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§1. Let {c,} be an infinite sequence of real numbers, and let (T'c),,
denote the n-th arithmetic mean of {c,}, i.e.

To),=L 37 e,
n k=1
It was Hardy [5] who proved that if

(1) i} ¢, sin nx
n=1
is the Fourier series of some L?-function f(x) e L?, p=1, then
(2) i} (Te¢), sin nx
n=1

is the Fourier series of some L?-function.
Bellman [2] introduced the transform

*o) =S Ck
T c)n—,é o

and proved that if (1) is the Fourier series of an f(x) € L?, p>1, then

(3) > (T*c), sin nx

n=1
is the Fourier series of the class L?. We note that we cannot here put
p=1 in general, as is easily seen from the example

& sin nx
=t log?(m+1)°
It seems still open to find the necessary and sufficient condition for

(3) being the Fourier series of an L-function when (1) is the Fourier
series of an f(x) e L'. The object of this note is to provide such neces-
sary and sufficient conditions in the special case when {c,} is of bounded
variation,? i.e.

(4) > e, |<oo,
n=1
where 4¢,=c¢,—Cyp .1
We remark that for this special sequence {c¢,} G. and S. Goes [4]

proved that a necessary and sufficient condition for (2) being the
Fourier series of an L'-function is

(5) v 16n] <o
n=1 N

1) An infinite seqhence of bounded variation converges to a finite limit.
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An elementary proof of this fact, depending upon Theorem A below,
is obtained by T. Kano [7].

§2. Our main result is the following

Theorem 1. Let {c,} be of bounded variation and let (1) be a
Fourier-Stieltjes series. Then (3) is the Fourier series of an L'-func-
tion if and only if it is convergent in the metric of L'.

Before proving this theorem, we state below some theorems as
requisites.

Theorem A ([10; Theorem 1], cf. [3; Theorem 5.4]1). Let a bounded
real sequence {c,} be quasi-convex,? i.e.

ST |de,| < oo,

n=1
where Ac,=dc,—4¢, ... Then (1) is a Fourier series if and only if
(5) holds.

Theorem B ([4; Theorem 5.3]). Let {c,} be a real sequence of
bounded variation. Then (1) is a Fourier-Stieltjes series if and only
if it is a Fourier series.

Theorem C (cf. [7; Corollary 1]). If {c,} s of bounded variation,
then (5) is necessary for (1) being a Fourier series.

Theorem D ([8; Theorem 2]). Let {¢,} be a bounded, quasi-convex
sequence of real numbers. Then the sine-series (1) converges in L if
and only if (5) holds and

|¢,|log n—0 (n— o0).

Proof of Theorem 1. It will suffice to prove the ‘only if’ part
alone, since the ‘if’ part is known (cf. e.g. [1; Vol. I, Chap. I, §12]).
So we suppose that (8) is the Fourier series of an L!-function. By
Theorem B we know that (1) is indeed a Fourier series with ¢,—0, and
moreover (5) holds by Theorem C. On the other hand, a simple calcu-
lation shows that

AT*e)y =22,  nd(T*c),=dc,+-C+L,
n n+1

hence we have
S 2 * _— S lcn+l‘ S
(6) glnld (T*¢)a| 2l énZJllAcnl-
Thus {(T*¢),} is quasi-convex from (5) and (6). Hence, by Theorem A,
(8) is a Fourier series if and only if

() 5 > |@*onl<eo,
ie.
= 1lla& ¢
P s

2) A bounded, quasi-convex sequence is of bounded variation.
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Therefore, due to the absolute convergence, it follows that

“i“ﬁk_._”c_k"l_”_ck_( (_1_))3’
n=1 N k=2 k —.kZ=:l k 7§ n_kz=1 k 10gk+r+0 k
_< logk S (‘” Ickl)
=Ly etri o to\L
=37 108k . L oq).
%=1 k
Consequently, if (3) is a Fourier series, then
(8) i log k& ¢
%=1 k
is convergent, which implies that
(9) (T*c)n=o( 1 )
log n

But by Theorem D, (9) combined with (7) implies that (8) is convergent
in L. Thus our proof is complete.

If in particular {c,} is nonnegative and nonincreasing, then we can
obtain another necessary and sufficient condition.

Theorem 2. When ¢, | and (1) is a Fourier-Stieltjes series of o
function g(x) of bounded variation, (3) is a Fourier series if and only
if
10) g(x)-log* Iixl eL.

Proof. The ‘if’ part is known to hold true in general from a
theorem of Loo ([9; Theorem 5]). The ‘only if’ part follows from a
theorem of Edmonds (cf. [3; Theorem 8.4]) that will assure (10) if (8)
is convergent, because the function represented by the series

B+ i Lin— sin nw
n=1
is positive on [0, z] for some positive constant B, and it behaves just
like the function log* I—lT(cf. e.g. [1; Vol. II, Chap. X, §7], and T.
x

Kano [6]).
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