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2. Evans’s Theorem on Abstract Riemann Surfaces
with Null.Boundaries. II

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.;r.A., Jan. 12, 1956)

Transfinite diameter. Let A be an n-closed subset of /3. We
define the transfinite diameter of A of order n as follows

D 2rC
a) From the defini$ion, i$ is clear, if A A, aD D.
b) Le$ D be an ordinary neighbourhood containing A with a

compac relative boundary. Consider 1/aD=
Then evy p is situated on .
G (p,, p)= G (p, p)+ G (p,, p). Then he sum of the first

term does no depend on and G(, ,)= U() s s superhsrmone

function of 9, for xed {p,} n R. e make V<,) correspond o
every poin% p, (is) such tha U(p,)M in V(p,), where M
max U(p). Since U(p) is -lower semicontinuous, U(p,) attains

its minimum m* at Zo on an -closed set D.. We show ha Zo
I it were not so, assume ha$ U(zo)=m* m= rain U(p) in

fSuppose z0 e B, hen by 3), U(zo)= U(z) &, where nn
is so large enough that V(Zo)9. Then here exists at least one
poim r(eR) such that U(r)m* m. r must be in

But since U(p) is harmonic non constant in D- V,(p) and R is

a null-boundary Riemann surface, U(p,) attains its minimum on D,
by he minimum principle. Thus U(zo)>m in . This is absurd,
herefore every p is on D.

Let (z)be the harmonic measure of with respect to he
domain R-Ro- i.e. (z) is harmonic in R-D-Ro and ,(z) 0
on R0, ,(z)=l on 9.

Since every p is on 3, he following can be proved as in
euclidean space,

lim=2 o(z) de= W.- D /, n
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Let S2 (k--l, 2, 3,...) be a decreasing sequence such that
Since R has a null-boundary, lira W-- and since A t2 for
every k, we have

IID=lim --min( G(p, p)/C).
2

Suppose n points p, p,..., p. on A, we can choose an (n + 1)st point
p on A so that

because the. bove function is -lower semicontinuous on A. Let
V, be the least upper bound of the minimum above defined as
p,-..,p vary on A. Then there exists a system p,p:,...,
such hat

V(p, pt, p]," ", pZ) V,- on A.
n

We denote by V(p) the potential

1 ’This is the potential of a certain distribution of equal point mass

on A o2 total mass unity and it is clear that V(p)V, - for
2n

all points on A admitting as a possible value of either member.
Furthermore, since V(p) is lower semicontinuous, we can find
neighbourhood v,(q) for any point q of A such that V(z) V(q)-

in V,(q), for any given number 8, whence lim V(z)V,

for every sequence [zt} tending to A in -sense.
Since G (p, p#) G (p., p).

1Hence ,VI/D,+, therefore V(M)I/D+
2n

Theorem 2. Let A be an -closed subset of B of a null-boundary
Riemann surface with a compact relative boundary Ro. Then there
exists a potential U(z) such that 1) U(z) is harmonic in R-Ro. 2) U(z)= 0

on Ro. 3) --[" _U(z) ds-2. 4) lim U(z) .
z.

OR

Proof. Let N( 3) be an integer. Then since lim 1/D+=
there exist, for any positive integer m, no(N, m) number of points
P, P,’", P-0 such that

lira V(z)= lira 1 G(z,p,) >N
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Put V(z)/2=U(z). Then we see easily that U(z) is the unc-
tion required.

U(z) obtained above does not necessarily satisfy he condition
that U(z)< . For example, assume that A is composed of two

Martin’s minimal points p and p on the same boundary component
of harmonic dimension Swo and let p be another non minimal point

such hat G(z, p)=-.-(G(z, p) + G(z, p)). Then clearly (p, A) >0 and

U(z) of he heorem must be a linear form of G(z, p) and G(z,
and U(z) satisfies he conditions above but not the last condition
above-mentioned.

Let {R} be an exhaustion with compact relative boundaries
[R.}. Then R-R is composed of a finite number of disjoint non
compact surfaces [G} (i=l, 2,..., i(n)). Let [G} be a sequence
such that GG’+ (n= 1, 2,...) and ( G=0. The equivalency of

[G} and [G;} is defined as usual. Let an ideal point correspond
to an equivalent sequence and denote the set of all ideal boundary
points by and let A be a closed subset of _B and let A be the
set of Martin’s point on A_A_. Then A is also closed in Martin’s sense.
Hence we have

Theorem :. Let A be the subset of B on a closed subset A_A_ of
B_. Then there exists a harmonic function U(z) satisfying the same
conditions of Theorem 3 and moreover 5) lim U(z)< .

In fact, let q be a point of CA. Then here exists an ordinary
neighbourhood (q) with a compact relative boundary such that
5(q) A=0. Then max U(z) M, whence lim U(z)M by maximum

za3Cq)

principle, because U(z) has no mass in 3(q).
Set A=B. Then we have the following

Theorem 4. R is a null-boundary Riemann surface, if and only
if, there exists a harmonic function U(z) with one negative logarithmic
singularity at a point of R which has limit when z tends to B.

Because R is clearly a null-boundary Riemann surface when he
function mentioned above exists and it is easy to construct the
function in this heorem from he function in Theorem 3.

Many other applications, for instance, to Nevanlinna’s first and
second foundamental theorems or to the Gross’s property, will be
omitted here.

1) If a positive harmonic function U(z) has no smaller positive harmonic func-
tions than itself except its own submultiple, U(z) is called a minimal function. Martin
proved that every positive harmonic function is represented uniquely by a linear form
of minimal functions.

2) The number of linearly independent positive harmonic function Ui(z) such that

U(z) is harmonic and U(z)< in except p, is called the harmonic dimension of
the component p.


