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Abstract: We construct a family of isometric immersions of R2 into R4 with vanishing

normal curvature.
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1. Introduction and result. Hartman [2]

showed that, for each pair of integers ðn; pÞ with

1 � p < n, an isometric immersion f of Rn into

Rnþp is reduced to an isometric immersion h of Rp

into R2p, f ¼ B � ð1� hÞ �A, where A is an isome-

try of Rn, B is an isometry of Rnþp, and 1 is the

identity mapping of Rn�p. For p ¼ 1, every h is

completely charaterized by a real-valued function of

a single variable (see Dajczer et al. [1]). For p � 2,

the problem of describing all h remains elusive, even

for p ¼ 2.

Few isometric immersions of R2 into R4 are

known. In this paper, we construct a family of

new isometric immersions with vanishing normal

curvature by getting solutions of a system of second

order partial differential equations of hyperbolic

type. The definition of the normal curvature Rn is

given in [3], p. 526.

We are in the C!-category, unless otherwise is

stated.

Proposition 1. There exists a family of iso-

metric immersions of R2 into R4 with vanishing

normal curvature, each of which depends on four

real parameters s, a, b, c and an analytic function w

on R2.

Corollary. Except for one, every immersion

f in the family is not a Riemannian product of

two curves in R4 (see Remark 1 below). As R4-val-

ued functions, every such f is an analytic function

on R2 everywhere.

2. Preliminaries. We recall basic results

(see [3]). Let ðx; yÞ be a standard coordinate system

of R2 and D a domain in R4. For real-valued

functions u1 and u2 defined on R2 �D, let us

consider a system of total differential equations for

R4-valued functions f, e1, e2, e3 and e4.

df ¼ ðdxÞe1 þ ðdyÞe2;ð1Þ
de1 ¼ dð@xu2Þe3 � dð@xu1Þe4;

de2 ¼ dð@yu2Þe3 � dð@yu1Þe4;

de3 ¼ �dð@xu2Þe1 � dð@yu2Þe2;

de4 ¼ dð@xu1Þe1 þ dð@yu1Þe2:

The integrability condition of equations (1) is

interpreted as a system of the following partial

differential equations of hyperbolic type.

ð@2
xu2 � @2

yu2Þð@x@yu1Þ ¼ ð@2
xu1 � @2

yu1Þð@x@yu2Þ;ð2Þ
ð@2

xu1Þð@2
yu1Þ þ ð@2

xu2Þð@2
yu2Þ

¼ ð@x@yu1Þ2 þ ð@x@yu2Þ2:
Getting solutions u1 and u2 of (2) and applying

Proposition 1.1 of [3], we shall prove our main

results in the next section.

3. Proof of the result.

3.1. Solutions of partial differential equa-

tions (2). Let a, b, c, ðc < bÞ be positive constants

and s a constant. We define the real numbers �, �, e

by

� ¼
1� abþ ðaþ bÞc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1
p ;ð3Þ

� ¼
�ð1� abÞcþ aþ b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1
p ;

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1

p
� c:

Let us define a function wðx; yÞ on R2 by F ðxþ eyÞ,
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where F ðtÞ is a real analytic function defined on

whole R with F ð0Þ ¼ F 0ð0Þ ¼ F 00ð0Þ ¼ 0.

Lemma 1. For each function wðx; yÞ as

above, the functions

u1 ¼ s
�
ðb=2þ �Þx2 þ xyþ ð�b=2þ �Þy2ð4Þ

þ wðx; yÞ
�
;

u2 ¼ s
�
ðab=2þ �Þx2 þ axy

þ ð�ab=2þ �Þy2 þ awðx; yÞ
�

are solutions of the equations (2).

Proof. Denote by h the partial derivative

@2
xwðx; yÞ. Then, we have the identities

@x@ywðx; yÞ ¼ eh and @2
ywðx; yÞ ¼ e2h from which

the identities

ð@2
x � @2

yÞu2 ¼ að@2
x � @2

yÞu1 ¼ as 2bþ ð1� e2Þh
� �

;

@x@yu2 ¼ að@x@yu1Þ ¼ asð1þ ehÞ
follows, and hence u1; u2 are solutions of the first

equation of (2).

Since the function h has no constant terms, the

left-hand side of the second equation (2) is of the

form.

s2 �þ �hþ �h2
� �

;ð5Þ

where

� ¼ 4ð�2 þ �2Þ � ða2 þ 1Þb2;

� ¼ ða2 þ 1Þbðe2 � 1Þ þ 2ð�þ a�Þðe2 þ 1Þ;
� ¼ ða2 þ 1Þe2:

The right-hand side of the second equation (2) is of

the form.

ða2 þ 1Þs2ð1þ 2ehþ e2h2Þ:ð6Þ

From (5) and (6) together with (3) it follows that

u1; u2 are solutions of the second equation of (2).�

3.2. Equivalence relation. We recall here

classical isometric immersions of R2 into R4, and

introduce an equivalence relation.

Example 1. The mapping �, �ðx; yÞ ¼
ðcðxÞ; yÞ, is an isometric immersion of R2 into R4,

where cðxÞ is a curve in R3 ¼� R3 � f0g, x being the

arc length parameter.

Example 2. The mapping �, �ðx; yÞ ¼
ðc1ðxÞ; c2ðyÞÞ is an isometric immersion of R2 into

R4, where, c1ðxÞ (resp. c2ðyÞ) is a curve in R2 ¼�
R2 � fð0; 0Þg (resp. R2 ¼� fð0; 0Þg �R2), x and y

being the arc length parameters. In Examples 1

and 2, we mean ¼� by a congruent under the action

of Oð4Þ on R4.

An isometry � of Rn onto itself is given by

�ðx1; 	 	 	 ; xnÞ ¼ ðx1; 	 	 	 ; xnÞ� þ ðb1; 	 	 	 ; bnÞ;

where bi are constants, � ¼ ðaijÞ is in OðnÞ, the

orthogonal group.

Denote by F the space of all isometric immer-

sions of R2 into R4, and introduce a relation � in F .

Two elements f and h of F are said to be equivalent

if and only if h � � ¼  � f with an isometry � of R2

and an isometry  of R4. The relation � is an

equivalence relation.

Definition. An element f of F is said to be a

Riemannian product of two curves in R4 if f is

equivalent to an isometric immersion � in Exam-

ple 1, or to an isometric immersion � in Example 2.

Lemma 2. Let fða; b; c; s; wðx; yÞÞ (denote by

f�) be an element of F , which is constructed by

functions u1 and u2 as in Lemma 1. If s 6¼ 0, then the

immersion f� is not a Riemannian product of two

curves in R4.

Proof. We prove that f� is not related to one in

Example 1. Similarly, f� will not be related to an

isometric immersion in Example 2.

By using (1), it can be easily shown that an

isometric immersion f given in Proposition 2 is

related to one in Example 1 if and only if for a

constant 	; ð�
 < 2	 � 
Þ, the following equations

hold identically.

ðsin2 	Þ@2
xui þ ðcos2 	Þ@2

yui � ðsin 2	Þ@x@yui ¼ 0;ð7Þ
ði ¼ 1; 2Þ:

We now prove Lemma 2 by reduction to

absurdity. Suppose that for a constant 	, all the

equations (7) (with uj in (3)) hold identically. The

constant terms in (7) are of the form.

s
�
ðsin2 	Þðb=2þ �Þ � ðsin 2	Þð8Þ
þ ðcos2 	Þð�b=2þ �Þ

�
¼ 0;

s
�
ðsin2 	Þðab=2þ �Þ � aðsin 2	Þ
þ ðcos2 	Þð�ab=2þ �Þ

�
¼ 0:

Multiplying a on the first equation of (8) and

subtracting the second one of (8), we have an

equality sða�� �Þ ¼ 0. The equality is inconsistent

with the condition sðb� cÞ 6¼ 0 by virtue of (3). �

Lemmas 1 and 2 imply that Proposition 1 is

valid.

Remark 1. If s ¼ 0 in Lemma 1, the func-

tions u1 and u2 are identically zero, and hence f is

a standard isometric imbedding of R2 into R4 with
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a standard basis fe1; e2; e3; e4g along the isometric

immersion f .

By using Lemma 3 below, fða; b; c; s; wðx; yÞÞ
depends only on parameters a, b, c and s, and an

analytic function wðx; yÞ.
3.3. Solutions of partial differential equa-

tions (1). Next lemma is given by Prof. N.

Shimakura.

Lemma 3. Let fe1; e2; e3; e4g be functions of

class C2 of ðx; yÞ defined in an open subset � in R2

with values in R4 which satisfy the equations

@xej ¼
X4

k¼1

sjkðx; yÞek; @yej ¼
X4

k¼1

tjkðx; yÞekð9Þ

ðj ¼ 1; 2; 3; 4Þ:
If sjk and tjk are real-analytic functions of ðx; yÞ in

�, then e1, e2, e3, e4 are real-analytic functions of

ðx; yÞ in �.

Proof. If ! is an open subset of � whose closure

is a compact subset of �, there exist positive

number �1 and �1 independent of x, y such that

j@px@qysjkj þ j@px@qytjkj � �1�
pþq
1 p!q!ð10Þ

ðj; k ¼ 1; 2; 3; 4Þ
for all integers p � 0 and q � 0 if ðx; yÞ 2 !. Let us

show that there exist positive numbers �2 and �2

independent of x, y such that

k@px@qyejk � �2�
pþq
2 p!q! ðj ¼ 1; 2; 3; 4Þð11Þ

for all integers p � 0 and q � 0 if ðx; yÞ 2 !.

(11) is true for p ¼ q ¼ 0 with �2 ¼ 1 and a

�2 > 0. Given n, assume (11) for all p, q satisfying

pþ q � n with a �2 > 0 and a �2. The Leibniz

formula

@pþ1
x @qyej ¼

X4

k¼1

Xp

p0¼0

Xq

q0¼0

p!q!

p0!ðp� p0Þ!q0!ðq � q0Þ!

� ð@p0x @q
0

y sjkÞð@p�p
0

x @q�q
0

y ekÞ

and (10), (11) with pþ q � n yield

k@pþ1
x @qyejk �

X4

k¼1

Xp

p0¼0

Xq

q0¼0

p!q!�1�
p0þq0
1 �2�

p�p0þq�q0
2

¼ 4�1�2p!q!
Xp

p0¼0

Xq

q0¼0

�p
0þq0

1 �p�p
0þq�q0

2 :

If we choose a �2 greater than �1, the right-hand

side is smaller than

4�1�2ðpþ 1Þ!q!�p2
Xq

q0¼0

�q
0

1 �
q�q0
2

< 4�1�2ðpþ 1Þ!q!�pþqþ1
2 =ð�2 � �1Þ:

If we choose again a �2 greater than �1 þ 4�1, we

have

k@pþ1
x @qyejk < �2ðpþ 1Þ!q!�pþqþ1

2 :

We can prove for this choice of �2 and �2 also that

k@px@qþ1
y ejk < �2p!ðq þ 1Þ!�pþqþ1

2

starting from @yej ¼
P

k tjkek. So, (11) is true for all

p and q satisfying pþ q � nþ 1, and hence for all

p � 0 and q � 0 if ðx; yÞ 2 !. �

Proof of the corollary. Let uj; ðj ¼ 1; 2Þ be

functions given in (3). By applying Lemma 3 in

case where

s12¼ 0; t12¼ 0; s23¼ t13 ¼ @x@yu2;

s13¼ @2
xu2; t23¼ @2

yu2; s24¼ t14 ¼ �@x@yu1;

s14¼ �@2
xu1; t24¼ �@2

yu1; s34¼ t34 ¼ 0;

sjk¼ �skj; tjk¼ �tkj; ðj; k ¼ 1; 2; 3; 4Þ;
the solutions e1, e2, e3, e4 of (1) are real-analytic

functions on R2, so is the solution f of (1). �
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