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Almost sure invariance principle for dynamical systems with
stretched exponential mixing rates
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ABSTRACT. We prove the almost sure invariance principle for a class of abstract
dynamical systems including dynamical systems with stretched exponential mixing rates.
The result can be applied to chaotic billiards and hyperbolic attractors with Markov
sieves as well as expanding maps of the interval and Axiom A diffeomorphisms.

1. Introduction

Let T be a measure preserving transformation on a probability space
(M, B, ) and F an element of L?(M,B,u). We are interested in the limiting
behavior of the random process {Sy}y_; on (M,B,u) defined by Sy =
Z,A:I 61 FoT' Especially the central limit theorem, the weak invariance prin-
ciple, the almost sure invariance principle, and the law of the iterated logarithm
are our main concern. It is well known that the almost sure invariance
principle implies the other limit theorems above. Therefore we shall devote
ourselves to the almost sure invariance principle in the sequel. For the sake of
simplicity we say that the almost sure invariance principle holds for F (with
%€ (0,1/2)) if the process {Sy}y_, satisfies the following property.

Without changing the distribution, we can redefine the random process
{Sn}y_; on a richer probability space together with a Brownian motion
{B(#)},c[0,0) such that

Sy — E[Sy] = B(6GAN) + O(N*™) (N — o)  u-as. (1.1)

holds for some positive number 4 € (0,1/2).
Here o2 denotes the limiting variance defined by o2 = Cr(0)+
237, Cr(n), where Cr(n) are the autocorrelation coefficients of F given by

the formula

Cr(n) = JM F(X)F(T"x)du(x) — (E[F))*  n=0,1,2,.... (1.2)

2000 Mathematics Subject Classification. Primary 60F15; Secondary 60F15, 37D45, 37D50
Key words and phrases. almost sure invariance principle, chaotic billiard, hyperbolic attractor



372 Naoki NAGAYAMA

In [8, Theorem 7.1], Philipp and Stout give a sufficient condition for the almost
sure invariance principle for mixing random processes in a quite general setup.
This theorem is known to be applicable to the process {Sy}y_; in the following
cases. (1) T is a uniformly expanding transformation on the unit interval [0, 1]
(L-Y map) and F is of bounded p-variation with some p > 1 and (2) T is an
Axiom A diffeomorphism on a compact manifold and F is Holder continuous.
The reason why the Philipp-Stout theorem works well in these cases is that
these dynamical systems have nice measurable partitions such as the generating
partition for 7 in the case (1) and the Markov partition for 7 in the case (2)
(see [6] and [2]). More precisely, one can apply the Philipp-Stout theorem if
M is a separable metric space and there exists a finite or countable measurable
partition .o/ having the following properties.

(i) There exist positive constants C; and x; with 0 < x; < 1 such that

N
diam<v T—ﬂg{) < ikl (1.3)
i=0

holds for any nonnegative integer N, or T is invertible and 77! is
also measurable and

N
diam( \/ T’M) < Gkl (1.4)

i=—N

holds for any nonnegative integer N.
(i) There exist positive constants C, and x, with 0 < x; < 1 such that

k ) k+n+l )
B\ T7et, \/ T ot | < Condt (1.5)
i=0 i=k+n

holds for any nonnegative integers k,/ and n, where

Blct, o)=Y (AN Ar) — u(A))u(Ay))| (1.6)

AIE.O/I,Aze.O/Z

for finite or countable measurable partitions ./; and .o/,.

On the other hand many researchers have been interested in the stochastic
behavior of the dynamical systems such as the hyperbolic billiards and the
hyperbolic attractors. But in the case of the hyperbolic billiard it seems hard
to prove the almost sure invariance principle by the direct application of the
Philipp-Stout theorem since we do not have a measurable partition satisfying
the above conditions. It is remarkable that Chernov succeeded in proving the
weak invariance principle for the dynamical systems having stretched expo-
nential mixing rates in [4]. We recall that a dynamical system 7 on a metric
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space M is said to have stretched exponential mixing rates if it satisfies the
following.

There exists a constant ¢ € (0,1] such that for any a € (0, 1] there exists
a sequence {.7N:9}7_, of finite or countable measurable partitions of M
satisfying;

(i) there exist positive constants C; and A; with 0 < 4; < 1 such that

diam (. 9) < ;AN (1.7)

holds for any positive integer N;
(i) there exist positive constants C, and A, with 0 < A, < 1 such that

Bva (N, [N < G2 (1.8)

holds for any positive integer N, where

B,(N,n) = sup ﬁ(\k/ T o, Q T’M) (1.9)

0<k<N-n i=0 i=k+n

for a finite or countable measurable partition .o/ and nonnegative
integers N and n with n < N.
The constants Cy, C5,4; and /; in the above may depend on «
but not on N.
We note that the hyperbolic billiards and hyperbolic attractors are typical
examples which have stretched exponential mixing rates (see section 7 of [4],
c.f. [1], [3]).

In this paper, we aim to establish the almost sure invariance principle
for the dynamical systems with stretched exponential mixing rates inspired by
Chernov’s results in [4]. To this end, we first prove a slightly abstract result
for the dynamical system which has a special family of measurable partitions
(see Theorem 2.1). Afterward, it is shown that the dynamical systems with
stretched exponential mixing rates has such a family. As a consequence we
show the following theorem (see Remark just after Corollary 2.3).

THEOREM 1.1.  Assume that a dynamical system (M, B, u, T) have stretched
exponential mixing rates. Let F be a Holder continuous function belonging to
L**°(M,B,u) for some § with 0 <6 < 2. Then the limiting variance 0'% exists
and if it is positive, the almost sure invariance principle holds for F with any
positive number A < ﬁ.

The organization of this paper is as follows. In Section 2, we first in-
troduce some definitions and notations. Next, we give the statement of the
main theorem (Theorem 2.1), which is more or less abstract. The almost sure
invariance principle for dynamical systems with stretched mixing rates will also
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be given as corollaries to the theorem. In Section 3, we mention about two
examples to which our results can be applied. Finally, Section 4 is devoted to
the proof of our results.

The author would like to express his gratitude to Professor Takehiko
Morita and Professor Hidekazu Ito for their helpful suggestion and advice.

2. Preliminaries and statement of results

Let T be a measure preserving transformation on a probability space
(M,B,u). We call the quartet (M,B,u, T) a measure preserving dynamical
system. Throughout the paper all functions are assumed to be real valued.

First of all, we define autocorrelation coefficients of the stationary process
{FoT'}, by

Cr(n) :JMF(x)F(T”x)a’,u(x)—(E[F])2 (n=0,1,2,3,...). (2.1)
We note that if
> ICr(n)| < o0 (2.2)

is satisfied, then we have

0 VIS N 0
(cp(()) +ZZCp(n)) f% = 22%@(;1) +2 ) Cr(n)
n=1 n=1 n=N+1
N n o0
§22N|CF(n)\ +2 ) [Cr(n)]
n=1 n=N+1
<2 [—N]|CF(VI)|+2 Z |Cr(n)]
n=1 _
n=[v/N]+1
2 o0 o0
< — > ICrm)]+2 > [Cr(n)
\/N”ZI n=[v/N]+1
Therefore, we obtain
. VIS -
lim % = Cr(0)+2)_ Cr(n) = o}. (2.4)
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Next we introduce some definitions and notations. We say a finite or count-
able family of measurable sets o = {4;};,.,;, I =NorI={1,2,3,...,/} (IeN))
a measurable partition of the probability space (M,B,u) if u(4;,NA4;) =0 for
any i,j with i# j and M =|),_,4; up to p-null set. For a measurable
partition .o/ = {4;},.; and a nonnegative integer n we define a new measur-
able partition 77"/ by T "o/ ={T"A4;};.;. For two measurable parti-
tions o/ = {4;};.; and o/’ = {4]},.;, we denote the new measurable partition
{A4iNAj};cp jes by o/ v.o/'. Besides, for finitely many measurable partitions
oA\, ...,o/y we denote the measurable partition .of|v.ohv---Vv.o/y by

N
\/ .
k=1

For measurable partitions .« = {4,};., and /' ={4]},_, we define a
measure of their independence B(.o7,.o7’) by

Bt ') = > (AN A)) — u(A;)u(A])]. (2:5)
iel,jeJ

For a measurable partition ./ and integers n, N with 0 <n < N we define

0</EN-n k=0 k=Il+n

By(N,n) = sup ﬁ(\l/ T e, \1; T’fﬂ). (2.6)

We denote by o(.<7) the o algebra generated by a family o/ of subsets of
M. We also denote by o(X1,X>,...,Xy) and o(X;, X3,...), the o algebras
generated by random variables {X;};, and {X;}{,, respectively.

If the space M is endowed with a metric d,, the diameter of a measurable
partition .o/ = {4;},_; is defined by

diam(/) = sup sup dy(x, y). (2.7
iel x,yed;

Moreover if the metric space M is separable and B is the topological Borel o
algebra of M, for F e L>(M,B,u) and any positive number d we put

Hr(d) = sup  [|[F = E[F[a()][|,- (2.8)
o/ measurable partition
diam(/) <d

In the above and also in what follows, we regard 117 as 0 when p = . Now
we are in a position to state our results.

THEOREM 2.1. Let (M,B,u, T) be a measure preserving dynamical system,
0 be a positive constant, and p be a constant with 0 < p < 1. Assume that a
function F e L*(M,B,u) satisfies
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o0

> ICr(n)] < oo (2.9)
n=1
and
N 0
> nCr(n)+ > NCp(n)=O(N’) (N — ). (2.10)
n=1 n=N+1

Furthermore we assume that there exist constants s,y with 0 < s < min{ﬁ,%},

y > max{%,%} and a sequence of measurable partitions {%W)}NeN
satisfying the following properties.
(i)

B (N, [N]) = O(N"") (N — o). (2.11)

(i) There are constants p,t with 1 £ p < 0, 7> %-i—ll,—&- (1 +[—1))ys and it
holds that

|F — E[F|a(/™)]],=0NT) (N—w). (212
Then the almost sure invariance principle holds for F provided o # 0.

REMARK. It is easy to see from (2.4) that the weak invariance principle
and the law of iterated logarithm follow from the almost sure invariance
principle when the conditions >~ |Cr(n)| < co and of # 0 are satisfied. On
the other hand the central limit theorem always follows from the weak invari-
ance principle. Consequently if the conditions of Theorem 2.1 are satisfied, all
the limit theorems that we mentioned in Introduction are valid.

From Theorem 2.1 and its proof we obtain the following corollaries.

COROLLARY 2.2. Let (M,B,u, T) have stretched exponential mixing rates
and let F be a member of F € L**°(M,B,u) for a positive number 5. Assume
that there exists a number v > % such that

H(d) = 0<|10g1d|0) (d]0). (2.13)

Then the almost sure invariance principle holds for F provided o # 0.

COROLLARY 2.3. Let (M,B,u,T) have stretched exponential mixing rates
and let F be a member of Fe L*(M,B,u) for a positive number 5 with
0<0=2. Assume that for any positive number v the function F satisfies the
condition

Hp(d) = 0<|10g1d|0> (d | 0).
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Then the almost sure invariance principle holds for F with any positive number
A< gfm provided op # 0.

ReEMARK. If the function F is Holder continuous, it satisfies the condition

#rld) =0 o) (@10)

for any positive number v. Hence Theorem 1.1 immediately follows from
Corollary 2.3.

REMARK. We must discuss the condition gz # 0. Suppose that

o
> n|Cr(n)] < oo (2.14)
n=1

Then we see that o =0 is equivalent to hrn V[Sy] < co by the expansion

N 0
VISy] = 07N =2 “nCp(n) =2 > NCr(n).
n=1 n=N+1

On the other hand, under the condition 11m Cr(n) =0, it is easy to see that

limy_., V[Sy] < o holds if and only if there exists a function G € L*(M, B, 1)
such that F = G — Go T + E[F] holds (see [7 Theorem 18.2.2]). Consequently
under the assumption (2.14) we can conclude that g = 0 if and only if there
exists a function G e L>(M,%B,u) such that F = G— Go T + E[F]. But it is
not easy to see whether there exists the function G such that F=G—Go T+
E[F] for a given function F. Therefore it is a troublesome problem to check
the condition oy # 0 for a given function F. So it is remarkable that if F is
the first collision time of the two dimensional hyperbolic billiard with finite
horizon, then F satisfies o # 0 as well as the condition (2.13) (see [3, Section
7]). It provide us with a non trivial and interesting example to which our
result is applicable.

3. Examples

In this section we give two examples with Markov sieve. To such
dynamical systems not only Chernov’s results in [4] but also ours are appli-
cable.

(1) Two dimensional hyperbolic billiards.

Let Q be a compact closed domain on a plane or 2-torus. We assume
that the boundary dQ consists of finitely many smooth (of class C?*) com-
ponents I; (1 £i=<d) each of whixh satisfies the following conditions.
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—
)
=

I; is strictly convex as seen from the inside of Q.

I; is a rectilinear segment.

I} is a convex (as seen from the outside of Q) incomplete arc of a
circle whose complement to complete the circle do not intersect the
other components of 0Q.

Now we put My={(q,v)e 0 xS'|ged0\ |J (I;NI}),<n(g),v) >0},

Igi<j=d
where n(g) is the unit interior normal vector of dQ at the point ¢ and <-,-)

represents the ordinal inner product in the Euclidean space. We denote the
closure of My in QO x S! by M, then we have M = 0Q x S'. We define a map
T from M to itself by the following way.

Let (¢,v) be a point of M. We suppose that a point particle runs into
0Q at g with velocity v and next runs into 9Q again at ¢’ with velocity v’
after the elastic reflection (reflection such that the angle of incidence equals
the angle of reflection) at ¢ and motion of constant velocity in Q. Then
we define T'(q,v) = (¢’,v'). But when ¢ is an end point of I}, we define
T(gq,v) = (q,v) since we can not define T'(q,v) as above. In the case (b) or
(c), since we can not define 7 as above for the point (g,v) of M such that
gel; and <{(n(q),v) =0, we need some idea to define 7 well. We omit
details.

We denote the parameter representing length of 0Q by r and the parameter
representing angle of ve S! by ¢. Then r and ¢ make natural coordinates of
00 x S and we think 0Q x S! is a metric space by the coordinates. In what
follows we think M is a metric space as a subset of dQ x S!. Now we define
a probability measure x4 on (M,%B) (B is the topological Borel o algebra
of the metric space M) by du = c, cos ¢ dr x dp, where ¢, is a normalizing
factor. Then it is known that (M,%B,u, T) is a measure preserving dynamical
system.

In [3] and [4], it is shown that a generic class of hyperbolic billiards admits
a family {Zn m}| <men nven Of family of measurable subsets of M satisfying
following conditions.

(i) Each Zy,,, consists finitely many measurable subsets R\ ...

R™™ of M and when i# j, it holds that R N RM™ = ¢.

(ii) There are positive constants Kj,o; independent of N,m such that

0 <a; <1 and it holds that

—
NSRS

max sup d(x,y) < Ko (3.1

l=ig! x‘yEREN.m)
for any positive integers N,m with m < N, where d is the metric
of M.

(i) There are positive constants K, o, independent of N,m such that
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0<a <1 and it holds that u(RE)N’m)) < Kyol' for any positive

1
integers N,m with m < N, where RE)N””) =M\ ) RN
i=1
(iv) There are positive constants Kj3,o3 independent of N,m such that
0<az <1 and it holds for any positive integer n < N and
(io,-..,in) € {1,...,1}""" that |4]| £ K, where A4 is the real number
such that

(TR | TR A AR

. —1 p(N,m) (N,m)

= W(T7 RO R (11 ). (3.2)

(v) There are positive constants Ky, a4, go, g1 independent of N,m such
that 0 < a4 <1 and it holds that for any positive integer k with
k = [gom] that

> w(RM™Y > 1 — KyNal, (3.3)
1ig!

(N, m)
v %(_)ﬂ(R/_ )>1—KyNal"
JjesS(i

where S(i) = {j eN[1 < j < Lu(T*R™™ [ R¥™) = gip(R™)}.

Note that such a family {Zxy m} <oy ven 18 called a Markov sieve. We

can show the dynamical system (M, 2_37/1, T) has stretched exponential mixing

rates by using Markov sieve (see [4]). Thus we can apply Corollary 2.2 and
Corollary 2.3 to this system.

(2) Two dimensional hyperbolic attractors.

Let M be a smooth two dimensional Riemannian manifold, U be an open
connected subset of M with compact closure and I” be a closed subset of U.
We assume that the set ST = I"'UJU consists of a finite number of compact
smooth curves. Let T : U\I' — U be a C>-diffeomorphism from the open set
U\TI onto its image T(U\I'). We assume that T is differentiable on U\I" up
to its boundary d(U\I") = S*. Also we assume that 7! is differentiable on
T(U\I') up to its boundary (T (U\I)).

Denote U™ ={xe U|T"xe U\I' for any nonnegative integer n} and

D= (\T"(U"). The set D is invariant for both T and T-'. Its closure
n=0
A =D is called the attractor for 7.
We define the cone C(z,P o) for ze U, a line P through the origin in
the tangent space 7.M and a positive number « by C(z,a,P)={ve T-M |
/(P,v) £a}. An attractor A is called a generalized hyperbolic attractor if
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for each z e U\I there exist two cone C"(z) = C(z,a"(z), P¥(z)) and C*(z) =
C(z,a*(z), P*(z)) having the following three properties:
(1)
inf inf  /(vy,v2) > 0;
ze U\I" v1€C¥(z)
v eCH(z)
(2) DT(C*(z)) = C*(Tz) for any ze U\I" and DT~ (C*(z)) = C*(T'z)
for any z e T(U\T');
(3) there exist a positive constant C and a constant A with 0 < 4 < 1 such
that for any positive integer
(a) if ze Ut and if ve C¥(z), then |DT"v|| = C27"||v|;
(b) if ze T"(U") and if ve C3(z) then | DT 0| = CA7"||v]|.

If we assume some generic conditions on the singularity set of a gener-
alized hyperbolic attractor A, then there exist subsets 4; (i=0,1,2,...) of 4
and Gibbs u-measures (the definition is found in [1]) & (i =1,2,3,...), which
are T-invariant probability measures on (A4, B) (B is the topological Borel field
of A), satisfying:

(1) A= () 4; and 4;NA; = ¢ when i #

i20
(2) for i=1 A; =D, T(A;)=A;, p(4;)=1 and T|,, is ergodic with
respect to u;
(3) for i =1 there exists a decomposition of A; to its subsets A; = U A;
=1
such that A[jjﬂ/l,’}j! = ¢ if ] #* ] 5 T(A,/) = /1,‘7‘,‘_'_1 if 1 =< ] §/ri — 1,
T(A;,)=A4;1 and T"| 4,, has the Bernoulli property.
Now we choose i with 1 <i and j with 1 < j < arbitrarily, and write
As =4, T.=T"], and u, = ,-’(‘%*) (B, is the topological Borel ¢ algebra of
A.). We consider the measure preserving dynamical system (A, B.,u,, Ts).
In [1] Markov sieves have been constructed for this system. Note that the
definition of Markov sieve for a generalized hyperbolic attractor is slightly
different from that for hyperbolic billiards in the above. One has to replace
the condition (v) in the above by the following one:
(v') there are positive constants gy, g; independent of N,m such that for
every integer k = [gom] and any pair of integer i,j with 1 <4, j <1/
one has

me* TARN™ | RN — p (T7FRN™ | RV < 1 — gy

(3.4)

We can show the dynamical system (A.,B.,u,, T,) has stretched expo-

nential mixing rates by using Markov sieve (see [4]). Thus we can apply
Corollary 2.2 and Corollary 2.3 to this system.
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4. Proof of results

In what follows, we may assume E[F] =0, without loss of generality.
First of all we recall Theorem 4.3 in [9], which is a martingale version of the
Skorokhod representation theorem. It plays an important role in the proof of
Theorem 2.1.

THEOREM 4.1 (Theorem 4.3 in [9]). Let {Y;}2, be a sequence of random
variables on a probability space (Q,§,P) satisfying:

(i) E[Y1]=0 and E[Y}] < o

(i) E[Y?|a(Yi,...,Yi1)] is defined and E[Y;|a(Yi,...,Yi-1)] =0 P-a.s.

for any i=2.

Then there exists a sequence of random variables { Y;};°, and a Brownian motion
{B(1)}icpo,0) together with a sequence of nonnegative random variables {T:}2,
on an appropriate probability space (Q,§, P) with the following properties.

(1) {Y;}Z, and {Y:}7, have the same distribution.

)

Z Y = B(Z Ti> P-a.s. 4.1
i1 i=1
for any neN.
(3) T, is §,-measurable and
ET,|§, || = E[Y}§,,] Pas. n=123,... (42

where ‘3'0 = {¢,Q} and ‘8-” defined as the o algebra generated by
Yi,...,Y, and {B(t)}o . for n= 1.

i<y
i=1
@) If E|Y1|*] < oo for a real number k > 1, then one has
E[T}] < DeE[| Y1 |*). (4.3)
In addition if the conditional expectation E[|Y,|* |a(Y1,..., Y, 1)] is

defined for an integer n =2 and, then E[TX|§, || is also defined and
E[THE, ] < DE|Y.)*§, ]  P-as.

= DiE[|Y, [ |a(Y1,..., V1)) Pas., (44)
where Dy are constants depending only on k.

We can expect that one can prove our result with the help of Theorem 4.1
if one succeed in showing that the sequence {F o 7'}, is approximated by
a martingale difference sequence. If the sequence of measurable partitions
{ﬂ(m}ﬁzl in Theorem 2.1 is increasing in N, we can directly make a
martingale difference sequence approximating the sequence {F o T}, by using
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{o#™}%_,. But unfortunately we can not expect such a situation in general.
Therefore we have to construct a new increasing sequence of measurable
partitions {W/W )};f:l which enjoy a nice properties with respect to the function
F. The next proposition plays a crucial role in the construction of the desired
partitions.

PROPOSITION 4.2.  Let A,y, be positive numbers. Suppose that there exist
1 < p< oo and Tt such that T>%+%+<1 +%)y0+/1 and

IF — E[F|a(/")]], = O(NT) (N — o) (4.5)

hold.  Then, there exist constants 0 Z<ryg <1 and Cy such that the following
holds.
If we put

M —fxeM|rg+k- 27012000 N < F(x) < g+ (k+ 1) - 27 [(1/2+D) o NIy
then the family U™ = {U,EN)}keZ of subset of M becomes a measurable
partition satisfying

By (N,n) < B m(N,n)+ CoN 7" (4.6)
for any pair of positive integers n < N.

ProOF. We have only to prove in the case when 1 < p < 0. We choose

a real number a with o HO -<a< pil This is possible because

2
th P (4.7)
T+;_§_/L p+1

r>§+l+<l+l>y +ie
2 p p)"
For NeN, 0=r<1, and ke Z, we define the set U,%) by

UW) = {xe M|r+k- 2702008 N < F(x) < r4 (k+ 1) - 27[0/2+0 e NIy,
(4.8)

Writing /™) as {4"},_, , for NeN and i€ Iy, we set

0 if u(4i™) =0,

by.i =
. [0 Fdu it u(4A™) >0,

1 (4.9)
wA™)
Next, for NeN, iely and 0 <r < 1, we select the integer k(N,i,r) satisfying
r+k(N,ir) L pl(1/2+2)logs N] < by <r+ (k(N,i,r)+1)-2" [(1/2+2) log, N]
(4.10)

Take a positive integer N and fix it for a while. For re[0,1) and i € Iy,
we set



Almost sure invariance principle 383

h(N,i,r) =min{by ; —r — k(N,i,r) - 27[(1/ZD & N],
r4 (k(N,i,r) 4+ 1) - 27072+ Aa Nl _p a0 (4.11)

It is easy to see that all number re [0,1) except for countable set satisfy
h(N,i,r) #0 for all iely. For such an r we obtain

Z ﬂ(Al(‘N)\Uf,]ZzN,i.r))
iGI;\,r
< > ulfx e AV ||F —byil 2 h(N.i.n)})
iely
JA(_N) |F - bN,i|ad:u
(h(N,i,r))"

lIA

iely

(J,m |F - by i dp) P (u(AN)) =l
> ()"

iely

alp ,U(A(N)) l—a/p
< _ | P i
= (ZJ W [F = by d’“) (Z (h(N,i, ))PW(P!I))

iely’4; iely r

lIA

(V) l—a/p
= |F = E[F[a(/™)]]; (Z 0 (N” ,(A)“)pa) /(M> : (4.12)
iely LT

Noting that % < 1 holds from the choice of a, the estimate above yields

1 p/(p—a)
N N
I (Z (| >\Ur<yng,iﬁ,,))> "

iely

Wy el o) [ p(A)
< 1P~ B{F| (V7 | > )

= |IF = EF | (/M) 7

(N) 2-[(1/2+4)logy N]— 1
ANy L ol(1/242)log, N 1
X Z (,Lt( i ) _p-1(1/2+2) logy N]-1 |[|pa/(]77u) dt

iely

1 - a, —da
— 1_7ﬂ||1r7 _ E[F|0(M<N>)]||£a/(ﬁ a) . 5(pa/(p—a))([(1/2+7) log, N]+1)
p—a
2 A
< 5 |IF - E[F|a(,oi“v))]||5“/<P*”)N<pa/(p—a)>(1/2+A>. (4.13)

1

p—a



384 Naoki NAGAYAMA

Therefore, we conclude by (4.5) that

o(freoniSuanen,,pz )

iely

= O(N e/ (p=a)+(pa/ (p=a)(1/2+2)+(p/(p=a)) (o +1)) (N — ),

where m is the one dimensional Lebesgue measure. Since

a a (1 24+
R (—+A>+L(yo+l)<—l<:>l4ylo<a,
p—a p—a\2 p—a T+ 3

the choice of a implies
Zm({re 0,1 >~ waM™ UGy ) 2 N‘}'0‘1}> <. (4.14)
N=1 iely

In virtue of the Borel Cantelli lemma, for almost all re[0,1) there exists a
positive constant C(r) such that

N N L
> A >\U,(7kzN$i,r)) < C(r)N—"! (4.15)
iely
for all N e N. We chose one of such r and denote it by ry.
If we set G,((N) = U AEM and 9V) = {G,({N)}kEZ for any N € N, then
icly
k(N,irZ):k

4™) is a measurable partition of M and .#™") is refinement of %) and

STu G UMY =3 Y wAM o)

keZ keZ iely
k(N.i,ro):k

N N
= Zu(Af- )\UIE(I\)T,LI‘O))

iely
< C(rg) N0 1, (4.16)

The last inequality follows from (4.15) with r =r,. Hence, by using Lemma
4.3 and Lemma 4.4 below, we have

‘/‘(UIE([,W N...n7 ™M nrt UliN) n...n T*NUIEI/N\T’))

ki, h

(N) gy N)y ot (V) N ()
— (U NN T (T U N n TV )

<4(N —bL+1+1)C(rg)N 7!
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+ > G n--nrheMnrten...nrV6Y)
kl)am-,kll:klz-,~~~;k/\’€Z : :

— (G N NT G TG NN T VG

for any integers /;,/, N such that 0 </; </, < N. Consequently, for any pair
of positive integers n < N, we obtain

By (N, 1) < By (N,n) +4(N + 1 —n)C(ro) N 707! (4.17)
Combining this and that /(") is a refinement of ¥"), we conclude that
By (N,n) < B (N,n) +4C(rg)N 7. (4.18)
This completes the proof with setting Cy =4C(rp). W

In the above, we have used the following well known facts. We just
summarize them as Lemma 4.3 and Lemma 4.4 for the sake of convenience.

LEMMAa 4.3. Let N be a positive integer and {{AE")}ieln}n:L__"N,
{{Bf»")}id” Ynet..v De finite sequences of measurable partitions satisfying for any

positive integer n < N

> uA"\B") <. (4.19)
iel,
Then one has
3 (A 00 a™y — w80 n BV <28k (4.20)

(i1 ey in) €Ly XX Iy

LemMA 4.4, Let {Al(l)}iell,{BEl)}
partitions with

2 2
ieIp{Az( )}ielz’{Bg )}ielz be measurable

SluA") — B e, S uA) —u(B) e (421)

iG]l iEIg

Then one has

S 1AM u(AP) = u(B)u(BP)| < &1 + . (4.22)

iEI]
Jjeh

Before proceeding further we specify the choice of 4 in Theorem 2.1. The
constants J,s,y,p and 7 below are the same as in Theorem 2.1. First we have
s

= <% by the assumption on s. By the assumption on y
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0 2 0 0—(2+20)s s

210 7 210 (2ro(l-s) 1-s (423)
holds. Next, we choose a real number o so that
lis<rx<min{%,zi+6—%}. (4.24)
We notice that the number o chosen above satisfies s(1 + a) < o.
By y > 1= and ﬁ<a<ﬁ—%<%, we obtain
sp0 o >(1—s)6_ LI 0—a(249) S0, (425)

42+0) 41+a) 42+0) 4(1+0)  4(1+a)(2+0)

Therefore, by the choice of « and the assumptions on p and 7z, we can choose

7 1

positive constants 4,4’ so that

, ) 5_(2+5)(°‘+%> 1-20 (I—s)a—s (1-p
rd <mm{ 20+0)2+0) 1+ 2(1+2) 2(0+a)’
50 o 5 1 1
4(2+5)—4(1+a),‘[—§—;—<1+;>VS}. (4.26)

We will prove Theorem 2.1 with 4 chosen above.

From now on, we can employ the methods similar to those that used in
the proof of Theorem 7.1 of [8].

We define two sequences {L;}”, and {M;}”; by

and
J
My=0, M;=3 [+ [ (=23,
and we also define two sequences of random variables {y;}°, and {zj}]fi2 by

j=

Li—1
=3 FoT' (j=12,.)
=M,

M;—1
=Y FoT'  (j=2.3,.).
4
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For N eN, let j(N) denote the positive integer j with L, | < N < L;. Then
we have

N-1 N-1
Y FoT'=yi+a+yp+-+5m-1+yma+ Y, Fol
i=0 i=Lyx)-1
Jy)—1 Jy)—1 N-1 _
yi —+ Zj —+ F o Tl. (427)
i=1 =2 i=Lim1

The next lemma asserts that the last term in the right hand side of (4.27) has
the appropriate growth rate as N tends to infinity almost surely.

LEMmA 4.5.
N-1 IR J(N)—1 A
D FoT = 3yt 3 a+ O (N— o) peas
i=0 i=2

~

j—1 ,
Proor. Putny, = > [FoT'| (j=1,2,3,...). Itisenough to show that
i T 4

=L

My = ON'*7) (N—w) pas (4.28)
For each je N we have
u({x e M|n,(x) = jHH=07240)
246

1711245
= j(l+oc)(l/2—)v)(2+(>‘)

249 246
< ||F||2ia(J +J (Ha)) -
= j+(1/2-7)(2+0)

_0( o(245)— 1+1)(1/27/1)(2+5)) (]—>OO) (429)

0—(2+9)(2+2)

< 20525) therefore, we obtain

From the choice of 4 (4.26) we have 1 <

1
a(2+5)—(1+a)(2—/1>(2+5)<—1. (4.30)
Thus it follows that
> u({xe M|n(x) = ) < oo, (4.31)
j=1
Therefore the Borel-Cantelli lemma implies that

’7 _ 0( (I+o)(1/2— )>) (]—> OO) H-a.s. (432)
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On the other hand we have
J(N)=O(NY)) (N — o) (4.33)

by definition of j(N). It is not hard to see that (4.28) follows from (4.32) and
(433). m

Next we investigate the asymptotic behavior of the second term in the
right hand side of (4.27) as N tends to infinity.
Lemma 4.6.

Jn)-1 _
> Z=0N'"") (N—ow) pas (4.34)
i=2

In order to prove the lemma we employ the Gaal-Koksma strong law of
large numbers in [8, Theorem A.l of Appendix 1] as Lemma 4.7.

LemMmA 4.7. Let {Xi},—, be a sequence of random variables on a prob-
ability space (Q,§,P) whose expectations are 0. Suppose that there exist
positive constants o and C such that

n+m 2
E[( Z Xk>] S C((n+m)” —n?%) (4.35)

k=n+1

for all nonnegative integer n and all positive integer m. Then

inzmmm%MM)WHw)‘M& (4.36)
k=1

holds with any positive number ¢.

Proor oF LEmMMA 4.6. If n and m are natural numbers, we have

n+m 2 ntm  M;—1 0
| <Z z_,»> DS (cp<o>+2Z|CF<v>>
M v=1

Jj=n+1 Jj=n+1k=L;_,

n+m

- (CF<0> 2y |cp<v>|> T
y=1

Jj=n+1

é CO((”[ + m)S(l+O£)+l o ns(lw‘»a)Jrl)

)

where ¢y is a positive constant independent of n and m. Hence we can apply
Lemma 4.7. Note that (—2)(1 +a) > % is valid since 4 < % holds
by (4.26). Thus we conclude that
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J
Y z=0(FAN)(j o) peas (4.37)
i=1

Combining this and (4.33), we obtain the lemma. MW

Now we are in a position to apply Proposition 4.2. By (2.12) and (4.26)
all the hypotheses of Proposition 4.2 are satisfied with A" instead of A and with
0

70 =7s. We choose the sequence of measurable partitions {#" )}N:1 as in
Proposition 4.2. We can see that

By (N, [N°]) £ etN7, (4.38)

for any N € N, where ¢; a positive constant independent of N.
Next putting

Li—1
5= Y EF|[c@™)oT"  (j=12..),
i:M,’

we obtain the following lemma.

LemMma 4.8.
JN)-1 JWN)-1
Z Vi = Z 7,4+ O(N'>*) (N — ) u-a.s. (4.39)
i=1 i=1

Proor. Since A and A’ are chosen so that 1 < /', we have
|F — E[F | a(%(n)m < 9=[(1/2+2") log, n] < 27 [(1/2+2) logy 7] p-a.s.  (4.40)

for any n € N by the definition of %" . Thus, almost surely with respect to u
we have

JN)—1 JN)-1
Yi— Z Vi

i=1 i=1

—_

JN)-1 Li—
S N IFo T — E[F|o(a" V) o T
i=1 n=M;

lIA

lIA

N-1
N |Fo T — E[F [o(2")] o 77|
n=0

[IA

N
§ 27(1/2+l) log, n+1
n=1

—(1/2+0)

M=

IA

2

I
_

n

= O(N'** (N - ).
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We note that the last equality follows from 0 < A < 41(112:) <4 which is a

consequence of the choice of 4 (4.26). Therefore, the lemma is proved. W

From Lemma 4.5, Lemma 4.6 and Lemma 4.8, we get
N-1 o i)l
Y FoTi= 3 F4 0N (Nooo) pas.  (441)
i=0 i=1

Next we have to show that the sequence of random variables {7}, is
approximated by a martingale difference sequence. To this end we need the
following lemma.

LemMMaA 4.9. Let g be a positive number with %Jrz}r{; <$ < 1. Then, for
each j=2,3,4,..., the sequence of functions

J+m Li—1 0
Y E|y|o| \/ TFu*
i=j k=0 m=0

L1
converges in L’f(M,a< \/ Tk@/(kJrl))”u

Vi

L

- ). The limit func-

a( \/ T*’WZ/U"H))
k=0

k=0

tions u; satisfies
lugll, = OV EN) (s o0). (442)
We need the following to prove Lemma 4.9.

LemMA 4.10. Let o/ = {A;};.; and </ = {B;}

ey be measurable partitions
of (M,B,u) such that

DO w40 By) — (A u(By)| < B. (4.43)

iel jeJ

Suppose that G is a member of L% (M, B, 1) for some qo with 1 < gy < oo which
is o(o/)-measurable, and E[G] =0. Then for any q with 1 < q < qo, we have
the estimation

1/q—1
IEIG |o(=2")]]|, < 2]|G]l, 101, (4.44)

ProOF. We have only to prove in the case when ¢y < co. We assume
G(x) =G; pas. xe A; (iel). Then for any jeJ with u(B;) #0 and for
almost all x e B;, we have
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E[Glo(+)](x) = > Giu(4;0 By)

1
WB)) 4

ZG (4N B)) — u(A)u(B))).

zel

Here the second inequality follows from the equation ) Giu(A4;)u(B;) =
u(By)E[F] = 0. Therefore, we obtain iel

[E[G (/)] (x)]

| q
< (MZ |Gi| |u(4;N B;) — ﬂ(Ai)ﬂ(B.i)|>

17 iel

(Z (Gl Ju(4: N B)) — p(A)u(B)| ' |u(A:N By) #(Ai)#(Bjﬂll/q)q

=7 (u(B))' (u(B;))' 1
|G ¥|u(A4: 1 By) — u( u(A:0 By — u(A)p(B)]\
= (Z u(B) ) (Z u(B)) )

o1 |Gil|u(A4i N By) — u(Ai)u(B))|
=2 1; ﬂEBj) '

Hence, we have

| 1E1G ot

© S (23 G AN B) — 4)u3))
jed iel Iu(B/)
u(B;) #0
<247 Z Z |Gi|*|u(A4; N B;) — p(A:)u(By)]
JjedJ iel
= 20713 S TG (Ai NV By) = (A B)| ) Ai VBy) = (A B/
jedJ iel
/40
1<2Z(|Gi|%ﬂ(1‘1i)> pale
iel

< 2163, 8"/

Consequently, we obtain [|E[G|a(/")]], §2||G||q0/31/‘171/‘1°. [ ]
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Proor oF LEMMA 4.9. First, we estimate ||E

Vi

L -1
o \/ Tfk %(/H» 1)
k=0 .

for any natural number j = 2. There exists a natural number N; such that

[N/l =M; — (Li-1 — 1) = 70 4 1. Tt can be checked easily by the defi-

nition of L; that

Li<i™  (=jojo+1jo+2,...) (4.45)

for jo large enough. Therefore L; < N; holds for jy < j by the definition of
N;. Thus if jo < j, we have

Li -1 Li—1
ﬁ( \/ T*k%(lﬁfl)’ \/ Tk%(k+1)>
k=0

k=M;
S Li-1
<pl \/ TFU™) \/ T Fp™N)
k=0 k=M;
< B, (Njy My — (Lj—y — 1))
= By (N}, [N}])
SN "
a1 +1)7

< jf'/s(lJrac)

by using the inequality (4.38) and the choice of N;. Here the first inequality

follows from the fact that #™) is a refinement of #% for any k < L; by
Li—1

L; < N;. Noting that y; is ¢ \/ T7%*#**") |-measurable, we conclude from
k=M;

Lemma 4.10 and the above estimation that

Lj,l—l
ol \/ T RalD
k=0

when jy < j. Thus we can pick a positive constant ¢, so that

L/’,lfl
ol \/ T FakD
k=0

holds for any j = 2.

< 2| Fylly g - €O EH Qa1 @),

q

E|y;

E < C2jocfys(1+oc)(l/qfl/(2+5)) (446)

i

q
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Li—1
o ( v Tk%(k+1)>‘|
q

I with 1 /< j—2. There exists a natural number N;; such that [N;]=
M;— (L;—1). Then it is obvious that L; < N; < N;; if j= j,. Thus if
Jj = jo, we have

Next, we estimate | E|y; for any j =3 and any

Li—1
\/ T k@/ (k+1) , \/ T—k@/ (k+1)
(k k=M;

L Li—-1
<ﬁ<\/ T a0, N\ T ™ )
=M,

M e
< B0 (N;, M; — (L — 1))

= ﬂu]/(‘vj.l> (Nj,17 []V]sl])

<c (]Wj +1-— L[)iy (447)

by using the inequality (4.38) and the choice of N;. Here the first inequality

follows from the fact that V") is a refinement of #% for any k < L; by
L—1

L; < Nj;. Noting that y, is o \/ T7%%*") |-measurable, we conclude
k=M;

from Lemma 4.10 and the estimation Iabove that

(le Tk k+D) )1

< 2|7y (c1 (M + 1 — Ly)7) a1/, (4.48)

E|y

q
Thus, by the definition of M; and L;, we can take a positive constant c3 so

that
L—1
o \/ T—k%(kJrl)
k=0

holds for any j =3 and any / with 1 </ < j—2. By (4.46) and (4.49), we
obtain

< ey j o V/a=1/40) ;| _ ) r(1/a=1/2+0)

q
(4.49)
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Li -1
o \/ T—k%(k+l)
k=0

Y i ys(14a)(1/g—1/(2+06)) +ZC3 ]er)a 0(1/4=1/(2+0)) ,, —3(1/q-1/(2+0))
=1

-
S IE| 7
i=j

q

s}
< Czj%w(lﬂ)(l/q*1/(2+(5)) + ¢ Z jd*w(l/q*1/(2+5))m*}'(1/q*1/(2+5))

m=1

"
< <02 s Zmy<1/q1/<z+5>>> Jjsea)(1/g-1/240))

m=1

In the above, the second inequality follows from a—ocy(é—ﬁ) < 0 since
1+ 515 <, and the third inequality follows from s(1 + o) <o (see (4.24)). In
addition we notice that

Zm 2(1/q=1/(2+9))

m=
holds since —+2 =5 <é We have thus proved the lemma. W

We note that 1+2+0 <4 by the assumption on y. Let u; (j=2,3,4,...)
be as defined in Lemma 4.9 and u; = 0. If we define a sequence of functions

{Y]}il by
Yj = y; — uj + 1,
then it is obvious by definition that {Y} —, 1s a martingale difference sequence.

The following lemma gives the desired fact that {7;},2, is approximated by a
martingale difference sequence.

LEmMA 4.11.
J(N J(N)-1 )
Z Vi = Z Yi+ON'**) (N — )  pas. (4.50)
i=1 i=1

Proor. First, we notice that

J J J
Z Y, — Z Vi Z (Uiv1 — u;) = U1 — ur = Uy (4.51)

i=1 i=1 i=1

holds for any natural number j. By y > —* and = <o, we have
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I I 1o 5—a(2+9)
S N P . 4.52
yts 1+a<°‘+y+2+5>>2(2+5)(1+a) (452)

Combining this estimation with the inequality (4.26) we obtain A <1+s—

(et +2+()) Thus, noting that § + 55 <3, we can choose ¢ = 1 so that

T4 <y <(G—A+s)(1+2)— o holds.
By (4.42) we obtain

ulfxe M| Juy(x)] 2 jOPP00Y)
— O(jEsUran(1/g=1/@o)g=(1/2-D(+00y ;| on) (4.53)

The exponent in the right hand side is less than —1. Indeed,

(ot ot Yoo (5 2)at s

< (o= s(1 +5))q— G_z)(l +a)g

< -1

is valid since §+55<; and ;<(;—2A+s)(1+a) —a hold. Therefore, we
obtain

o0
Z ({x e M ||u(x)| = j12 P01 < o0, (4.54)

Hence by the Borel-Cantelli lemma we conclude that
wy = OV AU) (j = o0)  peas. (4.55)
This with (4.33) and (4.51) completes the proof. MW

From Lemma 4.11 and the equality (4.41) we get
N— JWN)-1
Y FoTF= )" Yi+ON"") (N—w) was (4.56)
= i=1
On the other hand we can apply Theorem 4.1 to {Y} ”, since {Y}] , Is a
martingale difference sequence. In what follows, (£, 3, P), {Y}lzl,{T }2, and
{B(1)},c(0,0) are as in Theorem 4.1. It remains to show that

(N)-1
B(JZ T,-) = B(62N)+ O(N'/*™*) (N - o)  P-as. (4.57)
i=1

To this end we prove the following.
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LEmma 4.12.

JN)-1 ,
Y ¥ =0iN+ON'") (N— o).

i=1

E

Proor. For any positive integer N we have

E

J(N)-1 J(N)-1 [i"]-1
> y?] = > ([i“]CF(O) +2 ("] _V)CF(V)>
i=1 v=1

i=1

JN)-1
=Nojp —op Y [I""] =i (N = L)1)
=2

-1 7] o
=23 D v+ > Crv) | (438)

v=1 v=[i*]+1

By ' <2305 e obtain

2(1+a)
s(l+a)+1 < (1+a)(1—24) (4.59)
This implies
J(N)-1 J(N)
,Z; [0+ < JO #1059 g = (NI (N o0). (4.60)

Since <1 <s(1+a)+1< (1 +a)(1-22") holds from (4.59), we obtain

N = L1 £ [J(N)?] + [I(N) ) = o(Gi(N) 9028 (N = o0)
(4.61)

It follows form the assumption (2.10) that

J)-1 (7)1 "
2y ( vCr(v) + "] > CF(V))
i=1 1

V= v=[i*]

J(N)
=< ZC4J t* dt
0

= 0(j(N)**!) (N — o)

= 0(j(V)" Y (N — o), (4.62)
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where ¢4 is a constant independent of N. Here we used the assumption that
A< ;(1;23 Thus, from (4.58), (4.60), (4.61), (4.62) and (4.33) we conclude
that

J)-1 ,
> ¥ =0iN+ON'") (N— o). (4.63)
i=1

Next, by the definitions of y; and 4* we have

J(N)—1
~E| Y ¥
i=1

)—1

JN
>y
i=1

Li—1

JN)—-1
§2§:|%H§:HF E[F [a("D)]II.,
i=1

J(N)-1 2
S (an EIF 0@ )], )
i=1

Yol i(N)—1
<2 Z Y -2 0/ o)y S (220242 o)

i=1

_ 0(‘].(N)2oc—(l+of)(l/2+/l/)) (N—> OO)

Since A’ < 41(] fg) 315 holds from (4.26), the above investigation implies that
J(V)-1 /
E| >y §: (N)IFU=220y (N o0). (4.64)
Py

Combining this, (4.63) and (4.33), we have proved the lemma. M

J(N)-1
Lemma 4.12 means that the difference of E| Y. y?| from o7N has the
i=1 J(N)-1
appropriate growth rate. Next, we prove that difference of Y. 7? from
i=1

),
> y?] also has the appropriate growth rate in a.s. sense.

LEmMma 4.13.

JN) -1

>

i=1

+ON'"") (N> w) pas.  (4.65)

J(N)—1 5
Y V=
i=1
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Proor. First we prove in the case when 0<d&<2. Since A’ <
0—(2+0)(54+2)  5_u(2+49)
2(142)(2+0) > 2(1+%)(2+0)
that 2u+2+5 < and

(1—2/1’)(1+oc)<§(1—§>+a(1+§>—ﬁ+%. (4.66)

We define a sequence {wj}_/i] of functions on M by

wi(x) = min{(5,(x))%,j°}  xeM (j=123,..)

Then for any positive integer j we have

holds from (4.26), we can select a real number { such

246
_ 2 7 ||2 5 246
u{xe M) # (70)°D) £ S5 < IFIREECR. @e7)

Since (2 +9) (rx - 5) < —1 holds from 2ax+ ﬁ < {, we obtain

Z ({x e M |wi(x) # (7,(x))*}) < 0. (4.68)

Thus, by the Borel-Cantelli lemma, for almost all xe M there exist only
finitely many positive integers j such that w;(x) # ( )7,()6))2. Therefore it fol-
lows that

-1
Z y? = Z wi+O0(1) (N — o) u-a.s. (4.69)
i=1 =1

Next, for any positive integer j we have
[Elw] — E[7]]| = JM J?]‘zx{xeM\(f/(x))zgj{} du

= |‘J_’j||§+5(/l({x eEM| (J‘/j(x))z > jC}))(S/(2+(S)

HF||2+() (2+0)o— (){/2

where y, is the indicator function of 4. We note that

(2+5)a—%<(1—2i’)(1+a¢)—1@/1’<4(1:_a)(5é—(2+25)<x) (4.70)
and
o-(2+0)(x+2) :
M< < (0 — (2 +26)a) (4.71)

20+ a)(2+0) 4(1+a)
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from (4.26) and 2u+ 535 < (. Therefore it follows that
246 )’ -
|Ew)) — E[37)] < ||F|l515j" 200 (4.72)
Hence we obtain

SUE =S Epwl - 0G0 (mw). (@7

i=1 i=1
By (4.33) this implies

J(N)-1 J(N)-1
E[5]= Y Elw]+ON"%) (N— o). (4.74)
i=1 i=1

From this and (4.69), it suffices to show

2 w=0N") (N—ow) uas., (4.75)

2

n+m

where w; =w; — E[w;] (j=1,2,...). To this end, we estimate E < > v‘v,)

for any nonnegative integer n and any positive integer m. J=ntl
Noting that 2o + 525 < {, we have

1-6/2 1+6/2
Ew?] < |lwllL 2 w01 2003

1-6/2 1+0/2
< 4wl P w3

<4] {(1-9/2) ||F||2+r5 -0(240)

< 4||F||§J+rgjc(l—5/4)+a(2+(5/2)—5/2(2+(5) (4.76)

and

|E[w;wj 1] < 119712l w7411l

< 4||F‘|§ig( 1)é’(l7&/4)+1(2+(3/2)75/2(2+5) (477)

for any positive integer j. Next for j >3 and / with 1 £/ < j— 2, we esti-
L1
mate |E[W;#]|. We notice that i; is o \/ T*%*"D |-measurable and i, is
Li—1 k=M;
a( \/ T"%(k“))-measurable. Thus by usjing Lemma 4.10 we obtain
k=0
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L—1
o \/ T_k%(k+l)
k=0
L—1
o v T*k%(k+l) i
k=0
L—1
ol \/ T w1l
k=0 2

L1 1/2-1/(2+9)
§2||Wj||2+5< <\/ TFa Y \/ T Wk“)) [lwll

k=M; k=0

L-1 1/2—1/(2490)
§8WHHNMM< <V’T“W“l\/Tk%k“>> :

J k=0

|E[ijl]|: E|E w;wy

= |E|E|w

IA

£\ w;

On the other hand there exists a positive integer jo such that (4.47) holds for
any j = jy, as we saw in the proof of Lemma 4.9. Therefore for j = j, we
obtain

1/2-1/(2+0) 1/2-1/(2+6
E(wymi)| = 8ey 7wy gllwnllo (M + 1= Ly) 72V EHD(4.78)
Hence, by the definition of M; and L;, there exists a positive constant ¢s such
that

Em9))| < esllwillpygllwill =127V (j — 1 — 1) 702 ERD (g 79)

holds for any j=3 and any / with 1 £/ <j—2. Now we have the esti-
mations

1/2 1/2 1/2 o
illas < Il w1350 < 7205 S 2 < 72091045 < 1F Nl 07>
(4.80)
and
1/2—6/4 1/2+0/4 14+0/2 o )
Pwrlly < will 22 lwilly 557 < (||, 5210 2moe=eom 4 81)

Thus, by (4.79) and / < j we have

\Elw, 0] < c5||F||§1§/2J‘“ 8/4)+2(24+3/2)o0(1/2-1/2+9)) (j _ | _ 1)77(1/2=1/2+9))

< c5||F||§jf/2 =0/ +2(2+0/2)-0/224) (; _ _ 1y=(1/271/@+0) - (4.89)

In the above the second inequality follows from the fact that y > 1—? > é holds
by the assumption on y and (4.24).
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By using (4.76), (4.77) and (4.82) we obtain

1> )

Jj=n+1
n+m n+m n+m j—2
< E 2]—1—2 E |E[W;wj_1]| + 2 E g |E[w;w,]|
Jj=n+1 Jj=n+2 Jj=n+3 I=
n+m n+m

401

Z 4||FH2+6 [((1-0/4)+2(2+5/2)=0/2(2+0) 4 9 Z 4HF”2+a 0(1-0/4)+2(2+8/2)—5/2(2+0)

Jj=n+1 Jj=n+2

n+m j—2

2+449/2 o S\, . _ _ N
42 Z ZCSHF”ng/ jEA=0/+a(240/2)=0/22+0) (j _  _ 1)7(1/2-1/(2+9))

Jj=n+3 I=

< (12||F||§ig+2 5||F||2+0/2Z —y(1/2—1/(2+96)) ) Z] {(1-6/4)+2(2+0/2)~0/2(2+0)

i= J=n+1

By the assumption on y we have

11 2248)(1—s) o
_y<§_2+5) S TS _(2+20)s 2219

s(2+9)
S 0—(2+20)s

This implies

o0
Z ir(1/2=1/(240)) o
i=1

Therefore there exists a positive constant ¢ such that

n—+m o
E (Z Wj> < 66((’1Jrm)((176/4)+a(2+5/2)7é/2(2+0)+1

Jj=n+1

n((l76/4)+x(2+¢3/2)76/2(2+5)+1

holds for any positive integer m and any nonnegative integer n.

Lemma 4.7 we have

(4.83)

(4.84)

(4.85)

Thus by
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J
Z W = {/2 )(1—0/4)+a(1+0/4)— 5/4(2+5)+1/2(10g ])2+e) (]_) oo) Li-a.s.

(4.86)

for any positive number ¢. Hence from (4.66) we obtain

J
Z 1 27 )(1+o:)) (] — oo) u-a.s. (4-87)

Combining this with (4.33), we conclude that (4.75) holds.
In the case when 2 < J, we can select a real number { such that 2« +% <{
and

¢ 31

1-2Y14+a)<>+Za—-+ (4.88)

1
4 2 g8 2’

since ' < 411’32 holds from (4.26). One can show the lemma by the same way
with the { selected above as in the case when 0 <6 <2. We omit the details.

|
From Lemma 4.12 and Lemma 4.13 we have
Z J2=iN+ON">) (N— ) uas (4.89)
Next we show that y, can be replaced by Y; in (4.89).
LemMmA 4.14.
J(N)—1
Z Y= Z 2+ O(N'™ 2A) (N — o0) L-a.s. (4.90)

Proor. By definition, for each positive integer N we have

JWN)—-1 JN)-1

YP— Yy

i=1 i=1

u)y;| + Z (i1 — u;)?

J(N)—-1 . 12 rjn-1 N2 jn—1 .
< (Uiv1 — u;) Z v o+ (Uiv1 — ;)"
i=1 i=1 i=1

Since
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> J=0N) (N-ow) pas (4.91)
i=1

holds from (4.89), it suffices to show

JN)-1 .
> (i —u)>=0N"") (N—ow) pas (4.92)
i=1
First, since A’ < 4(‘2‘_}5) l+o< holds from (4.26), we can choose a real
number ¢’ such that max{—z, —s(1+ oc)y2<2+§)} <{<(@F-22)1+a) -1

Then by Lemma 4.9 we have

llly = 0G) (= ). (4.93)
This implies
J

2 2
< D a1 + 2ol ot [ + [l 3)

g 2
Z(“Hl - Mi)
i=1 1

=o("*) (= ). (4.94)

In the above we used the assumption that ¢ > —%.

we obtain
({xe Ml Z ul+1 _ uz )) > 2k(1—42/)(1+a)}>

= QKAH-I=4N+)y (k- o), (4.95)

From this investigation

Since (' < (1 —24")(1 +a) — 1 holds by the choice of (', it follows that

Zﬂ({xe M| Z i1 (x) — ui(x ))2 > 2k<14}.’)(1+x)}> < o0. (4.96)

k=0

By the Borel-Cantelli lemma, for almost all x € M there exists a positive
number K, such that

2k
> (w1 (x) = w(x))? < K, - 2K04005) (4.97)

i=1

for any nonnegative integer k.
Now, for a positive integer j we take a positive integer so that
2k=1 < j < 2% holds. Then we have
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2k

J
S ()~ w))* £ Y () - ()
i=1

i=1

<K.,- 2k(174)./)(1+1)
< 2(1—4/1')(1—0—0()1("‘]{1—42')(1+o:)

for almost all x e M. Therefore we obtain

(i1 — w)* = OG0y (j— 0)  peas. (4.98)
1

1

This with (4.33) implies (4.92). W

J

From (4.89) and the above lemma we have

JN)—-1
Z Y} =0iN+ON'""%) (N — x) U-a.s. (4.99)
i1

Since {Y;}7, and {Y;}7, have the same distribution, we also have
JN)-1

> YP=ciN+ON'"?) (N—ow) Pas (4.100)
i=1

Finally we prove the following lemma which asserts that the difference of
J(N)-1 J(v)-1

T; from f’iz has the appropriate growth rate.
i=1 i=1
LemMma 4.15.
J(N)-1 j(N)-1

SN =3 PPronN'") (N—w)  Pas  (4101)

i=1 i=1

We use the Corollary 5 of Chow [5] to show the above lemma. So we
recall its statement below.

LEMMA 4.16 (Corollary 5 [4]). Let {s4, &,},—; be a martingale sequence on
a probability space (2,§,P) such that El|sy|] < oo for any positive integer n.
Let p be a real number with 1 < p < 2. Then the sequence of functions {s,}, |
converges almost surely on the set where

[o0)

Ellsy = sn-1]" | §,_1](w) < 0
n=2

holds.
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ProoF oF LEMMA 4.15. For any positive integer N we have

JN)-1

I MZ

Nl
Lo =
le

J(N)= J(N)—1 )
= D> (L—ETIE )+ Y (BT ] - E[VI§,])
i=1 i=1
/(N) 1 s .
( [Y ‘gl l} 1)
i=1
Since for any positive integer i
E|T|§, || - E[YYF ,]=0  P-as. (4.102)

holds from (4.2), it suffices to show

JN)=1 3 . .
(T, - E[T}|§,_,]) = ON'"™*) (N— ) P-as. (4.103)
i=1

and

J(N)—1
E[YF_ ) =ON"%) (N—ow) Pas (4104)

i=1

Since A’ < min{

0-2+0)(443) | gy }

2(1+2)(249)  4(1+x) ’
number { so that m << min{2,% (% + 2i_6)

holds from (4.26), we can choose a real

Next, for any positive integer i we define the function R; on Q by
Ry = im 0220 (72 — E[V2(§, ),

1

Then it is obvious that
E[R|F, =0 Pas. (i=2734,..)
-1
holds. Noting that 2 < ( z—io) < 240, we obtain
EHRiF] < 2El~—c<1+a)<1—2).’)EHmzi]
< o8-ty (1-22) (||JGH2( + fluill 7 + ||u,+1||2§) . (4.105)

Now we have

17illaz = [1pillye S *)1F |- (4.106)



406 Naoki NAGAYAMA

On the other hand, from Lemma 4.9 and the assumption %—i— 515 < 2% we have
iz = O~/ @H0Dy (o), (4.107)
Thus it follows that
E[|R[] = 02110020 (i o0, (4.108)
Since
2e—C(1+a)(1-22")=-L(1 —a—22"(1+a) < -1 (4.109)
holds by the choice of {, we obtain
S E[R| < . (4.110)
i1
This implies that
ZE RIS, ] P-as. (4.111)
i=1
Therefore we can apply Lemma 4.16 to s, = > R; with p ={. Hence the
0 0 » - _i=1
series 3. Ri(w) = S i~ H90-2)((Y,(w))* — E[Y?|F,_,](®)) converge for almost
i=1

i=1
all we 2. By Kronecker’s lemma this implies that

J
1+a)1 27 ZI: P EYHE @) =0 (o) (4.112)
for almost all @ e Q. Thus it follows that

J
STV - E[YA§, ) = 002 (j— ) Pas. (4113)
i=1

From this and (4.33) we obtain (4.104).
Next for any positive integer i we define the function R! on 2 by

R} = i M0=2(T, — E[T)|§,_)]).
Then it is obvious that
ER|§_]=0 Pas.  (i=23,4,...).

On the other hand, from (4.3) and (4.4) we have
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EHR”Z] < 25i75(1+“)(172ﬂ)E[| Ti|g] < ZEDZi*Z(IJroc)(le/l’)EH Yi|25]- (4.114)
Thus one can show (4.103) by the same way as (4.104). W

THE FINAL STEP OF THE PROOF OF THEOREM 2.1. From (4.100) and Lemma
4.15 we get

JV)—-1
Y Ti=aiN+OWN'") (N—w) Puas (4.115)
i=1

By a property of Brownian motion it is easy to show that this implies that

J(N)-1
B( > T,») = B(62N)+ O(N'/**) (N = o)  P-as. (4.116)
i=1

Consequently we have just proved Theorem 2.1. H

In the rest of the paper we prove Corollary 2.2 and Corollary 2.3.

PrOOF OF COROLLARY 2.2. It suffices to show that the assumptions of
Theorem 2.1 are satisfied. First, we have

CrN)| = [ EIF|aer ™ )] EIF | er ™ o )i
+2AFLIF = BIF o/ ™ D)l + |F = EIF | oo/ . @117
Now we have

H E[F|a(Z™ )] - (E[F |a(™ )] o TN)du’
M

_ U E[F | (™ V)] - E[E[F | o(a/™D)] 0 TV | (™ V)]

< |ELF | (ot I | ELELF | (/N )] o T | o™ D)
< 2||FlI1F 2By (N, N))/2-1/C+9)
1/2-1/(2+8) 5(1/2—1/(2+3))N*®
SO F ||| Fly, 5 Cy/ 23271 0]
= 0(N73) (N—> oo)

Note that the second inequality in the above follows from Lemma 4.10. On
the other hand we have
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|F — E[F|a(/™D)]||, < #e(C1AY")

1
= 0 5 N —
(log Ci + N7 log w) ( )

—O(N") (N =),

Thus, since Gv > w > 15 holds from the assumption on v, we obtain
|Cr(N)|=O(N}) (N — o). (4.118)
Hence it follows that
e}
Zn|Cp(n)| < 0.
n=1
Next we set s = ﬁ. We notice that
3 34(249) 24+15
—+= = 0 4.119
T2 6 5 =% (4.119)

holds from the assumption on ». Thus we can choose y so that

220+0)(1—5) 4(2+9)

51+ o 7 (4.120)
and
Bv >%+%y (4.121)
hold. Then
s < min{5,3}
2420
and
4+20 1-s
0 s

N,s)

are valid. Now, for any positive integer N we set /) = o7( Then we

obtain
Bym(N,[N*]) =ON"") (N — )

since
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Bm (N, [N*]) £ C22"

holds.
On the other hand we have

IF — E[F |o(/™M)]|, < #7(C12Y")

0 1
[log Ci + N7 log A"

= ON"*™) (N — o).

JRCEES

Therefore, since sfv > 3 + %ys > (% + %) + (1 + %)sy holds from the choice of y,
(2.12) is valid with = = sfv. Consequently all assumptions of Theorem 2.4 are
satisfied. M

ProoOF oF COROLLARY 2.3. We can show that
o0
Zn|CF(n)\ <

n=1

by the same way as in the proof of Corollary 2.2. We take arbitrary A with
A < 2% and choose s such that 0 < s < 525 and

o — (2+20)s
T (4.122)

hold. Now we set o = (Zt;ﬁ;ﬂ) . Then we have « > % and

5 2-50—0—sQ2+3) - (2+20)s
- = 0. 4.123
210~ 2-502+0) 2-52+0) (4.123)
From the last equality we obtain
1 2

2 < 4.124
* <5 5 ( )

for y large enough. Therefore, from the assumption that 0 < J <2, (4.24) in
the proof of Theorem 2.1 is satisfied.
Next, we have

a(l—s)—s (O0+52+0)(1—s)—s2—5)(2+) 60— (2+20)s
2(1+a) 8+ 60  8+66

(4.125)

5—(2+5)(a+%) 5 — (2 +26) 1
22+0)(1+a)  8+60  y(1+a) (4.126)
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and

| - 1 -« B 1 - 11—« B 2
4(140a) " 2(140a) 4(14+a) = 2(1+a) 2Q2+0)(1+a)

5 —a(2+49)
T 202+40)(1+9) (4.127)

from the assumption that 0 < J < 2. Thus, noting (4.122) we conclude that for
sufficiently large y

A < min 5—(2-1-5)(0(4—%) l—o o(l—s)—s 509 «
2240)(1+a) "4(1+4+a) 2(14+a) "42+5) 4(1+a)
(4.128)
and y > max{%,%} hold. Now we choose v so that
0 >3+§ +Ai= é—&-l + 1—|—l + A (4.129)
sOv zys =313 3 sy , .
and set /™) = .o/™V:9 Then we have
BN, IN) £ G2 = O(N~) (N — ) (4.130)
and
IF — E[F |a(«/™)]ll, = ON") (N — o). (4.131)

Therefore all assumptions are satisfied with p =2, t =s0v and p =0. As we
saw in the proof of Theorem 2.1, the almost sure invariance principle holds
for F with any A satisfying (4.26). On the other hand, by (4.128) and (4.129),
any A with 1 < gfﬁ satisfies (4.26) for the constants s,a,y,7, and p, p chosen
above. Consequently the corollary has been proven. H
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