorem 2. Suppose that u is a solution, and u is a C-subsolution
of Equation 1. If we normalize u so that supM u = 0, then we have an
estimate ‖u‖C2,α < C, where C depends on the given data M,α, χ, h,
and the subsolution u.

Note that the main result of Guan [20] is a similar estimate on Rie-
mannian manifolds, but there the constant C depends, in addition, on a
C1-bound for u. In the Riemannian case this C1-bound can be obtained
under certain extra assumptions, as shown in [20], using work of Li [29]
and Urbas [45]. In addition, the subsolution condition in [20] is more
restrictive than ours. As we will discuss in Section 8, our methods apply
with almost no change to the Riemannian case as well, resulting in an
estimate analogous to Theorem 2.

We first prove a C0-estimate, generalizing the approach of Blocki [2],
using the Alexandroff–Bakelman–Pucci maximum principle, in the case
of the complex Monge–Ampère equation. For higher order estimates we
use the method that was employed in the case of the complex Hessian
equations. In other words a C1-bound is derived by combining a second
derivative bound of the form

(4) sup |∂∂u| ≤ C(1 + sup |∇u|2),

due to Hou–Ma–Wu [25] in the case of the Hessian equation, with
a blowup argument and Liouville-type theorem due to Dinew-Kolo-
dziej [11]. The gradient bound combined with (4) then bounds |∂∂u|, at
which point the Evans–Krylov theory [12, 26], adapted to the complex
setting (see, for instance, Tosatti–Wang–Weinkove–Yang [38]) can be
used to obtain the required C2,α-estimate. Note that as a consequence
of the blowup argument the constant C is not explicit in Theorem 2.

Perhaps the most important equation of the form (1) is the com-
plex Monge–Ampère equation, where we take f = log λ1 · . . . · λn. The
Monge–Ampère equation was first solved on compact Kähler manifolds
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by Yau [47], and on compact Hermitian manifolds by Tosatti-Wein-
kove [41] with some earlier work by Cherrier [6], Hanani [24] and Guan–
Li [22]. See also Phong–Song–Sturm [31] for a recent survey. Note that
in this case u being a C-subsolution is equivalent to χ +

√
−1∂∂u be-

ing positive definite, and so Theorem 2 can be used to recover these
existence results.

A related equation, the Monge–Ampère equation for (n−1)-plurisub-
harmonic functions, was introduced by Fu–Wang–Wu [16]. In this case

we take f = log λ̃1 · . . . · λ̃n, where

(5) λ̃k =
1

n− 1

∑
i 6=k

λi,

for each k. In terms of matrices, if we define the map P (N) = 1
n−1(Tr(N)·

I − N), then the corresponding operator F is given by F (A) =
log detP (A). For this equation, Theorem 2 recovers the a priori es-
timates of Tosatti–Weinkove [40, 39], and more general equations in

terms of the λ̃k can be considered as well. We will discuss this in more
detail in Section 7.

A setting when the subsolution property is more subtle is the inverse
σk-equations for 1 ≤ k ≤ n− 1, where we take

(6) f =

(
σn
σk

) 1
n−k

,

for the elementary symmetric functions σi, and the cone Γ = Γn. When
h is constant, the equation can be written as

(7) ωn−k ∧ αk = cωn,

for a constant c, where ω = χ+
√
−1∂∂u is the unknown metric. When

α, χ are Kähler, then we can determine c a priori, since

(8) c =
[ω]n−k ∪ [α]k

[ω]n
.

Fixing this value of c, if k = n − 1 then Song–Weinkove [32] showed
that a solution exists if there is a metric χ′ = χ+

√
−1∂∂u satisfying

(9) ncχ′n−1 − (n− 1)χ′n−2 ∧ α > 0,

in the sense of positivity of (n − 1, n − 1)-forms. This turns out to be
the same as u being a C-subsolution. This result was later generalized
by Fang–Lai–Ma [14] to general k, and existence results for general k
and non-constant h on Hermitian manifolds were obtained by Guan–
Sun [23], Sun [35].

Using the continuity method, Theorem 2 can be used to obtain such
existence results for Equation (1), under certain assumptions, however,
it seems to be difficult to state a satisfactory general existence result,
whenever the subsolution condition is non-trivial in the sense that it
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depends on h. We give one such result, Proposition 26 in the Riemann-
ian case, and the same proof works in the Hermitian case too. The
difficulty is that one needs extra conditions to ensure that we have a
subsolution along the whole continuity path (see also Guan–Sun [23] for
such results in the case of the inverse σk equation). The source of this
difference between Equation (1) on a compact manifold, and the corre-
sponding Dirichlet problem, is that on a compact manifold the constant
functions are in the cokernel of the linearization.

As an illustration, we will consider general Hessian quotient equa-
tions, of the form

(10) ωl ∧ αn−l = cωk ∧ αn−k,
where (M,α) is Kähler, 1 ≤ l < k ≤ n, the form ω = χ +

√
−1∂∂u is

the unknown, and c is determined by

(11) c =

∫
M χl ∧ αn−l∫
M χk ∧ αn−k

.

In analogy with the results of Song–Weinkove and Fang–Lai–Ma for the
case k = n, we will show the following.

Corollary 3. Suppose that there is a form χ′ = χ+
√
−1∂∂u which is

k-positive (i.e. the eigenvalues satisfy σ1, . . . , σk > 0), and, in addition,

(12) kcχ′k−1 ∧ αn−k − lχ′l−1 ∧ αn−l > 0,

in the sense of positivity of (n−1, n−1)-forms. Then (10) has a solution
ω = χ+

√
−1∂∂u.

There do not seem to be any previous existence results on compact
manifolds for these equations in the literature when k < n, although a
priori C0 bounds for the solution u have been found recently by Sun [36,
37]. The corresponding Dirichlet problem on Euclidean domains does
not fit into the framework of Caffarelli–Nirenberg–Spruck [5], but was
subsequently solved by Trudinger [44].

It is an interesting problem to find geometric assumptions under
which the existence of a C-subsolution can be ensured. In the case
of the Dirichlet problem in Euclidean domains Ω, Caffarelli–Nirenberg–
Spruck [5] showed that a subsolution exists under a suitable convexity
type condition on the boundary ∂Ω (see also Li [28] for analogous re-
sults in the complex case). For the complex Monge–Ampère equation
on compact Kähler manifolds, the result of Demailly–Paun [10], char-
acterizing the Kähler cone, gives such a geometric condition. Indeed,
this result shows that a real (1, 1)-class [χ] on a compact Kähler man-
ifold (M,α) contains a Kähler metric, if and only if for all analytic
subvarieties V ⊂M of dimension p = 1, . . . , n we have

(13)

∫
V
χk ∧ αp−k > 0, for 1 ≤ k ≤ p.
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In [27], Lejmi and the author proposed a similar condition, conjec-
tured to ensure the existence of a metric χ′ ∈ [χ] satisfying the positivity
condition (9). The condition is that [χ] admits a Kähler metric, and, in
addition,

(14)

∫
V
cχp − pχp−1 ∧ α > 0,

for all analytic subvarieties V ⊂ M of dimension p = 1, . . . , n − 1.
For V = M equality has to hold by (8). Recently, in [8], Collins and
the author resolved this conjecture on toric manifolds. We expect that
analogous results should hold for a large class of equations on Kähler
manifolds, and we state a conjecture to this effect for the Hessian quo-
tient equations in Section 7. In addition, it is natural to expect that for
the Dirichlet problem on Kähler manifolds with boundary, the appro-
priate subsolutions can be constructed whenever the boundary satisfies
a suitable convexity assumption, and a geometric condition as above is
satisfied for all compact subvarieties of the interior. We hope to explore
such results in future work.

In Section 2, we give the basic definition and properties of C-subsolu-
tions. We prove C0-estimates in Section 3, generalizing the approach of
Blocki [2]. We prove a C2-estimate of the form (4) in Section 4, modeled
on the work of Hou–Ma–Wu [25]. To complete the proof of Theorem 2
we use a blowup argument and Liouville-type theorem analogous to
those of Dinew–Kolodziej [11] in Sections 5, 6. In Section 7, we give
the proof of Corollary 3. Finally, in Section 8, we discuss analogous
problems on compact Riemannian manifolds.

Acknowledgments. I would like to thank Tristan Collins, Bo Guan,
Duong Phong, Ovidiu Savin, Wei Sun, and Valentino Tosatti for helpful
comments and discussions. I also thank Rirong Yuan for pointing out
a gap in Remark 14. The author is supported by NSF grants DMS-
1306298 and DMS-1350696.

2. Subsolutions

As in the introduction, let Γ ( Rn be a symmetric, open, convex cone
with vertex at the origin, containing the positive orthant Γn, and let
f : Γ → R be a smooth, concave function, satisfying the monotonicity
condition fi > 0 for all i. We denote by F the function F(λ) =

∑
i fi(λ).

Define

(15) sup
∂Γ

f = sup
λ′∈∂Γ

lim sup
λ→λ′

f(λ).

For any σ > sup∂Γ f , the set

(16) Γσ = {λ : f(λ) > σ}
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is a convex open set. Fix a value of σ for which Γσ 6= ∅. Then the level
set ∂Γσ = f−1(σ) is a smooth hypersurface. In view of Definition 1
we are interested in those µ ∈ Rn, for which the set (µ + Γn) ∩ ∂Γσ is
bounded. These µ represent the possible eigenvalues of a C-subsolution.

For any λ ∈ ∂Γσ let us write nλ for the inward pointing unit normal
vector, i.e.,

(17) nλ =
∇f
|∇f |

.

Note that since fi > 0 for all i, we have

(18)
n∑
i=1

fi(λ)2 ≤

(
n∑
i=1

fi(λ)

)2

≤ n
n∑
i=1

fi(λ)2,

and so

(19) |∇f | ≤ F ≤
√
n|∇f |.

In particular, the unit normal n is a bounded multiple of F−1∇f .

Remark 4. Using this setup, Guan [20] introduced a convex open
set C+

σ ⊂ Γ, which consists of those µ for which the set

(20) ∂Γσ(µ) = {λ ∈ ∂Γσ : (λ− µ) · nλ > 0}
is bounded. In turn this leads to a notion of subsolution for the equation
F (A) = h similar to Definition 1, except one requires that λ(B) ∈ C+

h(x)

at each point. Since n has positive entries, we have

(21) (µ+ Γn) ∩ ∂Γσ ⊂ ∂Γσ(µ),

and so this notion of subsolution is more restrictive than that of a C-
subsolution. As a simple example, if ∂Γσ is a hyperplane, as is the case
for a linear elliptic equation, then C+

σ is empty, but (µ + Γn) ∩ Γσ is
bounded for all µ ∈ Rn.

The main result that we need is the following, which is a refinement
of [20, Theorem 2.16].

Proposition 5. Suppose that µ ∈ Rn is such that for some δ,R > 0

(22) (µ− 2δ1 + Γn) ∩ ∂Γσ ⊂ BR(0),

where BR(0) is the ball of radius R around the origin and 1 = (1, 1, . . . , 1).
Then there is a constant κ > 0 depending on δ and on the set in

(22) (more precisely the normal vectors of ∂Γσ on this set), such that if
λ ∈ ∂Γσ and |λ| > R, then either

(23)

n∑
i=1

fi(λ)(µi − λi) > κF(λ),

or fi(λ) > κF(λ) for all i.
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Proof. Consider the set

(24) Aδ = {v ∈ Γ : f(v) ≤ σ, and v − µ− δ1 ∈ Γn}.

Because of (22) this is a compact set. For each v ∈ Aδ consider the cone
Cv with vertex at the origin defined by

(25) Cv = {w ∈ Rn : v + tw ∈ (µ− 2δ1 + Γn) ∩ ∂Γσ for some t > 0}.

In other words the cone v+Cv has vertex v and cross section (µ−2δ1+
Γn)∩ ∂Γσ. Since fi > 0 for all i, the set (µ− 2δ1 + Γn)∩ ∂Γσ is strictly
larger than (µ− δ1 + Γn) ∩ ∂Γσ, i.e.,

(26) (µ− δ1 + Γn) ∩ ∂Γσ ⊂ (µ− 2δ1 + Γn) ∩ ∂Γσ.

This implies that the cone Cv is strictly larger than Γn. Let us denote
by C∗v the dual cone, i.e.,

(27) C∗v = {x ∈ Rn : 〈x, y〉 > 0 for all y ∈ Cv}.

Being strictly larger than Γn means that there is an ε > 0 such that if
x ∈ C∗v is a unit vector, then each entry of x satisfies xi > ε. Since Aδ is
compact, we can choose a uniform ε that works for all v ∈ Aδ.

Suppose that λ ∈ ∂Γσ, and |λ| > R. Let Tλ be the tangent plane to
∂Γσ at λ. There are two possibilities:

• If Tλ intersects Aδ, in a point v, say, then the cone v+Cv lies above
Tλ (i.e. Γσ lies on the same side of Tλ as v + Cv). This implies
that the normal vector of Tλ is in the dual cone, i.e. nλ ∈ C∗v . But
then each entry of nλ is greater than ε, i.e., fi > ε|∇f | for each i.
Because of (19) this implies

(28) fi >
ε√
n
F ,

for each i.
• If Tλ does not intersect Aδ, then µ must be of distance at least δ

from Tλ. This means that (µ − λ) · nλ > δ. Writing this out in
components, we have

(29)
n∑
i=1

fi(λ) (µi − λi) > δ|∇f(λ)|,

which by (19) implies (23). q.e.d.

We need to apply this to the function F defined on the space of
Hermitian matrices A by F (A) = f(λ(A)), where

(30) λ(A) = (λ1, . . . , λn)

denotes the eigenvalues of A. Let us write F ij for the derivative of
F with respect to the ij-entry of A. Then, similarly to Guan [20,
Theorem 2.18], we have the following.
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Proposition 6. Let [a, b] ⊂ (sup∂Γ f, supΓ f) and δ,R > 0. There
exists κ > 0 with the following property. Suppose that σ ∈ [a, b] and B
is a Hermitian matrix such that

(31) (λ(B)− 2δ1 + Γn) ∩ ∂Γσ ⊂ BR(0).

Then for any Hermitian matrix A with λ(A) ∈ ∂Γσ and |λ(A)| > R we
either have

(32)
∑
p,q

F pq(A)
[
Bpq −Apq

]
> κ

∑
p

F pp(A),

or F ii(A) > κ
∑

p F
pp(A) for all i.

Proof. The proof is essentially the same as that of [20, Theorem 2.18],
but we give some details for the reader’s convenience. Suppose that A
is diagonal, and its eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λn. This implies
that F pq = 0 if p 6= q, and that F 11 ≤ F 22 ≤ . . . ≤ Fnn. Let µ1, . . . , µn
be the eigenvalues of B ordered so that µ1 ≥ µ2 ≥ . . . ≥ µn. The matrix
B may not be diagonal, but the Schur–Horn theorem implies that the
n-tuple of diagonal entries (B11, . . . , Bnn) is in the convex hull of the
vectors obtained by permuting the entries of (µ1, . . . , µn). In particular,
it follows that

(33)
∑
i

F ii(A)Bii ≥ F ii(A)µi.

Since A is diagonal, we have F ii = fi(λ), and (31) implies that we
can apply Proposition 5 to obtain the required inequalities. We obtain
uniform κ > 0, since the assumptions on σ imply that the sets (λ(B)−
2δ1 + Γn) ∩ ∂Γσ move in a compact family. q.e.d.

We recall the definition of a C-subsolution from the introduction.

Definition 7. Suppose, as in the introduction that (M,α) is Her-
mitian and χ is a real (1, 1)-form. We say that u is a C-subsolution for
the equation F (A) = h, if at each x ∈M the set

(34)
(
λ
[
αjp̄(χip̄ + uip̄)

]
+ Γn

)
∩ ∂Γh(x)

is bounded. Let us also say that u is admissible, if λ
[
αjp̄(χip̄ + uip̄)

]
∈

Γ. An observation pointed out to the author by Wei Sun is that a
C-subsolution need not be admissible.

Remark 8. In examples it is useful to have an alternative description
of the set of C-subsolutions. Following Trudinger [44], let us denote by
Γ∞ the projection of Γ onto Rn−1:

(35) Γ∞ = {(λ1, . . . , λn−1) : (λ1, . . . , λn) ∈ Γ for some λn}.
For µ ∈ Rn, the set (µ+ Γn) ∩ ∂Γσ is bounded, if and only if

(36) lim
t→∞

f(µ+ tei) > σ,
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for all i, where ei is the ith standard basis vector. Note that this limit
is defined as long as any (n−1)-tuple µ′ in µ satisfies µ′ ∈ Γ∞. In other

words it is defined for µ ∈ Γ̃, where Γ̃ ⊂ Rn is given by

(37) Γ̃ = {µ ∈ Rn : there exists t > 0 such that µ+tei ∈ Γ for all i}.

Note that Γ ⊂ Γ̃.
For any λ′ = (λ1, . . . , λn−1) ∈ Γ∞, consider the limit

(38) lim
λn→∞

f(λ1, . . . , λn).

Then as in [44] this limit is either finite for all λ′ or infinite for all λ′

because of the concavity of f . If the limit is infinite, then (µ+Γn)∩∂Γσ

is bounded for all σ and µ ∈ Γ̃. In particular, any admissible u is a C-
subsolution in this case.

If the limit is finite, define the function f∞ on Γ∞ by

(39) f∞(λ1, . . . , λn−1) = lim
λn→∞

f(λ1, . . . , λn).

From the above it is clear that (µ + Γn) ∩ ∂Γσ for µ ∈ Γ̃ is bounded
if and only if f∞(µ′) > σ, where µ′ ∈ Γ∞ denotes any (n − 1)-tuple of
entries of µ.

We will need the following consequences of our structural assumptions
for f .

Lemma 9. Under the assumptions (i), (ii), (iii) for f in the intro-
duction, we have the following, for any σ ∈ (sup∂Γ f, supΓ f):

(a) There is an N > 0 depending on σ, such that Γ +N1 ⊂ Γσ,
(b) there is a τ > 0, depending on σ, such that F(λ) > τ for any

λ ∈ ∂Γσ.

Proof. To prove (a), let x ∈ ∂Γσ be the closest point to the origin.
By the convexity of Γσ and symmetry under permuting the variables,
we must have x = N1 for some N > 0. We claim that Γ + N1 ⊂ Γσ.
Indeed, for any λ ∈ Γ, assumption (iii) implies that there is some T > 1,
such that Tλ ∈ Γσ. The convexity of Γσ implies that then x+ tλ ∈ Γσ

for all t ∈ (0, T ], and so, in particular, x+ λ ∈ Γσ. This proves (a).
To prove (b), first choose σ′ > σ such that σ′ ∈ (sup∂Γ f, supΓ f)

as well. Part (a) implies that if f(λ) = σ, then f(λ + N1) > σ′. By
concavity we have

(40) f(λ+N1) ≤ f(λ) +N

n∑
i=1

fi(λ),

which implies F(λ) ≥ N−1(σ′−σ), which is the bound that we wanted.
q.e.d.
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3. C0-estimates

In this section, we prove a priori C0-estimates for solutions of Equa-
tion (1). We will use the following variant of the Alexandroff–Bakelman–
Pucci maximum principle, similar to Gilbarg–Trudinger [18, Lemma 9.2].

Proposition 10. Let v : B(1)→ R be smooth, such that v(0) + ε ≤
inf∂B(1) v, where B(1) denotes the unit ball in Rn. Define the set
(41)

P =

x ∈ B(1) :
|Dv(x)| < ε

2
, and

v(y) ≥ v(x) +Dv(x) · (y − x) for all y ∈ B(1)

 .

Then for a dimensional constant c0 > 0 we have

(42) c0ε
n ≤

∫
P

det(D2v).

Proof. The proof follows the argument of [18, Lemma 9.2]. Consider
the graph of v, and let ξ ∈ Rn be such that |ξ| < ε

2 . The graph
of the function l(x) = v(0) + ξ · x lies below the graph of v on the
boundary ∂B(1) by our assumption on v, and it intersects the graph of
v at (0, v(0)). This implies that for some k ≥ 0, the graph of l(x) − k
is tangent to the graph of v at some point x ∈ B(1), and considering
the largest such k we will have x ∈ P . In particular, the ball B(ε/2) is
in the image of P under the gradient of v, i.e. B(ε/2) ⊂ ∇v(P ). The
inequality (42) follows by comparing volumes. q.e.d.

The main result of this section is the following.

Proposition 11. Suppose that F (A) = h, where Aij = αjp̄gip̄ and

g = χ+
√
−1∂∂u for a fixed background form χ, as in the introduction.

Assume that we have a C-subsolution u, and normalize u so that sup(u−
u) = 0. There is a constant C, depending on the given data, including
u such that

(43) sup
M
|u| < C.

Proof. Our proof is based on the method that Blocki [2] (see also [3])
used in the case of the complex Monge–Ampère equation. To simplify
notation we can assume u = 0, by changing χ. We, therefore, have
supM u = 0, and our goal is to obtain a lower bound for L = infM u

Note that our assumptions for Γ imply (see [5]) that

(44) Γ ⊂ {(λ1, . . . , λn) :
∑
i

λi > 0},

which in turn implies that trαg > 0. It follows that we have a lower
bound for ∆u (the complex Laplacian with respect to α), and so us-
ing the Green’s function of a Gauduchon metric conformal to α as in
Tosatti–Weinkove [42], we have a uniform bound for ‖u‖L1 .
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An alternative, more local argument for obtaining a bound for ‖|u|p‖L1

for some p > 0 follows from the weak Harnack inequality, Gilbarg–
Trudinger [18, Theorem 9.22]. Indeed, suppose that we cover M with
a finite number of coordinate balls 2Bi, so that the balls Bi of half the
radius still cover M . Using the lower bound ∆u ≥ −C, and the fact
that u is non-positive, we can apply the weak Harnack inequality in
each ball 2Bi to obtain an estimate of the form

(45)

(∫
Bi

(−u)p
)1/p

≤ C1

[
inf
Bi

(−u) + 1
]
,

with p, C1 > 0 depending only on the covering and the metric α. Our
assumption supM u = 0 implies that we have one ball, say B0 in which
infB0(−u) = 0. Then (45) implies a bound on the integral of |u|p on
B0. But this in turn gives a bound infBi |u| < C2, for all balls Bi with
Bi ∩ B0 6= ∅, and then (45) can be used again to bound the integrals
of |u|p on each such Bi. Continuing in this way, we will end up with
bounds on each ball, and so we obtain an a priori bound for ‖|u|p‖L1

on M .
Being a C-subsolution means that for each x the set

(46)
(
λ(αjp̄χip̄) + Γn

)
∩ ∂Γh(x)

is bounded. There is then a δ > 0 and R > 0 such that at each x we
have

(47) (λ(αjp̄χip̄)− δ1 + Γn) ∩ ∂Γh(x) ⊂ BR(0).

Let us work in local coordinates zi, for which the infimum L is
achieved at the origin, and the coordinates are defined for |zi| < 1,
say. We write B(1) = {z : |z| < 1}. Let v = u + ε|z|2 for a small
ε > 0. We have inf v = L = v(0), and v(z) ≥ L+ ε for z ∈ ∂B(1). From
Proposition 10 we obtain

(48) c0ε
2n ≤

∫
P

det(D2v),

where P is defined as in (41). As in Blocki [2], at any point x ∈ P we
have D2v(x) ≥ 0 and so

(49) det(D2v) ≤ 22n det(vij̄)
2.

At the same time, if x ∈ P , thenD2v(x) ≥ 0 implies that uij̄(x) ≥ −εδij̄ .
If ε is sufficiently small (depending on the metric α and the choice of
δ), then this implies that at x ∈ P

(50) λ
[
αjp̄(χip̄ + uip̄)

]
∈ λ(αjp̄χip̄)− δ1 + Γn.

According to the equation F (A) = h we also have λ
[
αjp̄(χip̄ + uip̄)

]
∈

∂Γh(x) at x, so from (47) we get an upper bound |uij̄ | < C. This gives
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a bound for vij̄ at any x ∈ P , so from (49) and (48) we get

(51) c0ε
2n ≤ C ′vol(P ).

By definition, for x ∈ P we have v(0) > v(x)−ε/2, and so v(x) < L+ε/2.
This implies

(52) vol(P ) ≤ ‖|v|
p‖L1∣∣L+ ε

2

∣∣p .
Since we already have a bound for ‖|v|p‖L1 , this inequality contradicts
(51) if |L| is very large. q.e.d.

Remark 12. This method can also be used to obtain C0-estimates
for more general types of equations, where the matrix A in the equation
F (A) = h depends on the gradient of u as well. We illustrate this with
an example taken from the recent work of Tosatti–Weinkove [39] on
(n − 1)-plurisubharmonic functions. On a Hermitian manifold (M,α),
given another Hermitian metric χ the equation can be written as

(53) det

(
χ+

1

n− 1

[
(∆u)α−

√
−1∂∂u

]
+ ∗E

)
= eh detα,

where ∗ is the Hodge star operator of α and

(54) E =
1

(n− 1)!
Re
[√
−1∂u ∧ ∂(αn−2)

]
.

In addition, ∆ is the complex Laplacian with respect to α. It is assumed
that α is a Gauduchon metric, and the form inside the determinant in
(53) is positive definite. Normalizing u so that supM u = 0, it is shown
in [39] that this implies an L1-bound ‖u‖L1 < C. An argument using
the weak Harnack inequality as above can also be used to bound ‖|u|p‖L1

for some p > 0. In [39] this is then used together with a Moser iteration
argument to bound infM u. We can obtain a different proof of this
bound along the lines of the argument above.

As in the proof of Proposition 11, choose coordinates zi in which the
infimum L = infM u is achieved at the origin and for a small ε > 0 we
let v = u+ ε|z|2. We apply Proposition 10 to obtain

(55) c0ε
2n ≤

∫
P

det(D2v),

with the set P in (41). By definition, if x ∈ P , then we have D2v ≥ 0
and so uij̄(x) ≥ −εδij , and, in addition, |Dv(x)| < ε/2. If ε is chosen
sufficiently small (depending on χ and α), then Equation (53) implies
an upper bound for uij̄(x) at all x ∈ P , using that χ is positive definite.
From (55) we then get

(56) c0ε
2n ≤ C ′vol(P ),
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but as before,

(57) vol(P ) ≤ ‖|v|
p‖L1∣∣L+ ε

2

∣∣p ,
which is a contradiction if |L| is too large.

It is an interesting problem whether the C2-estimate in Section 4 can
also be extended to more general equations F (A) = h, where A depends
on the gradient of u as well. In particular, this estimate is not known
at present for Equation (53). Note that in the Riemannian case C2-
estimates for such equations, under certain conditions, are derived in
Guan–Jiao [21].

4. C2-estimates

Our goal in this section is the following estimate for the complex
Hessian of u in terms of the gradient. As in the introduction we assume
that u satisfies an equation of the form F (A) = h, where Aij = αjp̄gip̄
and gij̄ = χij̄ + uij̄ for a given form χ. In addition, we assume the
existence of a C-subsolution u.

Proposition 13. We have an estimate

(58) |∂∂u| ≤ C(1 + sup
M
|∇u|2α),

where the constant depends on the background data, in particular, ‖α‖C2,
‖h‖C2, ‖χ‖C2 and the subsolution u.

To simplify notation, we will assume that the subsolution u = 0, since
otherwise we could simply modify the background form χ. By definition
this means that for each x ∈ M the sets (λ(B(x)) + Γn) ∩ ∂Γh(x) are
bounded, where Bij = αjp̄χip̄. We can find δ,R > 0 such that at each x,

(59) (λ(B)− 2δ1 + Γn) ∩ ∂Γh(x) ⊂ BR(0).

In particular, by Proposition 6 we have a κ > 0 with the following prop-
erty: at any x ∈ M , if |λ(A)| > R and A is diagonal with eigenvalues
λ1, . . . , λn, then either

(60) F ii(A) > κ
∑
p

F pp(A) for all i,

or

(61)
∑
p

F pp(A)
[
Bpp − λp

]
> κ

∑
p

F pp(A).

Also, Lemma 9 implies that we have a constant τ > 0 such that∑
p F

pp(A) > τ .

Our calculation will mostly follow that of Hou–Ma–Wu [25] which
in turn is based on ideas in Chou–Wang [7]. One key difference is
that instead of using g11̄ in suitable coordinates, we use the maximum
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eigenvalue of the matrix A. This introduces good positive terms which
are useful in the Hermitian case, somewhat similar to the extra term
logαpq̄g1q̄gp1̄ introduced in Tosatti–Weinkove [39]. The idea of exploit-
ing the inequality (61) is from Guan [20]. A refinement of this also
appears in Guan [19] where the two possibilities (60) and (61) are ex-
ploited, although the setup is not the same as ours.

We first review some basic formulas for the derivatives of eigenvalues
which can be found in Spruck [33], for instance. The derivatives of the
eigenvalue λi at a diagonal matrix with distinct eigenvalues are

(62) λpqi = δpiδqi,

(63) λpq,rsi = (1− δip)
δiqδirδps
λi − λp

+ (1− δir)
δisδipδrq
λi − λr

,

where λpqi denotes the derivative with respect to the pq-entry.
It follows from this that for any symbols Apqk we have

(64) λpq,rs1 Apqk A
rs
k̄ =

∑
p>1

Ap1k A
1p

k̄
+A1p

k A
p1

k̄

λ1 − λp
.

If F (A) = f(λ1, . . . , λn) in terms of a symmetric function of the
eigenvalues, then at a diagonal matrix A with distinct eigenvalues we
have (see Andrews [1], Gerhardt [17])

(65) F ij = δijfi,

(66) F ij,rs = firδijδrs +
fi − fj
λi − λj

(1− δij)δisδjr.

Note that these formulas make sense even when the eigenvalues are not
distinct, since F is a smooth function on the space of matrices if f is
symmetric. In particular, as λi → λj we also have fi → fj . It follows
that

(67)

F ij,rsuij̄kurs̄k̄ = fijuīikujj̄k̄ +
∑
p6=q

fp − fq
λp − λq

|upq̄k|2

≤ fijuīikujj̄k̄ +
∑
i>1

f1 − fi
λ1 − λi

|ui1̄k|2,

since if f is concave and symmetric, one can show (see Spruck [33]) that
fi−fj
λi−λj ≤ 0. In particular, fi ≤ fj if λi ≥ λj .

We want to apply the maximum principle to a function G of the form

(68) G = log λ1 + φ(|∇u|2) + ψ(u),

where λ1 : M → R is the largest eigenvalue of the matrix A at each
point. Since the eigenvalues of A need not be distinct at the point where
G achieves its maximum, we will perturb A slightly.
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To do this, choose local coordinates zi, such that G achieves its max-
imum at the origin, and at the origin A is diagonal with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn. Let B be a diagonal matrix such that B11 = 0
and 0 < B22 < . . . < Bnn are small, satisfying Bnn < 2B22. Define the

matrix Ã = A−B. At the origin, Ã has eigenvalues

(69) λ̃1 = λ1, λ̃i = λi −Bii if i > 1.

Since these are distinct, the eigenvalues of Ã define smooth functions
near the origin.

In the calculations below we use derivatives with respect to the Chern

connection of α. From the formulas for the derivatives of the λ̃i, we have

(70)

λ̃1,k = λ̃pq1 (Ãpq)k = g11̄k − (B11)k

λ̃1,kk̄ = λ̃pq,rs1 (Ãpq)k(Ã
rs)k̄ + λ̃pq1 (Ãpq)kk̄

= g11̄kk̄ +
∑
p>1

|gp1̄k|2 + |g1p̄k|2

λ1 − λ̃p

+ (B11)kk̄ − 2Re
∑
p>1

gp1̄k(B
1p̄)k̄ + g1p̄k(B

p1̄)k̄

λ1 − λ̃p

+ λ̃pq,rs1 (Bpq)k(B
rs)k̄,

where we used Equation (64). Note that B is a constant matrix in
our local coordinates, but its covariant derivatives may not vanish.

The assumption
∑

i λi > 0 implies that
∑

i λ̃i > 0 if the matrix B

is sufficiently small, and so |λ̃i| < (n − 1)λ1 for all i, which implies

(λ1 − λ̃p)−1 ≥ (nλ1)−1. Since we are trying to bound λ1 from above,
we can assume λ1 > 1. We can also absorb the terms gp1̄k(B

1p̄)k̄ using

(71)
∣∣gp1̄k(B1p̄)k̄

∣∣ ≤ 1

4
|gp1̄k|2 + C|Bnn|2,

using that the derivative of B is controlled by Bnn. In addition, for
p > 1 we have

(72)
1

λ1 − λ̃p
≤ 1

B22
<

2

Bnn
,

and so

(73)
|Bnn|2

λ1 − λ̃p
+ λ̃pq,rs1 (Bpq)k(B

rs)k̄ = O(Bnn).

It follows that

(74) λ̃1,kk̄ ≥ g11̄kk̄ +
1

2nλ1

∑
p>1

(|gp1̄k|2 + |g1p̄k|2)− 1,

if B is chosen sufficiently small.
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Using that gij̄ = χij̄ + uij̄ , we get
(75)

λ̃1,kk̄ ≥ χ11̄kk̄ + u11̄kk̄ +
1

2nλ1

∑
p>1

(|χp1̄k + up1̄k|2 + |χ1p̄k + u1p̄k|2)− 1

≥ u11̄kk̄ +
1

3nλ1

∑
p>1

(|up1̄k|2 + |u1p̄k|2)− C0,

where C0 is a constant depending only on the background data (includ-
ing χ). From here on out C0 will always denote such a constant which
may vary from line to line, but does not depend on other parameters
that we choose later on.

Commuting derivatives, we obtain

(76) u11̄kk̄ = ukk̄11̄ − 2Re(ukp̄1T
p
k1) + uij̄ ∗R+ uij̄ ∗ T ∗ T,

where R, T are the curvature and torsion of α, and ∗ denotes a contrac-
tion. Using this in (75) we get

(77) λ̃1,kk̄ ≥ ukk̄11̄ +
1

3nλ1

∑
p>1

(|up1̄k|2 + |u1p̄k|2)−2Re(ukp̄1T
p
k1)−C0λ1,

since uij̄ is controlled by λ1, and we assumed λ1 > 1.
We have ukp̄1 = u1p̄k+uij̄ ∗T . This means that we can absorb almost

all of the terms ukp̄1T
p
k1 using the good positive sum, except for uk1̄1T

1
k1.

We also rewrite u in terms of g, to finally obtain

(78) λ̃1,kk̄ ≥ gkk̄11̄ − 2Re(gk1̄1T
1
k1)− C0λ1.

Differentiating the equation F (A) = h, we have

h1 = F ijgij̄1 = F kkgkk̄1,(79)

h11̄ = F pq,rsgpq̄1grs̄1̄ + F kkgkk̄11̄,(80)

using that F ij is diagonal at the origin (since A is diagonal). Using this
in Equation (78) we get

(81) F kkλ̃1,kk̄ ≥ −F pq,rsgpq̄1grs̄1̄ − 2F kkRe(gk1̄1T
1
k1)− C0λ1F ,

where we wrote F =
∑

k F
kk and used that F > τ to absorb a constant

into λ1F . Defining the linearized operator Lw = F ijwij̄ , we have

(82)

L(log λ̃1) ≥ −F
pq,rsgpq̄1grs̄1̄
λ1

− F kk|g11̄k|2

λ2
1

− F kk

λ1
2Re(gk1̄1T

1
k1)− C0F .
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We have

(83)

g11̄k = χ11̄k + u11̄k

= χ11̄k + uk1̄1 − T 1
k1λ1

= (χ11̄k − χk1̄1) + gk1̄1 − T 1
k1λ1,

and so

(84) |g11̄k|2 ≤ |gk1̄1|2 − 2λ1Re(gk1̄1T
1
k1) + C0(λ2

1 + |g11̄k|).

Using this and (83) again in Equation (82), we get
(85)

L(log λ̃1) ≥ −F
pq,rsgpq̄1grs̄1̄
λ1

− F kk|gk1̄1|2

λ2
1

− C0(F + λ−2
1 |F

kkg11̄k|).

As a reminder, we note that in this calculation λ̃1 denotes the largest

eigenvalue of the perturbed endomorphism Ã = A − B. At the point
where we are calculating, this coincides with the largest eigenvalue of A,
but at nearby points it is a small perturbation. We could take B → 0,
and obtain the same differential inequality (85) for the largest eigenvalue
of A as well, but this would only hold in a viscosity sense because the
largest eigenvalue of A may not be C2 at the origin, if some eigenvalues
coincide.

We now begin the main calculation for proving Proposition 13.

Proof of Proposition 13. Set K = sup |∇u|2 + 1, and consider the
function

(86) G = log λ̃1 + φ(|∇u|2) + ψ(u),

where φ is the same as the function used in [25]:

(87) φ(t) = −1

2
log

(
1− t

2K

)
,

and it satisfies

(88) (4K)−1 < φ′ < (2K)−1, φ′′ = 2φ′2 > 0.

We normalize u so that inf u = 0, so from Proposition 11 we already
have a bound on supu. We then let ψ : [0, supu]→ R be defined by

(89) ψ(t) = −2At+
Aτ

2
t2,

where τ is chosen sufficiently small depending on supu (we decrease the
τ from before if necessary), so that ψ satisfies the bounds

(90) A ≤ −ψ′ ≤ 2A, ψ′′ = Aτ.

Here A is a large constant that we will choose later.
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Let us write wk = −(B11)k/λ1, which appears in the derivative of

log λ̃1. We assume λ1 > 1, so this is a bounded quantity. We have
(91)

Gk =
g11̄k

λ1
+ φ′(upkup̄ + upup̄k) + ψ′uk + wk,

Gkk = (log λ̃1)kk̄ + φ′′
∣∣∣upkup̄ + upup̄k

∣∣∣2
+ φ′

(
upkk̄up̄ + upup̄kk̄ +

∑
p

(|upk|2 + |up̄k|2)
)

+ ψ′′ukuk̄ + ψ′ukk̄.

Commuting derivatives, we have the identities

(92)
upkk̄ = ukk̄p − T

q
kpuqk̄ +R q

kk̄p
uq

= ukk̄p − T kkpλk + T qkpχqk̄ +R q

kk̄p
uq,

and

(93)
up̄kk̄ = ukk̄p̄ − T

q
kpukq̄

= ukk̄p̄ − T kkpλk + T qkpχkq̄.

Differentiating the equation F (A) = h once, we have

(94) F kkukk̄p = F kk(gkk̄p − χkk̄p) = hp − F kkχkk̄p,

and so
(95)

F kkupkk̄up̄

= hpup̄ − F kkχkk̄pup̄ − T kkpF kkλkup̄ + T qkpF
kkχqk̄up̄ + F kkR q

kk̄p
uqup̄

≥ −C0(K1/2 +K1/2F +K1/2F +KF)− ε1F kkλ2
k − Cε1FK

≥ −C0KF − ε1F kkλ2
k − Cε1FK.

We have used the inequality (valid for each k, p)

(96) |F kkλkup̄| ≤ ε1F kkλ2
k + Cε1F

kkK,

for any ε1 > 0 and corresponding Cε1 > 0, which implies that if we sum
over k then

(97) |F kkT kkpλkup̄| ≤ ε1F kkλ2
k + Cε1FK.

The same estimate also holds for F kkup̄kk̄up (which has fewer terms).

We have φ′ < (2K)−1, so combining these estimates we obtain

(98) φ′F kk(upkk̄up̄ + upup̄kk̄) ≥ −C0F − ε1K−1F kkλ2
k − Cε1F .
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This implies that at the maximum of G

(99)

0 ≥ LG ≥ L(log λ̃1) + F kkφ′′
∣∣∣upkup̄ + upup̄k

∣∣∣2
+ F kkφ′

∑
p

(|upk|2 + |up̄k|2)

+ ψ′′F kkukuk̄ + ψ′F kkukk̄ − C0F

≥
−F ij,rsgij̄1grs̄1̄

λ1
− F kk|gk1̄1|2

λ2
1

+ F kkφ′′
∣∣∣upkup̄ + upup̄k

∣∣∣2
+ F kkφ′

∑
p

(|upk|2 + |up̄k|2) + ψ′′F kkukuk̄ + F kkψ′ukk̄

− C0(F + λ−2
1 |F

kkg11̄k|)− Cε1F − ε1K−1F kkλ2
k.

We have

(100)
F kk|ukk̄|2 = F kk(λk − χkk̄)2

≥ 1

2
F kkλ2

k − C0F .

Note that φ′ > (4K)−1, so if we choose ε1 = 1
16 , we can use half of the

φ′F kk|ukk̄|2 term to cancel the negative ε1 term. Since this fixes ε1, we
can absorb the Cε1 term into C0. It follows that

(101)

0 ≥
−F ij,rsgij̄1grs̄1̄

λ1
− F kk|gk1̄1|2

λ2
1

+ F kkφ′′
∣∣∣upkup̄ + upup̄k

∣∣∣2
+

1

32K
F kkλ2

k +
1

16K
F kk

∑
p

(|upk|2 + |up̄k|2) + ψ′′F kkukuk̄

+ ψ′F kkukk̄ − C0(F + λ−2
1 |F

kkg11̄k|).

To deal with the final term, we use the equation Gk = 0. This implies
that

(102)
g11̄k

λ1
= −φ′(upkup̄ + upup̄k)− ψ′uk − wk,

so

(103)
λ−2

1 F kk|g11̄k| ≤
1

2K
λ−1

1 F kk
(
|upk|+ |up̄k|

)
K1/2

+ 2Aλ−1
1 F kk|uk|+ C0F .

It is clear that the term involving |upk|+ |up̄k| can be absorbed by the
fifth term in (101), up to adding a further multiple of F . We, therefore,
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have

(104)

LG ≥
−F ij,rsgij̄1grs̄1̄

λ1
− F kk|gk1̄1|2

λ2
1

+ F kkφ′′
∣∣∣upkup̄ + upup̄k

∣∣∣2+

+
1

20K
F kk

(
λ2
k +

∑
p

|upk|2
)

+ ψ′′F kkukuk̄ + ψ′F kkukk̄ − C0(F +Aλ−1
1 F kk|uk|),

Following Hou–Ma–Wu [25] we deal with two cases separately, de-
pending on whether −λn > δλ1 or not, for a small δ > 0 to be chosen
later.

Case 1: −λn > δλ1, so, in particular, λn < 0. We use the equation
Gk = 0 to write

(105)
−F

kk|g11̄k|2

λ2
1

= −F kk
∣∣∣φ′(upkup̄ + upup̄k) + ψ′uk + wk

∣∣∣2
≥ −2φ′2F kk

∣∣∣upkup̄ + upup̄k

∣∣∣2 − 3(2A)2FK − C0.

From (83) we also have

(106)
|gk1̄1|2

λ2
1

≤ |g11̄k|2

λ2
1

+ C0(1 + λ−1
1 |g11̄k|),

and using the inequality (103) absorbing the |upk|, |up̄k| terms in the
same way, we obtain

(107)

F kk|gk1̄1|2

λ2
1

≤ F kk|g11̄k|2

λ2
1

+ 2AF kk|uk|+ C0F

≤ F kk|g11̄k|2

λ2
1

+ 2AFK1/2 + C0F .

Using this and (105) in our inequality (104) for LG, together with con-
cavity of F and φ′′ = 2φ′2, we find that at the origin

(108)

0 ≥ 1

32K
F kkλ2

k + ψ′F kkukk̄ − C0(F +Aλ−1
1 FK

1/2)

− 2AFK1/2 − 12A2FK

≥ 1

32K
F kkλ2

k + ψ′F kkukk̄ − C0F − 14A2FK,

where we have assumed that λ1 > C0 and A > 1. Note that Fnn ≥ 1
nF ,

and λ2
n > δ2λ1 by our assumption. In addition,

(109)
ψ′F kkukk̄ = ψ′F kkgkk̄ − φ′F kkχkk̄

≥ −2AFλ1 − C0F ,
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and so from (108) we have

(110) 0 ≥ 1

32nK
Fδ2λ2

1 − 2AFλ1 − C0F − 14A2FK.

Dividing by KF and rearranging we get the required bound for K−1λ1,
with the bound depending on δ, A that will be chosen in Case 2 below.

Case 2: −λn ≤ δλ1. Define the set

(111) I = {i : F ii > δ−1F 11}.

Using that Gk = 0 as above, we have

(112)

−
∑
k 6∈I

F kk|g11̄k|2

λ2
1

= −2φ′2
∑
k 6∈I

F kk
∣∣∣upkup̄ + upup̄k

∣∣∣2 − 3ψ′2
∑
k 6∈I

F kk|uk|2 − C0

≥ −φ′′
∑
k 6∈I

F kk
∣∣∣upkup̄ + upup̄k

∣∣∣2 − 3(2A)2δ−1F 11K − C0.

In addition, for k 6∈ I, from (107) we have

(113)
F kk|gk1̄1|2

λ2
1

≤ F kk|g11̄k|2

λ2
1

+ 2Aδ−1F 11K1/2 + C0F .

Our inequality (104) for LG then implies
(114)

0 ≥
−F ij,rsgij̄1grs̄1̄

λ1
−
∑
k∈I

F kk|gk1̄1|2

λ2
1

+ φ′′
∑
k∈I

F kk
∣∣∣upkup̄ + upup̄k

∣∣∣2
+ ψ′′F kk|uk|2 +

1

32K
F kkλ2

k + ψ′F kkukk̄

− C0(F +Aλ−1
1 F kk|uk|)− 13A2δ−1F 11K.

We want to choose δ so small that

(115)
4ψ′2δ

1− δ
≤ 1

2
ψ′′.

Note that |ψ′| ≤ 2A, and ψ′′ = τA for a fixed τ > 0, so we can choose
δ ≤ δ0A

−1, for some fixed number δ0 (depending on τ).
To deal with the first four terms in (114) we use that Gk = 0 to

obtain

(116)

2φ′2
∑
k∈I

F kk
∣∣∣upkup̄ + upup̄k

∣∣∣2 = 2
∑
k∈I

F kk
∣∣∣∣g11̄k

λ1
+ ψ′uk + wk

∣∣∣∣2
≥ 2δ

∑
k∈I

F kk|g11̄k|2

λ2
1

− 4δψ′2

1− δ
∑
k∈I

F kk|uk|2 − C0,
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just as in [25], using the elementary inequality |a+b|2 ≥ δ|a|2− δ
1−δ |b|

2.
More precisely we used

(117) |a+ b+ c|2 ≥ δ|a|2− δ

1− δ
|b+ c|2 ≥ δ|a|2− 2δ

1− δ
|b|2− 2δ

1− δ
|c|2.

Using (107) we have

(118)

2δ
∑
k∈I

F kk|g11̄k|2

λ2
1

≥ 2δ
∑
k∈I

F kk|gk1̄1|2

λ2
1

− 4δAF kk|uk|2 − δC0F

≥ 2δ
∑
k∈I

F kk|gk1̄1|2

λ2
1

− δ2A2F kk|uk|2 − C0F .

We also have

(119) Aλ−1
1 F kk|uk| ≤

1

2
A2λ−1

1 F kk|uk|2 +
1

2
λ−1

1 F .

Using this, (118) and (116) in (114) we have
(120)

0 ≥
−F ij,rsgij̄1grs̄1̄

λ1
− (1− 2δ)

∑
k∈I

F kk|gk1̄1|2

λ2
1

+

(
1

2
ψ′′ − δ2A2 −A2λ−1

1

)
F kk|uk|2 +

1

32K
F kkλ2

k + ψ′F kkukk̄

− C0F − 13A2δ−1F 11K.

In addition, we claim that

(121)
−F ij,rsgij̄1grs̄1̄

λ1
− (1− 2δ)

∑
k∈I

F kk|gk1̄1|2

λ2
1

≥ 0.

Indeed, from Equation (67) we have

(122) F ij,rsgij̄1grs̄1̄ ≤
∑
k∈I

F 11 − F kk

λ1 − λk
|gk1̄1|2,

using that F 11−Fkk
λ1−λk ≤ 0. For k ∈ I we have F 11 < δF kk, and so

(123)
F 11 − F kk

λ1 − λk
≤ (δ − 1)F kk

λ1 − λk
.

It is, therefore, enough to show

(124)
δ − 1

λ1 − λk
≤ −1− 2δ

λ1
.

Rearranging, this is equivalent to (2δ − 1)λk ≤ δλ1. If λk ≥ 0, this is
clear, while if λk < 0, then

(125) (2δ − 1)λk ≤ −λk ≤ −λn ≤ δλ1,

where we used our assumption for Case 2.
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Using (121) in (120) we have
(126)

0 ≥
(

1

2
ψ′′ − δ2A2 −A2λ−1

1

)
F kk|uk|2 +

1

32K
F kkλ2

k + ψ′F kkukk̄

− C0F − 13A2δ−1F 11K.

Suppose that λ1 > R with the R in (59). There are two cases to
consider:

• If (61) holds, then we have ψ′F kkukk̄ > AκF . Choosing A so that
Aκ > C0, Equation (126) implies

(127)

0 ≥
(

1

2
ψ′′ − δ2A2 −A2λ−1

1

)
F kk|uk|2 +

1

32K
F kkλ2

k − 13A2δ−1F 11K.

At this point ψ′′ = τA is fixed, so if we choose δ sufficiently small,
and λ1 is sufficiently large, then first term is positive. We then
obtain

(128) 0 ≥ 1

32K
F 11λ2

1 − 13A2δ−1F 11K,

from which the required bound for K−1λ1 follows.
• If (61) does not hold, then we must have F 11 > κF . We have

(129)
F kkukk̄ = F kkλk − F kkχkk̄

≤ 1

128AK
F kkλ2

k + C0AKF ,

which together with (126) and |ψ′| < 2A implies

(130) 0 ≥ 1

64K
κFλ2

1 − C0A
2KF − 13A2δ−1FK,

where we also used the bounds κF < F 11 < F . This inequality
again implies the bound of the form λ1 < CK, which we are after.

q.e.d.

Remark 14. Under an extra concavity condition for f , one can ob-
tain C2-estimates directly from C0-estimates, as is well-known in the
case of the Monge–Ampère equation. See, e.g., Yau [47], Tosatti–
Weinkove [42] and also Weinkove [46], Fang–Lai–Ma [14], Sun [35]
for the inverse σk-equations. On Hermitian manifolds this technique
was used to obtain the C2-estimate by Tosatti–Weinkove [43].

Suppose that in addition to the structural conditions (i), (ii), (iii) in
the introduction, f satisfies the extra conditions

(131) f11 +
f1

λ1
≤ 0, and λ1f1 ≤ λifi for all i > 1,

where λ1 is the largest eigenvalue, and we work at a diagonal matrix
A, as before. See Fang–Lai [13] for related conditions. We assume also
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that the Hessian fij is diagonal (we thank Rirong Yuan for pointing out
the need for such an additional assumption). In particular, it is easy
to check that these conditions hold for the complex Monge–Ampère
equation written in the form f(λ) = log λ1 · . . . λn.

These conditions imply a stronger concavity property of F , which
allows us to get rid of the first two terms in (85). Indeed, from (67) we
have

(132) F pq,rsgpq̄1grs̄1̄ ≤ fkk|gkk̄1|2 +
∑
k>1

f1 − fk
λ1 − λk

|gk1̄1|2.

For k > 1 the condition λ1f1 ≤ λkfk implies

(133) − 1

λ1

f1 − fk
λ1 − λk

− fk
λ2

1

≥ 0.

From this we have

(134) −F
pq,rsgpq̄1grs̄1̄

λ1
− F kk|gk1̄1|2

λ2
1

≥ −f11|g11̄1|2

λ1
− F 11|g11̄1|2

λ2
1

≥ 0,

using the assumption λ1f11 + f1 ≤ 0 as well. Using (85) we have

(135) L(log λ̃1) ≥ −C0(F + λ−2
1 F kk|g11̄k|).

Note that (131) implies that λi > 0 for all i, and so, in particular, we
must have Γ = Γn. Suppose that σ > sup∂Γ f and ∂Γσ is non-empty,
and let x0 ∈ ∂Γσ be the closest point to the origin. For any ε > 0 we
can find an R > 0 such that if λ ∈ ∂Γσ and λ1 > R, then f1 < εF at λ.
To see this, let nλ be the inward pointing unit normal to ∂Γσ at λ. By
convexity we have

(136) nλ · (λ− x0) < 0,

which implies nλ · λ < nλ · x0. In particular, we have

(137) λ1
f1(λ)

|∇f(λ)|
< |x0|.

In view of the equivalence between |∇f | and F (see (19)), this implies
our claim. In particular, in Proposition 5 only the alternative (23)
occurs. It follows that if the largest eigenvalue λ1 is sufficiently large,
then Equation (61) will be satisfied, if we assume the existence of a
C-subsolution.

Recall that gij̄ = χij̄ + uij̄ . Let us normalize u so that infM u = 0,
and consider the function

(138) G = log(λ1) + ψ(u),

where ψ : [0,∞)→ R is defined by

(139) ψ(x) = −Ax+
1

1 + x
− 1,
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for a constant A > 1 to be chosen later (this is the function used by
Phong–Sturm [30]). Then for x ≥ 0 we have

(140)

−Ax− 1 < ψ ≤ −Ax,
A < −ψ′ < 2A,

ψ′′ =
2

(1 + x)3
.

At the maximum of G we compute in coordinates as before, i.e., α is
the identity and g is diagonal, and we make a small perturbation to
the matrix αip̄gjp̄ by a diagonal matrix, so that the eigenvalues are
distinct at this point (this does not change λ1 at the origin). Writing
wk = −(B11)k/λ1 as before, at the origin we have

(141)
0 = Gk =

g11̄k

λ1
+ ψ′uk + wk,

0 ≥ L(G) = L(log λ̃1) + ψ′′F kkukuk̄ + F kkψ′ukk̄,

and so using (135)

(142) 0 ≥ ψ′′F kkukuk̄ + ψ′F kk(gkk̄ − χkk̄)− C0(F + λ−2
1 F kk|g11̄k|).

Using the properties of ψ, if we assume that λ1 > R for sufficiently large
R, we will have

(143) 0 ≥ 2(1 + u(0))−3F kk|uk|2 +AκF − C0F − C0λ
−2
1 F kk|g11̄k|.

Choose A so that Aκ = C0 + 1. This implies

(144) 0 ≥ 2(1 + u(0))−3F kk|uk|2 + F − C0λ
−2
1 F kk|g11̄k|.

Using the equation Gk = 0 we have (we can assume that |wk| < 1)

(145)
C0λ

−2
1 F kk|g11̄k| = C0λ

−1
1 F kk(|ψ′uk|+ 1)

≤ λ−1
1 F kk|uk|2 +

[
(2C0A)2 + C0

]
λ−1

1 F .

Using this in (144), we have

(146) 0 ≥
(

2(1+u(0))−3−λ−1
1

)
F kk|uk|2 +

(
1−
[
(2C0A)2 +C0

]
λ−1

1

)
F .

It follows that at the maximum of G we must have

(147) λ1 <
1

2
(1 + u(0))3 + C1,

where C1 only depends on the background data (we also choose C1 > R).
Therefore,

(148) G(0) < 3 log(1 + u(0)) + C2 −Au(0).

Since log(1 + x) ≤ x, we obtain

(149) G(0) < C2 − (A− 3)u(0) ≤ C2.
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Since G achieves its maximum at 0, we have G(p) ≤ C2 for all p, from
which we, finally, obtain the global estimate

(150) trαg ≤ CeA(u−infM u).

Note that we assumed infM u = 0 earlier but wrote this last estimate
in the usual form that is independent of the normalization of u. At
this point we can either use the C0-estimate Proposition 11 to obtain
an estimate for trαg, or this C0-estimate can be directly derived from
(150) as in Weinkove [46] or Tosatti–Weinkove [41].

5. Liouville theorem

Suppose as before, that Γ ⊂ Rn is an open convex cone, containing
the positive orthant Γn and not equal to all of Rn. In addition, assume
that Γ is preserved under permuting the coordinates. It follows that

(151) Γ ⊂ {(x1, . . . , xn) :
∑

xi > 0}.

Definition 15. Suppose u : Cn → R is continuous. We say that u is
a (viscosity) Γ-subsolution if for all h ∈ C2 such that u− h has a local
maximum at z, we have λ(hij̄) ∈ Γ, where λ(A) denotes the eigenvalues
of the Hermitian matrix A.

We say that u is a Γ-solution, if it is a Γ-subsolution and, in addition,
for all z ∈ Cn, if h ∈ C2 and u − h has a local minimum at z, then
λ(hij̄(z)) ∈ Rn \ Γ.

Note that (151) implies that every Γ-subsolution is subharmonic.
Suppose that we define the function F0 on the space of Hermitian ma-
trices by the property that

(152) λ(A)− F0(A)(1, 1, . . . , 1) ∈ Γ,

and define F on the space of symmetric 2n × 2n matrices by F (M) =
F0(p(M)), where

(153) p(M) =
M + JTMJ

2
,

and J is the standard complex structure. Then a Γ-subsolution (resp.
solution) u is the same as a viscosity subsolution (resp. solution) of
the nonlinear equation F (D2u) = 0. Note that F is concave and el-
liptic, but in general not uniformly elliptic. Many of the basic results
about viscosity subsolutions and solutions found in Caffarelli–Cabré [4]
can still be applied with the same proofs. In particular, we have the
following.

Proposition 16. 1) If uk are Γ-solutions (resp. subsolutions) con-
verging locally uniformly to u, then u is also a Γ-solution (resp.
subsolution).
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2) If u, v are Γ-subsolutions, then 1
2(u + v) is also a Γ-subsolution,

using that Γ is convex.

An important consequence is that mollifications of Γ-subsolutions are
again Γ-subsolutions. Indeed, a mollification can be written as a uniform
limit of averages of a larger and larger number of translates.

We will use the following simple comparison result.

Lemma 17. Suppose that u is a smooth Γ-subsolution and v is a
Γ-solution on a bounded open set Ω ⊂ Cn, and, in addition, u = v on
∂Ω. Then u ≤ v in Ω.

Proof. If v < u at some point in Ω, then v − u achieves a negative
minimum at a point in Ω, so for small ε > 0, the function v − u− ε|z|2
also has a minimum, at a point p ∈ Ω. Since v is a Γ-solution and u is
smooth, this implies that

(154) λ(uij̄ + εδij̄) ∈ Rn \ Γ.

This contradicts that u is a Γ-subsolution. Indeed, we have λ(uij̄) ∈ Γ,
and since Γn ⊂ Γ and Γ is convex, this implies λ(uij̄ + εδij̄) ∈ Γ. q.e.d.

Note that since the F defined by (152) is not uniformly elliptic, the
comparison result might not hold in full generality if u is only a contin-
uous Γ-subsolution. The following lemmas will be used in an inductive
argument.

Lemma 18. Suppose that Γ 6= Γn. Then Γ′ ⊂ Rn−1 given by

(155) Γ′ = {(x1, . . . , xn−1) : (x1, . . . , xn−1, 0) ∈ Γ}

satisfies the same conditions as Γ. I.e. Γ′ is a symmetric, open convex
cone, containing Γn−1, and Γ′ 6= Rn−1. In addition, Γ∩{xn = 0} = Γ′.

Proof. It is clear that Γ′ is a symmetric open cone, and Γ′ 6= Rn−1.
The assumption Γ 6= Γn, and openness of Γ, means that there is at
least one vector in Γ with a negative entry, and, in particular, Γ′ is
non-empty. Using that Γn ⊂ Γ and scaling, we can then obtain that for
a small ε > 0, we have e = (1, 1, . . . , 1,−ε) ∈ Γ.

If (x1, . . . , xn−1) ∈ Γn−1, then (x1 + 1, . . . , xn−1 + 1, ε) ∈ Γ, and
adding e to this vector we have (x1, . . . , xn−1, 0) ∈ Γ. This implies
(x1, . . . , xn−1) ∈ Γ′.

It remains to show the claim about Γ′. The inclusion Γ′ ⊂ Γ∩ {xn =
0} is clear (we are thinking of Γ′ as a subset of the hyperplane {xn = 0}
in Rn). For the reverse inclusion, suppose that x = (x1, . . . , xn−1, 0) ∈
Γ ∩ {xn = 0}. This implies that we have y(k) = (y

(k)
1 , . . . , y

(k)
n ) ∈ Γ

converging to x. If y
(ki)
n ≤ 0 along a subsequence, then

(156) y − y(ki)
n (1, 1, . . . , 1) ∈ Γ ∩ {xn = 0}
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also converges to x, and so (x1, . . . , xn−1) ∈ Γ′. Otherwise y
(ki)
n > 0

along a subsequence, in which case

(157) y + ε−1y(ki)
n e ∈ Γ

converges to x, and again (x1, . . . , xn−1) ∈ Γ′. q.e.d.

Lemma 19. Suppose that v : Cn → R is a Γ-solution, Γ 6= Γn, and
v is independent of the variable zn. Then letting Γ′ = Γ ∩ {xn = 0} ⊂
Rn−1, the function w(z1, . . . , zn−1) = v(z1, . . . , zn−1, 0) is a Γ′-solution
on Cn−1.

Proof. Suppose that h is smooth and w − h has a local maximum at
a point z = (z1, . . . , zn−1). Then v − H has a local maximum at Z =
(z1, . . . , zn−1, 0), where H(z1, . . . , zn) = h(z1, . . . , zn−1). Since v is a Γ-
subsolution, we have λ(Hij̄(Z)) ∈ Γ, and one eigenvalue is zero. Using

Lemma 18 this implies that λ(hij̄(z)) ∈ Γ′, so w is a Γ′-subsolution.
Similarly, if h is smooth and w − h has a local minimum at z, then

v−H has a local minimum at Z, which implies λ(Hij̄(z)) ∈ Rn \Γ, and

one eigenvalue is zero. So λ(hij̄(z)) ∈ Rn−1 \ Γ′. q.e.d.

Our goal in this section is the following result, generalizing the Li-
ouville theorem of Dinew–Kolodziej [11] (see also the analogous result
of Tosatti–Weinkove [40] for (n− 1)-plurisubharmonic functions). The
proof follows their arguments closely.

Theorem 20. Let u : Cn → R be a Lipschitz Γ-solution such that
|u| < C and u has Lipschitz constant bounded by C. Then u is constant.

Proof. We use induction over n. If n = 1, then u is harmonic, while
if Γ = Γn, then u is plurisubharmonic. In both cases the result follows
from the fact that a bounded subharmonic function on C is constant.
We, therefore, assume that n > 1 and Γ 6= Γn.

Suppose that u is non-constant, |∇u| < c0, and inf u = 0, supu = 1.
For any function v on Cn, let

(158) [v]r(z) =

∫
Cn

v(z + rz′)η(z′)βn(z′),

where β =
∑

i dzi ∧ dz̄i and η : Cn → R is a smooth mollifier satisfying
η > 0 in B(0, 1), η = 0 outside B(0, 1) and

∫
Cn ηβ

n = 1. We do
this instead of taking averages over balls in order to obtain a smooth
function. This is used in the comparison result Lemma 17. As in [11],
Cartan’s Lemma implies that

(159) lim
r→∞

[u2]r(z) = lim
r→∞

[u]r(z) = 1,

using that u and u2 are subharmonic.
It will be helpful to regularize u slightly, letting uε = [u]ε for ε > 0.

Just as in [11], there are two cases to consider.
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Case 1. In this case we assume that there is a ρ > 0, and sequences
εk → 0, xk ∈ Cn, rk →∞ and unit vectors ξk (of type (1, 0)), such that

(160) [u2]rk(xk) + [u]ρ(xk)− 2u(xk) ≥ 4/3,

and

(161) lim
k→∞

∫
B(xk,rk)

|∂ξku
εk |2 βn = 0.

In this case, translating and rotating u to make xk the origin, and
∂zn = ∂ξk , we obtain a sequence of Γ-solutions uk, such that

(162)

[u2
k]rk(0) + [uk]ρ(0)− 2uk(0) ≥ 4/3,

lim
k→∞

∫
B(0,rk)

|∂znuεkk |
2 βn = 0.

The uniform Lipschitz bound implies that we can replace uk by a subse-
quence, converging locally uniformly to v : Cn → R, which by Lemma 16
is also a Γ-solution with the same Lipschitz bound. In addition, we
also have that uεkk → v locally uniformly, since εk → 0. Just as in
[11], we find that v is independent of zn, and so we can define a func-
tion w : Cn−1 → R by w(z1, . . . , zn−1) = v(z1, . . . , zn−1, 0), and by
Lemma 19, w is a Γ′-solution with Γ′ = Γ ∩ {xn = 0}. The induction
hypothesis implies that w is constant, and so v is constant, but this
contradicts (160), using that 0 ≤ u ≤ 1.

Case 2. In this case, the assumption in Case 1 does not hold, so for all
ρ > 0, there is a constant Cρ > 0 such that if ε < C−1

ρ , r > Cρ, x ∈ Cn

and ξ is a unit vector, we have

(163)

∫
B(x,r)

|∂ξuε|2 dz ≥ C−1
ρ ,

as long as

(164) [u2]r(x) + [u]ρ(x)− 2u(x) ≥ 4/3.

We choose our origin so that u(0) < 1/9, and fix ρ > 0 such that
[u]ρ(0) > 3/4. Then choose r > Cρ such that [u2]r(0) > 3/4 as well.
Define the set

(165) U = {z : 2u(z) < [u2]r(z) + [u]ρ(z)− 4/3},

so that 0 ∈ U .

Claim. There is a constant c > 0 such that [(uε)2]r − c|z|2 is a Γ-
subsolution on U for all ε < C−1

ρ . We have

(166) (uε)2
ij̄ = 2uεuεij̄ + 2uεiu

ε
j̄ ,
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and so

(167)

[
(uε)2

]
r,ij̄

(z) =

∫
B(0,1)

(uε)2
ij̄(z + rz′) η(z′)βn(z′)

=

∫
B(0,1)

2uεuεij̄(z + rz′) η(z′)βn(z′)

+

∫
B(0,1)

2uεiu
ε
j̄(z + rz′) η(z′)βn(z′)

= Aij̄ +Bij̄ .

The subsolution property of uε together with the fact that Γ is convex
(i.e. the equation F (D2u) = 0 is concave) implies that the matrix A
satisfies λ(Aij̄) ∈ Γ. Using (163), we find that Bij̄ ≥ c2β for some

c2 > 0, and can choose c such that (c|z|2)ij̄ ≤ c2β. It then follows that

(168)
( [

(uε)2
]
r
− c|z|2

)
ij̄
≥ Aij̄ ,

in the sense of inequalities for Hermitian matrices, and so [(uε)2]r−c|z|2
is a Γ-subsolution. But this converges locally uniformly to [u2]r − c|z|2,
which is, therefore, also a Γ-subsolution.

Consider now the set

(169) U ′ = {z : 2u(z) < [u2]r(z)− c|z|2 + [u]ρ(z)− 4/3},
which satisfies U ′ ⊂ U , and, in addition, U ′ is bounded, by the assump-
tion that |u| ≤ 1. This contradicts the comparison result Lemma 17,
since u is a Γ-solution and as we have seen, [u2]r − c|z|2 + [u]p is a
Γ-subsolution on the set U . q.e.d.

6. Blowup argument

We now complete the proof of Theorem 2 using a blowup argument
analogous to that in [11], using the Liouville-type theorem, Theorem 20.

Proof of Theorem 2. Suppose that as in the introduction, (M,α) is
Hermitian, χ is a real (1, 1)-form, and g = χ+

√
−1∂∂u satisfies F (A) =

h, where Aij = αjp̄gip̄. We use Proposition 13, together with a con-
tradiction argument to obtain an estimate for |∇u|, depending on the
C2-norms of α, χ, h and the subsolution u, which in turn will imply an
estimate for ∆u. The C2,α-estimate follows from this by the Evans–
Krylov theory [12, 26, 38].

To argue by contradiction, suppose that F (A) = h, but

(170) sup
M
|∇u|2 = |∇u(p)|2 = N,

for some large N . Proposition 13 implies that we have

(171) |∂∂u|α ≤ CN,
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for a fixed constant C. Let α̃ = Nα. We can choose coordinates
z1, . . . , zn centered at p, such that in these coordinates α̃, χ, h satisfy

(172)

α̃ij̄ = δij̄ +O(N−1|z|),
χij̄ = O(N−1),

h = h(p) +O(N−1|z|),

and the zi are defined for |zi| < O(N1/2). The inequality (171) implies
that |∂∂u|α̃ ≤ C, and since α̃ is approximately Euclidean on the ball of

radius O(N1/2), we obtain a uniform bound

(173) ‖u‖C1,α < C ′,

on this ball, in these coordinates. The equation F (A) = h implies that

(174) f
(
Nλ
[
α̃jp̄(χip̄ + uip̄)

])
= h(z),

where f : Γ → R defines the operator F . Since we have a fixed bound
on uip̄, while χip̄ is going to zero and α̃jp̄ is approaching the identity
matrix, we obtain

(175) λ
[
α̃jp̄(χip̄ + uip̄)

]
= λ(uij̄) +O(N−1|z|).

Suppose now that we have a sequence of such α, χ, h and the sub-
solution u all bounded in C2, and with |u| uniformly bounded so that
Proposition 13 can be applied uniformly, and the constant N in (170)
gets larger and larger. The coordinates zi will then be defined on larger
and larger balls, and using the estimate (173) we can choose a subse-
quence converging uniformly in C1,α to a limit v : Cn → R. By the
construction we will have global bounds |v|, |∇v| < C, and |∇v(0)| = 1.

The proof will be completed by showing that v is a Γ-solution, in the
sense of Definition 15, since that will contradict Theorem 20. To see
this, suppose first that we have a C2-function ψ, such that ψ ≥ v, and
ψ(z0) = v(z0) for some point z0. We need to show that λ(ψij̄(z0)) ∈ Γ.
By the construction of v, for any ε > 0 we can find a u as above,
corresponding to a sufficiently large N , a number a with |a| < ε, and a
point z1 with |z1 − z0| < ε, such that

(176) ψ + ε|z − z0|2 + a ≥ u on B1(z0), with equality at z1.

This implies that ψij̄(z1)+ εδij̄ ≥ uij̄(z1). From (175), and the fact that

Γn ⊂ Γ we obtain that for large N , λ
[
ψij̄(z1)

]
will be within 2ε of Γ.

Letting ε→ 0 we find that λ
[
ψij̄(z0)

]
∈ Γ.

Suppose now that we have a C2-function ψ such that ψ ≤ v and
ψ(z0) = v(z0). We need to show λ

[
ψij̄(z0)

]
∈ Rn \Γ. As above, for any

ε > 0 we can find a u corresponding to large N , and a, z1, such that

(177) ψ − ε|z − z0|2 + a ≤ u on B1(z0), with equality at z1.
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This implies that ψij̄(z1)−εδij̄ ≤ uij̄(z1). This implies that if λ(ψij̄(z1)−
3εδij̄) ∈ Γ, then we will have λ(uij̄) ∈ Γ + 2ε1. Using (175), if N is
sufficiently large, we will have

(178) λ
[
α̃jp̄(χip̄ + uip̄)

]
∈ Γ + ε1.

Finally, by Lemma 9 part (a), our assumptions for f in the introduction
imply that if N is sufficiently large, then we cannot have (174), since
we have a fixed bound for h, which must be less than supΓ f . It follows
that we cannot have λ(ψij̄(z1)) ∈ Γ + 3ε1. Letting ε → 0 we will have
z1 → z0, and so λ(ψij̄(z0)) ∈ Rn \Γ. This completes the proof that v is
a Γ-solution. q.e.d.

7. Hessian quotient equations

In this section, we prove Corollary 3 as an application of Theorem 2,
and we also discuss equations for (n−1)-plurisubharmonic functions. As
we mentioned in the introduction it is somewhat difficult to formulate
very general existence results, in contrast to the case of the Dirichlet
problem in [5], because on a compact manifold the constant functions
are not in the image of the linearized operator of Equation (1). In
particular, if we consider only equations with constant right hand side,
F (A) = c, then a solution can only exist for a unique constant. If we
do not know a priori what the right constant is, then we cannot ensure
that along a suitable continuity path we have a C-subsolution for the
whole path. This issue does not arise when any admissible function is
a C-subsolution, which is the case for the complex Monge–Ampère and
Hessian equations, for instance. We, therefore, have the following.

Proposition 21. Let (M,α) be compact, Hermitian, let χ be a k-
positive real (1, 1)-form on M and let 1 ≤ k ≤ n. Given any smooth
function H on M , we can find a constant c and a function u, such that
the form ω = χ+

√
−1∂∂u satisfies the equation

(179) ωk ∧ αn−k = eH+cαn.

Note that for k = 1 this is the Poisson equation whose solution is
standard, while for k = n it is the complex Monge–Ampère equation,
which was solved on Kähler manifolds by Yau [47] and by Tosatti–
Weinkove [41] on Hermitian manifolds. For 1 < k < n it was solved
by Dinew–Kolodziej [11] on Kähler manifolds, and by Sun [34] on Her-
mitian manifolds (see also Zhang [48]). For the reader’s convenience we
present the proof here.

Proof. We can write the equation in the form F (A) = h, for a positive
function H depending on h, where F is defined by the function

(180) f = log σk,
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on the k-positive cone Γk:

(181) Γk = {λ : σ1(λ), . . . , σk(λ) > 0}.

This satisfies the structural conditions that we use (see Spruck [33]).
In addition, u = 0 is a subsolution if χ is any k-positive form. We
can see this using Remark 8 together with the fact that for any µ =
(µ1, . . . , µn) ∈ Γk we have

(182) lim
t→∞

σk(µ1, . . . , µn−1, t) =∞.

We, therefore, have great flexibility in setting up a continuity method.
For instance, we can let H0 be the function such that

(183) χk ∧ αn−k = eH0αn,

and then solve the family of equations

(184) log
(χ+

√
−1∂∂ut)

k ∧ αn−k

αn
= tH + (1− t)H0 + ct,

for t ∈ [0, 1], where ct are constants. For t = 0 a solution is u0 =
0, c0 = 0. Openness follows from the fact that if L denotes the linearized
operator at any t ∈ [0, 1], then the operator

(185)
Ck,β ×R→ Ck−2,β,

(v, c) 7→ Lv + c

is surjective. To obtain a priori estimates for the solutions we can first
obtain bounds for ct from above and below by looking at the points
where ut achieves its maximum and minimum in Equation (184). Given
this, Theorem 2 gives higher order estimates. q.e.d.

We next focus on the Hessian quotient equation

(186) ωl ∧ αn−l = cωk ∧ αn−k,

where (M,α) is Kähler, 1 ≤ l < k ≤ n, and ω = χ +
√
−1∂∂u with

a fixed, closed background form χ. We assume that the constant c is
chosen so that

(187) c =

∫
M χl ∧ αn−l∫
M χk ∧ αn−k

.

The standard way of writing our equation would be to use the function
g = (σk/σl)

1/(k−l) on Γk. This function satisfies the required conditions
(see Spruck [33]), however, it seems not to be well adapted to setting
up a continuity method. Instead we will write the equation in the form

(188) − ωl ∧ αn−l

ωk ∧ αn−k
= −c,
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which is the same as F (A) = −c with F defined by the function

(189) f = −
(
n
l

)−1
σl(

n
k

)−1
σk
.

Note that again f is concave, since f = −g−(k−l). We will use a con-
tinuity method interpolating between this, and the Hessian equation,
given by the function

(190) f0 = − 1(
n
k

)−1
σk
.

In other words, we will try to solve the equation

(191) t
ωl ∧ αn−l

ωk ∧ αn−k
+ (1− t) αn

ωk ∧ αn−k
= ct,

for t ∈ [0, 1].
Corollary 3 follows from the following.

Proposition 22. Suppose that χ is a closed k-positive form, satisfy-
ing

(192) kcχk−1 ∧ αn−k − lχl−1 ∧ αn−l > 0,

in the sense of positivity of (n − 1, n − 1)-forms, where c is defined by
(187). Equation (191) has a solution for all t ∈ [0, 1], for suitable ct,
such that c1 = c.

Proof. For t = 0 we can solve the equation using Proposition 21, and
openness follows in the same way as in the proof of that proposition. It
remains to obtain a priori estimates.

Note first of all, that by integrating (191) on M with respect to
ωk ∧ αn−k, we find that ct ≥ tc for t ∈ [0, 1]. Writing Equation (191) in
the form

(193) ft(λ) = −t
(
n
l

)−1
σl(

n
k

)−1
σk
− (1− t) 1(

n
k

)−1
σk

= −ct,

the equation satisfies our structural assumptions, and we claim that
u = 0 is a C-subsolution for it. For this, let µi denote the eigenvalues
of αjp̄χjp̄. By Remark 8 we just need to check that if µ′ denotes any
(n− 1)-tuple from the µi, then

(194) lim
R→∞

ft(µ
′, R) > −ct,

which by the formula for ft means

(195) − t
(
n
l

)−1
σl−1(µ′)(

n
k

)−1
σk−1(µ′)

> −ct.
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To rewrite this in terms of the forms χ, α, note that at any given point, if
we restrict ourselves to the subspace of the tangent space of M spanned
by the eigenvectors corresponding to µ′, then on this subspace

(196) σi−1(µ′) =

(
n− 1

i− 1

)
χi−1 ∧ αn−i

αn−1
,

for all i. Applying this to i = l, k we find that (195) is equivalent to the
inequality

(197) kctχ
k−1 ∧ αn−k − ltχl−1 ∧ αn−l > 0,

for (n − 1, n − 1)-forms. Since χ is k-positive and ct ≥ tc, this follows
from (192). Theorem 2 will then give uniform estimates for t in any
compact interval [c, 1] for c > 0. q.e.d.

It is an interesting problem to find geometric conditions which ensure
the existence of a C-subsolution. In analogy with the conjecture in [27]
regarding the case when k = n, l = n− 1, it is natural to conjecture the
following.

Conjecture 23. Suppose that χ is a closed k-positive form. Then
we can find a k-positive χ′ ∈ [χ] satisfying the inequality (192) with
χ′ instead of χ if and only if for all subvarieties V ⊂ M of dimension
p = n− l, . . . , n− 1 we have

(198)

∫
V
c

k!

(k − n+ p)!
χk−n+p∧αn−k− l!

(l − n+ p)!
χl−n+p∧αn−l > 0.

As we mentioned in the introduction, this conjecture has recently
been resolved in [8] in the case when M is a toric manifold, and k =
n, l = n − 1, but cases beyond this are mostly open. Another related
problem is to characterize real (1,1)-classes which admit k-positive rep-
resentatives, in analogy with the result of Demailly–Paun [10] in the
case k = n. Such k-positive representatives provide C-subsolutions for
the Hessian equation (179).

An equation related to the complex Monge–Ampère equation was
introduced by Fu–Wang–Wu [16]. Given Hermitian metrics α, η and a
function h, the equation can be written as

(199) det

(
ηij̄ +

1

n− 1

[
(∆u)αij̄ − uij̄

])
= eh detα,

where we require that the form inside the determinant on the left hand
side is positive definite, and ∆ denotes the (complex) Laplacian with
respect to α. Let us define the form

(200) χij̄ = (trαη)αij̄ − (n− 1)ηij̄ ,

and denote by T the map T (A) = 1
n−1(Tr(A)I −A) on matrices, where

I is the identity. Write gij̄ = χij̄ +uij̄ , and Aij = αip̄gjp̄ as before. Then
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Equation (199) is equivalent to the equation

(201) log det(T (A)) = h.

In other words, we can write our equation as F (A) = h, where F is
determined by the symmetric function

(202) f(λ) = log

n∏
k=1

T (λ)k,

where abusing notation we denote by T : Rn → Rn the map with
components

(203) T (λ)k =
1

n− 1

∑
i 6=k

λi,

giving the map on eigenvalues corresponding to the matrix map T above.
The conditions (i), (ii), (iii) in the introduction hold for this function
f on the pre-image T−1(Γn) of the positive orthant under T , and so
using Theorem 2 we can obtain a priori estimates. Moreover, from
Remark 8, we see that u = 0 is a C-subsolution, whenever η is positive
definite in Equation (199), since then f(λ) → ∞ if we let any one
component of λ go to infinity. In particular, the same argument as
in the proof of Proposition 21 can be used to show that if η is positive
definite, then Equation (199) admits a smooth solution u for any smooth
h, up to adding a constant to h. This recovers the result of Tosatti–
Weinkove [40] in the case when α is Kähler, and Tosatti–Weinkove [39]
when α is Hermitian (see also Fu–Wang–Wu [15] for an earlier result
under a non-negative curvature assumption for α).

One can also consider more general equations in this vein, for in-
stance, those given by the functions

(204) f(λ) = log
σk(T (λ))

σl(T (λ))
,

for 0 ≤ l < k ≤ n, where T : Rn → Rn is the map above. Using
that T maps Γn into itself, one sees that these f satisfy the condi-
tions (i), (ii), (iii) in the introduction on the preimage T−1(Γk) of the
k-positive cone Γk. When l > 0, the subsolution condition is non-
trivial (i.e. it depends on h), so we do not expect to be able to solve
F (A) = h for all h, even up to adding a constant to h. However,
when l = 0, and the background form χ is such that u = 0 is a C-
subsolution, then 0 will be a C-subsolution for all h, since in this case
we have limt→∞ f(λ+ tei) =∞ for all i. In particular, the same argu-
ment as the proof of Proposition 21 implies the following, which answers
a question raised in Tosatti–Wang–Weinkove–Yang [38].

Proposition 24. Let (M,α) be a compact Hermitian manifold, η a
k-positive real (1, 1)-form, and 1 ≤ k ≤ n. For any smooth function H
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on M we can find a constant c and a function u satisfying the equation

(205)

(
η +

1

n− 1

[
(∆u)α−

√
−1∂∂u

])k
∧ αn−k = eH+cαn.

Here ∆ denotes the complex Laplacian with respect to α, i.e. ∆u =
αpq̄upq̄.

To see this, note that as for Equation (199), we write the equation in
the form F (A) = h where Aij = αip̄(χjp̄+ujp̄) in terms of the background

form χ given by (200). If η is k-positive, then the eigenvalues of αip̄χjp̄ =
T−1(αip̄ηjp̄) lie in the preimage T−1(Γk) of the k-positive cone, and so
0 is a C-subsolution.

8. Equations on Riemannian manifolds

In this section, we will describe how the methods in this paper apply
to equations analogous to (1) on Riemannian manifolds as well. So, in
this section, we let (M,α) be a compact Riemannian manifold and χ
a fixed tensor of type (0,2). Suppose we are interested in solving the
equation

(206) F (A) = h,

where analogously to before, A is the endomorphism of the tangent
bundle given by Aij = αip(χjp + ujp) for the unknown function u, and
ujp denote covariant derivatives with respect to α. This endomorphism
is symmetric with respect to the inner product defined by α at each
point, and as before F (A) = f(λ(A)) in terms of the eigenvalues λ(A)
of A. We assume that f satisfies the structural conditions (i), (ii), (iii)
from the introduction.

Everything that we have done in the Hermitian case applies in this
Riemannian setting as well, with almost exactly the same proof. There
are no torsion terms, but instead there are some extra curvature terms
obtained when commuting derivatives. We briefly note some of the
differences. In (76) we obtain

(207) u11kk = ukk11 +O(λ1),

while in (83) we obtain

(208) g11k = gk11 +O(K1/2),

and so

(209) |g11k|2 ≤ |gk11|2 + C0(K1/2|g11̄k|+K).

The upshot is that we have the following analogous inequality to (85):

(210) L(log λ̃1) ≥ −F
pq,rsgpq1grs1
λ1

− F kk|gk11|2

λ2
1

− C0(F +K1/2|g11̄k).
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Using this the rest of the argument in the C2-estimate is essentially
identical.

The Riemannian case has the distinct advantage in that when using
the concavity of the operator as in (67), we get twice as many useful
terms as in the complex case:

(211) F ij,rsuij1urs1 ≤ 2
∑
k>1

f1 − fk
λ1 − λk

|uk11|2.

In the complex case the corresponding extra terms are |u1k̄1|2, which do
not appear to be useful in the estimates. A consequence of this is that in
the real case it is more straight forward to control the bad negative term
involving |g11k|2. See, for instance, Guan–Jiao [21] for such estimates.

In the proof of Theorem 20, when we start the induction argument,
the case n = 1 corresponds to bounded linear functions on R being con-
stant, while the case Γ = Γn corresponds to bounded convex functions
on Rn being constant.

Just as before, a function u is a C-subsolution for the equation F (A) =
h, if the matrix Bi

j = αip(χjp + ujp) is such that the set (λ(B) + Γn) ∩
∂Γh(x) is bounded at each x ∈M . We then have the following.

Proposition 25. Suppose that there exists a C-subsolution u for the
equation F (A) = h as above. Normalizing u so that supM u = 0, we
have a priori estimates ‖u‖C2,α < C, with constant depending on the
background data as well as the subsolution u.

This result generalizes several earlier results on these types of equa-
tions on compact Riemannian manifolds, such as Li [29], Delanoë [9]
who made non-negative curvature assumptions, and Urbas [45],
Guan [20], who have stronger structural assumptions. In particular,
in Urbas [45] the question of solving the Hessian quotient equations
analogous to (186) on compact Riemannian manifolds is raised. This is
formulated as the equation

(212) logF (A) = h+ c,

where h is a given function, the function u and constant c are the un-
knowns, and F is given by the function

(213) f =

(
σk
σl

) 1
k−l

,

for some 1 ≤ l < k ≤ n.
In analogy with the Kähler case, it is natural to expect that these

equations do not always have a solution, but it seems to be difficult to
formulate a condition as precise as that in Conjecture 23. Instead we
formulate a general existence result, focusing for simplicity on equations
of the form F (A) = c with constant c. Note that if F is homogeneous
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and positive, then the restriction to constant right hand side can be
removed by scaling the metric α.

Proposition 26. Suppose that sup∂Γ f = −∞, and supΓf =∞. Let
h0 = F (αipχjp). If the equation F (A) = supM h0 admits a C-subsolution
u, then the equation F (A) = c has a solution for some constant c.

Proof. We want to use the continuity method to solve the equations

(214) F (A) = ct + (1− t)h0,

for t ∈ [0, 1] with constants ct. For t = 0 the solution is u = c0 = 0, and
openness follows using the implicit function theorem as before.

To find a priori estimates, the only thing we need is C-subsolutions for
each t, and we need to make sure that the range of the right hand side
ct+ (1− t)h0 is contained in a compact subset of the range of f in order
to obtain uniform constants. Suppose that u is a solution of (214) and u
achieves its minimum and maximum at p ∈M and q ∈M , respectively.
We then have F (A) ≥ F (αipχjp) at p and F (A) ≤ F (αipχjp) at q. It
follows that

(215) h0(p) ≤ ct + (1− t)h0(p),

i.e., ct ≥ th0(p), and, similarly, ct ≤ th0(q). In particular, we obtain
upper and lower bounds for ct + (1 − t)h0, whose range is then in a
compact subset of the range of f by our assumption for f . More precisely
at any x ∈M we have

(216) ct + (1− t)h0(x) ≤ th0(q) + (1− t)h0(x) ≤ sup
M

h0,

which implies that u is a C-subsolution for Equation (214) for each t.
Proposition 25 then implies the required estimates. q.e.d.

References

[1] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc.
Var. Partial Differential Equations, 2 (1994), pp. 151–171, MR1385524, Zbl
0805.35048.

[2] Z. B locki, On uniform estimate in Calabi–Yautheorem, Sci. China Ser. A, 48
(2005), pp. 244–247, MR2156505, Zbl 1128.32025.

[3] Z. B locki, On the uniform estimate in the Calabi–Yau theorem, II, Sci. China
Math., 54 (2011), pp. 1375–1377, MR2817572, Zbl 1239.32032.
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