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1. Let E, be an elliptic curve defined over Q(4,, 4,, A, A,, A,) by
the equation :
(1) Y+Axy+Ay=2"+Ax"+Ax+ A4,
in (z, ¥)-plane. Let u=-—z/y, w=-—1/y. () is then represented by
the equation:
w=u+Auw+ A uw -+ Aw + A uw+ Aw?
in (u, w)-plane. Then we get the formal expansion
(2) w=uw'+Au + A+ A)w + (A3 +24, A, +A)u' + - - -.
Denote by & ,(u) the right hand side of (2). Then % ,(x) has coefficients
in Z[Al’ A, Aa’ Au Ae]-

Now we regard E, as a plane cubic model of an abelian variety
of dimension 1. (0,0)e E, in (u, w)-plane is denoted by O, which is
zero for the group law additively expressed in the abelian variety E,.
O is the point at infinity of £, in (x, ¥)-plane.

Let P,=(u;,, w,) € F, in (u, w)-plane (=1, 2, 3) and P,=P,+P,, the
addition being performed in the abelian variety E,.

Then we have
(3) uy=F ,(uy, u) =u, +u, — A0, — A (WU, +0,%3)

—2A,(wiu, +wd) + (A, A, —BA)wdus+ - - -
F ,(u,, w,) is a generic formal group.

Leta,eR,t=1,2,3,40r 6. If we substitute a, to 4, in (1), we
get an elliptic curve defined over K, which we shall denote E from
now on. The formal group F'(u,, u,) over R associated with this F is
obtained from (8) by the above substitutions. (Cf. [2]-[4], [6], [11],
[13].)

Denote by E(K) the set of K-rational points and the point at in-
finity of E in (x, ¥)-plane.

If P=(x,y) e E(K) in (x, y)-plane satisfies v(x)<0 or »(y)<0, we
have v(x)= —2m, v(y)= —3m and x=a'/7z*", y=y'/z*™ where 2/, ¥’ are
units in R, and m is an integer. In this case, we write N(P)=m and
we put N(O)=o0. We define now E(@")={P|N(P)=n}. If E(=") is
represented in (u, w)-plane, it consists of the origin and the point
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@™, n*™w’) (m=n), where ', w’ are units in R.

2. It is well-known that E(z") is a subgroup of the abelian
variety E. Now we have

Proposition 3. The map (u, w)—u 18 an isomorphism E(z")
—(p", 1), where we define (p*, +) by the formal group F associated
with E. (Cf. Tate [11] Theorem 3, p. 189.)

Let « be defined as in I ([9]) for the formal group F(u,, u,). Since
(", +) with »>« is an R-module as shown in I ([9]), we can define in
E(z") a structure of R-module by the isomorphism of Proposition 3.

From Proposition 3 and I, we obtain the following

Theorem 4. In the same notations as above, E(z") is isomorphic
as R-module to p*, when n>a.

Corollary. When k is a finite field with cardinal p’, E(x) is o
product of a free Z,-module of rank ef and o finite abelian group of a
p-power order.

As the formal group F associated with E can be regarded as a
specialization of the generic formal group F,, the results of II ([10])
can be applied to obtain more explicit issues. For example we have

Theorem 5. Let a torsion point P e E(z™) of a finite order p™ be
represented by (u, w) in (u, w)-plane. Then

() - A ——
(ﬂph')n_(ﬂph’)n—l
where y, ' have the same meanings as in Theorem 2.

Remark. Corollary of Theorem 4 and Theorem 5 cover the re-
sults of Cassels [1] and Oort [8].

3. Now, we have the following known results for the height of
formal groups associated with elliptic curves £. When E has a good
reduction £ mod p, E is defined over k. Let F be the reduction of F
mod p. F is also defined over k& and the height # of Fis 1 or 2. (Cf.
[6], [11], [13].) When E has bad reduction mod p, we have h= oo if E
has a cusp, and h=1 if £ has a node. (Cf. [13].)

As this holds also clearly for %/, the only possible values of h (resp.
k) arel, 2, .

Using this, we get the following theorem improving the classical
result proved by Weil and Lutz ([12], [7]).

Theorem 6. Let ch(k)=p, and A,=A,=A,=01in (1) E(=") is iso-
morphic to p* as R-module, if any one of the following conditions is
satisfied

@ p=5andn>e/(p—1)

(b) p=3andn>e/8

(¢) p=2and n>0.

Remark. By a similar reasoning as above, we see for example
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that E'(z") is isomorphic to p", when
ch (k)=2, 2]|a,, a,, a; and n>0.
4. Finally, we mention an application to the torsion point of
E (K) defined as follows™.
E(K)={P|P e E(K), Pe £, (k)
where E,, is the nonsingular part of the reduction E of E modp and
E.(k)=E,, E(k). 1Itis known that the kernel of the reduction map
E(K)—E, (k) is E(x). (Cf. [11].)
By Theorem 2 we obtain
Theorem 7. Let e/(up™ —1)<1. The subgroup of E(K) con-
sisting of torsion elements, is mapped injectively into E, (k) by the
reduction map (Katz [5]).
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# A point P in projective 2-space Py(K) over K can be represented by (%o, *1, *2)
where x;¢ R(:=0,1,2) and one of w, #1,%; is a unit in R. Then we define P
=(Zo, Z1, Z2) in Po(k) where z;=x; mod y.



