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In this paper, the asymptotic distributions of estimators for the regularized functional canonical correlation
and variates of the population are derived. The method is based on the possibility of expressing these
regularized quantities as the maximum eigenvalue and the corresponding eigenfunctions of an associated
pair of regularized operators, similar to the Euclidean case. The known weak convergence of the sample
covariance operator, coupled with a delta-method for analytic functions of covariance operators, yields
the weak convergence of the pair of associated operators. From the latter weak convergence, the limiting
distributions of the canonical quantities of interest can be derived with the help of some further perturbation
theory.
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1. Introduction

This paper deals with the asymptotic distribution theory of functional canonical correlations and
their variates. Although tailored to these particular problems, the methodology is of a generic
character and may also apply to questions regarding the asymptotic distribution of other statistics
used in functional data analysis. The problem will be formulated in a general Hilbert space setting
where the Hilbert space is tacitly assumed to be infinite-dimensional and separable.

In this infinite-dimensional case, some difficulties regarding the definition of the sample
canonical correlation have already been observed in Leurgans et al. (1993). The authors of that
paper argue that some kind of smoothing or regularization is indispensable when dealing with
the sample canonical correlation. These difficulties are essentially due to the fact that the sample
covariance operator has a so-called finite-dimensional kernel (Riesz and Sz.-Nagy (1990)), while
acting on an infinite-dimensional space. Leurgans et al. (1993) realize smoothing by introduc-
ing a roughness penalty term. Although there is a connection between Tikhonov regularization
of inverse operators (employed in this paper) and the use of penalty terms, the relation with
the roughness penalty cannot be established within the present context of our paper. He et al.
(2004) apply dimension reduction/augmentation at the level of the actual data and base the em-
pirical canonical correlation on these modified data. This approach differs considerably from
ours, which is based on regularization of the canonical correlation itself. The results in He et al.
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(2004) are for fixed sample size and the asymptotics in Leurgans et al. (1993) remain restricted
to consistency.

In Cupidon et al. (2006) it has been observed that the population canonical correlation, al-
though well defined in principle, is, in general, a supremum of a certain functional, rather than
a maximum, so that a maximizer (i.e., a pair of canonical variates) may not always exist in the
ambient Hilbert space. Another deficiency is that, even if the canonical correlation corresponds
to a maximum and canonical variates do exist, these quantities cannot be interpreted as the maxi-
mum eigenvalue and corresponding eigenvector of a pair of associated operators, as is true in the
Euclidean setting. The development in Cupidon et al. (2006) shows that all of these deficiencies
of the population canonical correlation can be remedied if a modification is employed, based on
regularization of the inverses of the operators involved. Also, some relations between the actual
population quantities and their regularized versions are established in that paper.

The present approach to finding the asymptotic distribution of the regularized sample canon-
ical correlation and its variates hinges to a great extent on the interpretation of both the regu-
larized sample and the regularized population quantities as spectral characteristics of associated
pairs of operators. In Section 4 of this paper, the asymptotic distribution of a regularized version
of the sample canonical correlation and its variates will be derived. In the Euclidean case, where
regularization is not needed, this approach has been pursued in Ruymgaart and Yang (1997),
exploiting certain results in Watson (1983).

One of the main tools needed to derive the desired asymptotics is a delta-method for ana-
lytic functions of certain random operators (more specifically, sample covariance operators). This
delta-method might be of independent interest and is considered in Section 3. It is based on the
existence of a Fréchet derivative of an analytic function of a compact, strictly positive Hermitian
operator, tangentially to the space of all compact Hermitian operators. Because we cannot make
the simplifying assumption that the increments commute with the operator at which the func-
tion is evaluated, the expression for the Fréchet derivative requires an extra correction term. The
delta-method yields the asymptotic distribution of the associated operators, from which the as-
ymptotics of their eigenvalues and eigenvectors can be derived in a similar manner as in Dauxois
et al. (1982).

As has been observed above, without regularization, the population canonical variates do not,
in general, exist and, consequently, it seems appropriate to maintain a fixed level of regularization
for suitable asymptotics. Mathematically, a fixed level of regularization leads to root-sample-size
asymptotics. When the regularization parameter tends to zero, however, this rate will depend on
the (typically unknown) eigenvalues of the covariance operator.

In Section 2, some basic notation and definitions are introduced. For practical implementa-
tion of the results of Section 4, the estimation of unknown parameters will be needed, an issue
addressed in Section 5. An example and some further comments are given in Section 6. The
mathematical results for perturbation of compact, positive Hermitian operators that, in particu-
lar, yield the Fréchet derivative are reviewed without proof in the Appendix.

2. Basic notation, definitions and assumptions

Let (�,F,P) denote a probability space, H an infinite dimensional, separable Hilbert space with
inner product 〈·, ·〉, norm ‖ · ‖ and σ -field of Borel sets BH, and let X :� → H be a random
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element in H, that is, an (F,BH)-measurable mapping. Throughout, it will be required that

E‖X‖4 < ∞. (2.1)

Under this condition, the mean EX = µ ∈ H exists, meaning that (Laha and Rohatgi (1979))

E〈f,X〉 = 〈f,µ〉 ∀f ∈ H. (2.2)

Under assumption (2.1), the covariance operator � of X also exists. It is known to be uniquely
determined by the relation

E〈f,X − µ〉〈X − µ,g〉 = E
〈
f,

(
(X − µ) ⊗ (X − µ)

)
g
〉 = 〈f,�g〉 ∀f,g ∈ H, (2.3)

where “⊗” denotes the tensor product in H. We will also write

� = E(X − µ) ⊗ (X − µ). (2.4)

Such a covariance operator is nonnegative Hermitian and has finite trace E‖X‖2, so it is also
compact. We will therefore assume, without real loss of generality, that

� is strictly positive, that is, 〈f,�f 〉 > 0 ∀f 	= 0 (2.5)

and hence that � is injective. It is well known that � has spectral representation

� =
∞∑

k=1

λkPk, (2.6)

where λ1 > λ2 > · · · ↓ 0 are the eigenvalues of � and P1,P2, . . . the projections onto the corre-
sponding finite-dimensional eigenspaces.

Let L denote the Banach space of all bounded linear operators that map H into itself. The or-
dinary operator norm in L will be denoted by ‖ · ‖ without confusion. Of particular importance in
this paper, however, is the subspace L(HS) of all Hilbert–Schmidt operators. This space becomes
a separable Hilbert space when it is endowed with the inner product

〈U,V 〉HS =
∞∑

k=1

〈Uek,V ek〉, U,V ∈ L(HS), (2.7)

where e1, e2, . . . is an orthonormal basis of H. This inner product does not depend on the choice
of basis; see Lax (2000). The norm and tensor product in L(HS) will be denoted by ‖ · ‖HS and
⊗HS, respectively.

The space L(HS) is important for the study of weak convergence of the sample covariance
operator. At this point, let us simply note that � ∈ L(HS) and that (X − µ) ⊗ (X − µ) is a
random element in L(HS). As a random element in this Hilbert space, it has its own covariance
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operator; this operator exists due to condition (2.1) and can easily be seen to equal (cf. (2.3) and
(2.4))

E{(X − µ) ⊗ (X − µ) − �} ⊗HS {(X − µ) ⊗ (X − µ) − �}
= E{(X − µ) ⊗ (X − µ)} ⊗HS {(X − µ) ⊗ (X − µ)} − � ⊗HS � (2.8)

= �HS.

Next, let us suppose that H1 and H2 are two closed subspaces of H such that

H = H1 ⊕ H2, H1 ⊥ H2. (2.9)

Denote the orthogonal projection of H onto Hj by �j , let Xj = �jX, µj = �jµ and let �jk

denote the restriction of � to Hk and Hj , that is,

�jk = �j��k, j, k = 1,2. (2.10)

Because the �j are bounded and � is Hilbert–Schmidt (and hence compact), each operator �jk

is still Hilbert–Schmidt (and hence compact). In addition, the �jj are strictly positive Hermitian.
Let us also note that

�∗
12 = (�1��2)

∗ = �2��1 = �21. (2.11)

Similarly to (2.6), �jj has a spectral representation of the form

�jj =
∞∑

k=1

λjkPjk, j = 1,2, (2.12)

where λj1 > λj2 > . . . ↓ 0 are the eigenvalues of �jj and Pj1,Pj2, . . . the projections onto the
corresponding finite dimensional eigenspaces.

Suppose, now, that we are given a random sample X1,X2, . . . ,Xn of independent copies of X.
The usual estimators of µ and � are

X = 1

n

n∑
i=1

Xi, �̂ = 1

n

n∑
i=1

(Xi − X) ⊗ (Xi − X), (2.13)

respectively. This operator �̂ has all of the properties of �, including its being of Hilbert–
Schmidt type, except that it has a so-called finite-dimensional kernel (Riesz and Sz. Nagy (1990))
with a range of dimension at most n. Hence, this operator can never be injective, not even when
� is (as we assume). The fact that �̂ is not injective is the source of difficulties associated with
defining the sample principal canonical correlation that turns out to always be 1, as has been
pointed out by Leurgans et al. (1993). These authors state that regularization is indispensable in
the sample case.

The canonical correlation concept considered here can also be viewed from the perspective of
Hilbert-space-indexed processes (e.g., Parzen (1970)) corresponding to H inner products involv-
ing the random elements Xj = �jX, j = 1,2. Thus, it has direct ties to (functional) analysis of
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variance and discriminant analysis that parallel the relationship between these methods for clas-
sical multivariate analysis (e.g., Kshirsagar (1972), Eubank and Hsing (2006) and Shin (2006)).
The necessity of regularization in this context follows from results in Bickel and Levina (2004),
while the use of regularized discriminant analysis methods with functional data has been explored
by Hastie et al. (1995).

Cupidon et al. (2006) argue that regularization is expedient, even when the population canoni-
cal correlation is considered, because, without it, canonical variates may not exist and the relation
with the spectral characteristics of an associated pair of operators is lost. Hence, in this paper,
both the sample and the population canonical correlation will be regularized and compared at the
same fixed, but arbitrary, level of the regularization parameter.

In order to specify the regularization that will be employed here, let us replace � with αI +�

and �̂ with αI + �̂, where I is the identity operator and α > 0. Let us also replace �jk and �̂jk

with

�j(αI + �)�k =
{

(αIj + �jj ), j = k,
�jk, j 	= k,

(2.14)

�j(αI + �̂)�k =
{

(αIj + �̂jj ), j = k,
�̂jk, j 	= k,

(2.15)

respectively, where Ij = �j is essentially the identity operator restricted to Hj . Let us write
H

0
1 = H1\{0}, H

0
2 = H2\{0} for brevity.

Definition 2.1. Fix α > 0. The regularized squared principal canonical correlation (RSPCC) for
the population is defined as

ρ2 = ρ2(α) = max
f1∈H

0
1

f2∈H
0
2

〈f1,�12f2〉2

〈f1, (αI1 + �11)f1〉〈f2, (αI2 + �22)f2〉 . (2.16)

Its sample analogue is ρ̂2 = ρ̂2(α), obtained from (2.16) by replacing �jk with �̂jk . Pairs of
maximizers will be respectively denoted by f ∗

1 = f ∗
1α , f ∗

2 = f ∗
2α for the population and by f̂1 =

f̂1α , f̂2 = f̂2α for the sample. The corresponding canonical variates are

〈X,f ∗
j 〉, 〈X, f̂ ∗

j 〉, j = 1,2. (2.17)

Warning. Since, throughout the sequel, α > 0 will be arbitrary, but fixed, the dependence on α

is henceforth suppressed in the notation.

Several properties have been shown in Cupidon et al. (2006), in particular, that, for α > 0, a
maximizer always exists. This can, in fact, be seen as an implication of the following result of
that paper. Define the operators (α > 0)

R1 = (αI1 + �11)
−1/2�12(αI2 + �22)

−1�21(αI1 + �11)
−1/2, (2.18)

R2 = (αI2 + �22)
−1/2�21(αI1 + �11)

−1�12(αI2 + �22)
−1/2 (2.19)
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and their sample analogues R̂1 and R̂2. Since all factors defining these operators are bounded,
with �12 and �21 or their sample analogues even Hilbert–Schmidt (and hence compact) it fol-
lows that these operators are also Hilbert–Schmidt (and hence compact). It will be assumed that{

R1 and R2 have a largest eigenvalue with one-dimensional eigenspace
generated by f ∗

1 and f ∗
2 , respectively, where ‖f ∗

1 ‖ = ‖f ∗
2 ‖ = 1.

(2.20)

Theorem 2.1. For α > 0, we have

ρ2 = largest eigenvalue of Rj = 〈f ∗
j ,Rjf

∗
j 〉 (2.21)

for j = 1,2. A similar result holds true for ρ̂2.

The maximizers or canonical variates are essentially unique if the eigenspaces corresponding
to this maximal eigenvalue are one-dimensional. The same properties hold true for the sample
analogue.

3. A delta-method for analytic functions of the sample
covariance operator

Assuming (2.1), Dauxois et al. (1982) have shown the fundamental result

√
n(�̂ − �)

d→G, as n → ∞, in L(HS), (3.1)

where G is a zero-mean Gaussian random element in the Hilbert space L(HS) with covariance
operator

EG ⊗HS G = �HS, (3.2)

as defined in (2.8). The continuous mapping theorem immediately yields that

√
n(�̂jk − �jk)

d→�jG�k = Gjk, as n → ∞, in L(HS). (3.3)

Let D ⊂ C be the open domain in the complex plane defined by

D =
{
z ∈ C : min

0≤x≤‖�‖ |z − x| < 1
2α

}
, (3.4)

where α > 0 is the regularization parameter. This domain can be used for all the specific functions
we need to consider. It seems worthwhile, however, to first consider an arbitrary function

ϕ :D → C, analytic on D. (3.5)

As in the Appendix, let CH denote the class of all compact Hermitian operators on H and LH the
class of all bounded Hermitian operators. Let us consider the operator ϕ(� + P) in LH , for P
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in CH with ‖P‖ < 1
3α. This operator-valued function has a Fréchet derivative at �, tangentially

to CH , denoted by ϕ′
� and given by (A.6). This operator ϕ′

� :CH → LH is bounded in the usual
operator norm.

If LH (HS) ⊂ CH is the subspace of all Hermitian Hilbert–Schmidt operators, we even have

ϕ′
� :LH (HS) → LH (HS), bounded in ‖ · ‖HS. (3.6)

To see this, take P ∈ LH (HS) and observe that

‖ϕ′
�P‖2

HS =
∞∑

k=1

‖ϕ′
�Pek‖2 ≤ ‖ϕ′

�‖2
∞∑

k=1

‖Pek‖2 = ‖ϕ′
�‖2‖P‖2

HS < ∞, (3.7)

exploiting the boundedness of ϕ′
� in the usual operator norm. It is well known (Lax (2000)) that

‖T ‖ ≤ ‖T ‖HS, T ∈ L(HS). (3.8)

We are now ready to establish a “delta-method” for random operators. For random matrices, the
result follows from Watson (1983) and can be found in Ruymgaart and Yang (1997).

Theorem 3.1. If (2.1) is satisfied, it then follows that

√
n{ϕ(�̂) − ϕ(�)} d→H, as n → ∞, in L(HS), (3.9)

where H is the zero-mean Gaussian random element of L(HS) given by

H = ϕ′
�G =

∑
j≥1

ϕ′(λj )PjGPj +
∑∑

j 	=k

ϕ(λk) − ϕ(λj )

λk − λj

PjGPk, (3.10)

with G given in (3.1).

Proof. Let us consider P̂ = �̂ − � as a random perturbation (cf. Dauxois et al. (1982), Watson
(1983)) and note that, by (3.1) and (3.8), we have ‖P̂‖ ≤ ‖P̂‖HS = Op(n−1/2) as n → ∞. This
implies that, for numbers n−1/2 � εn � n−1/4 we have

P(�n) = P{ω ∈ � :‖P̂(ω)‖ < εn} → 1 as n → ∞. (3.11)

According to Theorem A.1 and (3.12), we have, for n sufficiently large,

√
n{ϕ(�̂) − ϕ(�)} = √

n{ϕ(�̂) − ϕ(�)}1�n + √
n{ϕ(�̂) − ϕ(�)}1�c

n

= √
n{ϕ′

�P̂ + O(‖P̂‖2)}1�n + op(1) (3.12)

= ϕ′
�

(√
n(�̂ − �)

) + op(1).

The results in the theorem follow from (3.12) by applying (3.1) once more, in conjunction with
(3.6) and the continuous mapping theorem. �
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Remark 3.1. The double sum in (3.1) is, in fact, a correction term that is needed because we may
not assume that the “increments” P̂ = �̂ − � and � commute; see also Remark A.1.

In order to obtain asymptotic distributions for functional canonical correlations and variates,
Theorem 3.1 will be employed for the specific functions

ϕp(z) = (α + z)−p/2, z ∈ D, p = 1,2. (3.13)

These functions are indeed analytic on D. For brevity, let us simply write ϕ′
p,j for the Fréchet

derivative evaluated at �jj . It is immediate from (2.9) that ‖�jj‖ ≤ ‖�‖ and therefore the do-
main D can still be used for �jj . The following corollary is immediate from these remarks, (3.3)
and Theorem 3.1.

Corollary 3.1. With ϕp as in (3.13), we have, for j = 1,2,

√
n{ϕp(�̂jj ) − ϕp(�jj )} d→ϕ′

p,jGjj , (3.14)

where the limit is a zero-mean Gaussian random element in L(HS) and, more explicitly,

ϕ′
p,jGjj = −p

2

∑
k≥1

1

(α + λjk)(p+2)/2
PjkGjjPjk

(3.15)

+
∑∑

m 	=n

(α + λjm)p/2 − (α + λjn)
p/2

(λjn − λjm)(α + λjm)p/2(α + λjn)p/2
PjmGjjPjn.

4. Asymptotics for the sample RSPCC and variates

The basic ingredients for the asymptotic distribution of the sample RSPCC and its variates are
the weak limits of the associated operators R̂1 and R̂2 (cf. (2.17) and (2.18)) from which these
quantities are derived. These limits follow rather routinely with the help of Corollary 3.1. It has
already been observed that Rj , R̂j ∈ L(HS) for j = 1,2.

Let us introduce the following zero-mean Gaussian elements of L(HS):

R11 = (ϕ′
1,1G11)�12ϕ2(�22)�21ϕ1(�11), (4.1)

R12 = ϕ1(�11)G12ϕ2(�22)�21ϕ1(�11), (4.2)

R13 = ϕ1(�11)�12(ϕ
′
2,2G22)�21ϕ1(�11), (4.3)

R14 = ϕ1(�11)�12ϕ2(�22)G21ϕ1(�11), (4.4)

R15 = ϕ1(�11)�12ϕ2(�22)�21ϕ
′
1,1(G11), (4.5)

R1 =
5∑

j=1

R1j (4.6)
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and, similarly,

R21 = (ϕ′
1,2G22)�21ϕ2(�11)�12ϕ1(�22), (4.7)

R22 = ϕ1(�22)G21ϕ2(�11)�12ϕ1(�22), (4.8)

R23 = ϕ1(�22)�21(ϕ
′
2,1G11)�12ϕ1(�22), (4.9)

R24 = ϕ1(�22)�21ϕ2(�11)G12ϕ1(�22), (4.10)

R25 = ϕ1(�22)�21ϕ2(�11)�12ϕ
′
1,2(G22), (4.11)

R2 =
5∑

j=1

R2j . (4.12)

Theorem 4.1. Let (2.1) be satisfied. We have

√
n(R̂j − Rj )

d→Rj , as n → ∞, in L(HS) for j = 1,2. (4.13)

Proof. It suffices to prove (4.13) for j = 1. The left-hand side of (4.13) can be decomposed as∑5
j=1 R̂1j , where, for instance,

R̂11 = √
n{ϕ1(�̂11) − ϕ1(�11)}�̂12ϕ2(�̂22)�̂21ϕ1(�̂11). (4.14)

It follows from (3.14) that the first factor in (4.14) equals ϕ′
1,2G22 +op(1). Relation (3.3) and the

continuity of the functions in (3.14) imply that the product of the remaining four factors equals
�21ϕ2(�11)�12ϕ1(�22) + Op(1). In combination, these results yield that R̂11 = R11 + Op(1).
In a similar manner, one can deal with R̂12, . . . , R̂15. Eventually, this produces

√
n(R̂1 − R1) =∑5

j=1 R̂1j + op(1) and we are done. �

To establish (4.13), we have exploited the delta-method of (3.14), based on the Fréchet deriv-
ative, in order to deal with the factors in the product defining R̂j . Once the limiting distributions
of the random operators have been established, we may proceed as in Dauxois et al. (1982) to
find the asymptotic distributions of eigenvalues and eigenvectors. For completeness, the required
perturbation results in the infinite-dimensional situation are briefly summarized in the Appendix
and proofs of the two main theorems below are included.

First, some more notation will be needed. The compact operators Rj and R̂j are nonnegative
Hermitian and have spectral representations

Rj =
∞∑

k=1

ρjkQjk, R̂j =
∞∑

k=1

ρ̂jkQ̂jk, j = 1,2, (4.15)

where ρj1 > ρj2 > · · · ↓ 0 and ρ̂j1 > ρ̂j2 > · · · ↓ 0 are the distinct eigenvalues and Qjk , Q̂jk

the orthogonal projections onto the corresponding finite dimensional eigenspaces. Assumption
(2.20) implies that

ρj1 = ρ2, Qj1 = f ∗
j ⊗ f ∗

j , j = 1,2. (4.16)
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We also have, by Definition 2.1 and Theorem 2.1, that

ρ̂j1 = ρ̂2, j = 1,2. (4.17)

The operators

Aj =
∞∑

k=2

ρj1

ρj1 − ρjk

Qjk, j = 1,2, (4.18)

will also be needed.

Theorem 4.2. Let (2.1) and (2.19) be satisfied. The sample RSPCC then has a normal distribu-
tion in the limit:

√
n(ρ̂2 − ρ2)

d→N(0, σ 2) as n → ∞, (4.19)

where

σ 2 = E 〈Rj f
∗
j , f ∗

j 〉2, j = 1,2. (4.20)

Proof. The proof is in the same vein as that of Theorem 3.1. However, let us now consider the
random perturbation P̂ = R̂j − Rj and define �n for the same εn, but with P̂ as above. In the
present situation, it is (4.13) that guarantees that P(�n) → 1 as n → ∞.

It follows from Theorem A.2 that

Q̂j11�n = f̂ ∗
j ⊗ f̂ ∗

j 1�n (4.21)

for n sufficiently large. Application of Theorem A.3 yields
√

n(ρ̂j1 − ρj1) = √
n(ρ̂j1 − ρj1)1�n + √

n(ρ̂ − ρ)1�c
n

= √
n〈P̂f ∗

j , f ∗
j 〉1�n + O(‖P̂‖21�n) + op(1)

(4.22)
= 〈√n(R̂j − Rj )f

∗
j , f ∗

j 〉 + op(1)

d→ 〈Rj f
∗
j , f ∗

j 〉, as n → ∞.

Because of (4.16) and (4.17), the expression on the left in (4.22) equals the one on the left in
(4.19), so the theorem follows. �

Theorem 4.3. Assuming the validity of (2.1) and (2.19), we have

√
n(f̂ ∗

j − f ∗
j )

d→AjRj f
∗
j , as n → ∞, in H for j = 1,2. (4.23)

Proof. Let us consider the same random perturbation P̂ = R̂j − Rj and the same sets �n as in
the proof of Theorem 4.2. Let us also recall (4.21). It follows from Theorem A.2 that

f̂ ∗
j 1�n = (f ∗

j + AjPf ∗
j )1�n + O(P21�n). (4.24)
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In the same manner as (4.22), we now obtain

√
n(f̂ ∗

j − f ∗
j ) = Aj

√
n(R̂j − Rj)f

∗
j + op(1)

d→AjRj f
∗
j as n → ∞, (4.25)

which proves the theorem. �

5. Further specification of limiting distributions

The distributions on the right in (4.19) and (4.23) contain unknown parameters that must be
estimated for practical implementation. Let us first consider the variance in (4.20). Substituting
(4.6) or (4.7) yields

σ 2 =
5∑

k=1

5∑
m=1

E〈Rjkf
∗
j , f ∗

j 〉〈Rjmf ∗
j , f ∗

j 〉. (5.1)

Subsequent substitution of the expressions for the Rjk shows, after reworking the inner products,
that the expression for σ 2 in (5.1) is a sum of terms of the type

E〈Gf ,g〉〈Gp,q〉, (5.2)

where f , g, p, q ∈ H depend on � and where G is given in (3.1).

Lemma 5.1. If f , g, p, q ∈ H are known, we can express (5.2) as

E〈Gf ,g〉〈Gp,q〉 = 〈q ⊗ p,�HSg ⊗ f 〉HS, (5.3)

where �HS is the covariance operator of G in (3.2).

Proof. Let us assume that f , g, p, q 	= 0 because, otherwise, (5.3) is trivial. Hence, we can
construct two orthonormal bases of H, viz. e1, e2, . . . and d1, d2, . . . , with

e1 = f

‖f ‖ , d1 = p

‖p‖ . (5.4)

Rewriting and evaluating the right-hand side of (5.3), we obtain

〈q ⊗ p,�HSg ⊗ f 〉HS = E 〈q ⊗ p, (G ⊗HS G)g ⊗ f 〉HS

= E〈G, g ⊗ f 〉HS〈G, q ⊗ p〉HS
(5.5)

= E

{ ∞∑
k=1

〈f, ek〉〈Gek, g〉
}{ ∞∑

m=1

〈p,dm〉〈Gdm,q〉
}

= E〈Gf ,g〉〈Gp,q〉,
as was to be shown. �
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Since the f , g, p, q depend on �, we can replace them on the right in (5.3) with estimators
obtained by substituting �̂ for �. Also, �HS is unknown and we may replace this operator with
the estimator

�̂HS = 1

n

n∑
i=1

[{(Xi − X) ⊗ (Xi − X) − �̂} ⊗HS {(Xi − X) ⊗ (Xi − X) − �̂}]. (5.6)

Let us next turn to the Gaussian random element in H, on the right in (4.23). Substitution
of (4.6) or (4.7) shows that the covariance operator of this random element is determined by
covariances of the type

σ 2(f, g) =
5∑

k=1

5∑
m=1

E〈f,Rjkf
∗
j 〉〈Rjmf ∗

j , g〉 (5.7)

and this can be seen to be a sum of terms of type

E〈p,Gf ∗
j 〉〈Gf ∗

j , q〉, (5.8)

in the same way as above. In this case, explicit expressions for p and q involve the operator Aj

and hence the unknown ρjk and Qjk (see (4.18) and (4.15)). These quantities can be estimated by
the corresponding quantities for R̂j and �HS can again be estimated by (5.6) so that, in principle,
an estimator of (5.7) is available. An alternative to this estimation scheme could perhaps be
formulated using resampling and bootstrap methods. We will not explore this idea further here.

6. Example and some remarks

The purpose of this paper is to establish some fundamental results regarding functional canonical
correlations and their variates, at a fixed, but arbitrary, level of the regularization parameter α > 0.
Although the question of how to choose this parameter in practice is certainly of great interest
and relevance, it is not the main concern of this paper and would require a lengthy discussion of
further theory and numerical simulations beyond the scope and purpose of this work.

As a compromise, in this section, we present an explicit example that seems suitable for
such simulations. It concerns two dependent standard Brownian motion processes that allow
for canonical correlations in the entire range from 0 to 1. To construct these processes, let

em(t) = √
2 sin

((
m − 1

2

)
πt

)
, t ∈ R, m ∈ N, (6.1)

λm =
{

1

(m − 1/2)π

}2

, m ∈ N. (6.2)

Let ξjm be i.i.d. N(0,1)-random variables for m ∈ N and j = 1,2. Choose am, bm ∈ R such that

a2
m + b2

m = 1, m ∈ N, (6.3)
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and define (j = 1,2)

ejm = em

(
t − (j − 1)

)
1[j−1,j ](t), 0 ≤ t, (6.4){

U1m = √
λmξ1m, m ∈ N,

U2m = √
λm(amξ1m + bmξ2m), m ∈ N.

(6.5)

For both values of j , the

Ujm are independent N(0, λm), m ∈ N. (6.6)

Obviously,

Xj(t) =
∞∑

m=1

Ujmejm(t), 0 ≤ t ≤ 2, (6.7)

is the Karhunen–Loève expansion of a standard Brownian motion, starting at t = 0 for j = 1 and
at t = 1 for j = 2. If we define

X(t) = X1(t) + X2(t), 0 ≤ t ≤ 2, (6.8)

then this process is a random function in H = L2(0,2) and Xj can be considered as its projection
onto Hj = L2(j − 1, j).

Because

γkm = EU1kU2m = √
λkλm amδkm, (6.9)

a straightforward, but tedious, calculation (see Cupidon et al. (2006)) shows that ρ2 is the largest
eigenvalue of the diagonal matrix R with elements

R(k, j) =
 a2

kλ
2
k

(α + λk)2
, k = j ,

0, k 	= j .
(6.10)

If we assume that

1 ≥ a2
1 ≥ a2

2 ≥ · · · , (6.11)

then the largest eigenvalue of this matrix equals

ρ2 = a2
1λ2

1

(α + λ1)2
. (6.12)

Choosing a2
1 = 0 yields X1 ⊥⊥ X2 and ρ2 = 0, and choosing a2

1 close to 1 and α close to 0 yields
a ρ2 close to 1.

A sample of size n of processes can be obtained by generating n independent, suitably trun-
cated sets of i.i.d. N(0,1)-random variables and R̂1 can, in principle, be numerically approxi-
mated, by first approximating X and �̂ in (2.13). Finally, this should yield a specific value of
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ρ̂2 and hence of
√

n(ρ̂2 − ρ2). This sampling process may be repeated N times. Each of the N

runs yields a value of the standardized empirical canonical correlation and these values could
be summarized in a histogram. All of this might be repeated for several values of the regular-
ization parameter α > 0. Numerical procedures are available, but their implementation is rather
involved. Apart from these simulations, some criterion should be formulated that yields an opti-
mal value of α in theory, like the mean integrated square error for curve estimation. The entire
issue of gaining insight into the choice of regularization parameter seems a topic of independent
interest.

Appendix: Some perturbation theory

In this appendix, we briefly summarize some results from perturbation theory. A more general
version of these results can be found in a technical report by Gilliam et al. (2006). In slightly
different form, Theorem A.2 and Theorem A.3 can be found in Dauxois et al. (1982). Some
monographs on perturbation theory for operators are Kato (1966), Rellich (1969) and Chatelin
(1983). For matrices, Theorem A.1 can be found in Bhatia (2007). It has already been observed
that the delta-method for functions of matrices can be found in Ruymgaart and Yang (1997).

All operators considered here map the infinite dimensional, separable Hilbert space H into
itself. As in the main body of the paper, the inner product and norm in H will be denoted by 〈·, ·〉
and ‖ · ‖, respectively, and we will use LH to denote all bounded Hermitian operators on H, with
CH denoting the subspace of all compact Hermitian operators and C+

H the subset of all strictly
positive Hermitian operators. Without confusion, the operator norm will also be denoted by ‖ · ‖.

Let T ∈ C+
H be arbitrary, but fixed. Such an operator has a spectral representation of the form

T =
∞∑

j=1

λjPj , (A.1)

where λ1 > λ2 > · · · ↓ 0 are the distinct eigenvalues in decreasing order and P1,P2, . . . are the
projections onto the corresponding finite-dimensional eigenspaces.

The operator T will be perturbed with a compact Hermitian operator P ∈ CH . For r > 0 ,we
will write

O(‖P‖r ) (A.2)

to indicate any quantity (operator, vector, number) whose norm or absolute value is of the indi-
cated order as ‖P‖ → 0.

The perturbed operator T̃ = T +P is no longer strictly positive, but still T̃ ∈ CH . This operator
has spectral representation

T =
∞∑

j=1

λ̃j P̃j , (A.3)

where λ̃1, λ̃2, . . . are distinct nonzero eigenvalues such that |̃λ1| ≥ |̃λ2| ≥ · · · ↓ 0, and P̃1, P̃2, . . .

are the projections onto the corresponding finite-dimensional eigenspaces.
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Furthermore, let ϕ :D → C be analytic on the open domain D ⊂ C, where

D ⊃ [−ε,‖T ‖ + ε] for some ε > 0. (A.4)

Theorem A.1. We have

ϕ(T̃ ) = ϕ(T ) + ϕ′
T P + O(‖P‖2), (A.5)

where ϕ′
T :CH → LH is bounded and given by

ϕ′
T P =

∑
j≥1

ϕ′(λj )PjPPj +
∑∑

j 	=k

ϕ(λk) − ϕ(λj )

λk − λj

PjPPk. (A.6)

Remark A.1. The double sum in (A.6) is a correction term that is needed because the increment
� ∈ CH is arbitrary and therefore does not, in general, commute with T . This generality is needed
for statistical application, as in Theorem 3.1; see also Remark 3.1. If T and � do commute,
however, then the double sum would disappear and we would obtain the much simpler expression

ϕ′
T P =

∑
j≥1

ϕ′(λj )PjP = (ϕ′(T ))P. (A.7)

In other words, in this case, the Fréchet derivative ϕ′
T equals the operator ϕ′(T ), obtained by

applying the usual functional calculus with the derivative ϕ′ of ϕ; see also Dunford and Schwartz
(1957), Theorem VII.6.10 for commuting operators.

Theorem A.2. If the range of P1 is one-dimensional so that P1 = p1 ⊗ p1 for some unit vector
p1 ∈ H, then there exists a unit vector p̃1 ∈ H such that P̃1 = p̃1 ⊗ p̃1 for P sufficiently small.
We have, moreover, that

p̃1 = p1 + APp1 + O(‖P‖2), (A.8)

where A : H → H is the bounded operator

A =
∞∑

j=2

ϕ(λ1)

λ1 − λj

Pj . (A.9)

Theorem A.3. If the range of P1 is one-dimensional and hence P1 = p1 ⊗ p1 for some unit
vector p1 ∈ H, then we have

λ̃1 = λ1 + 〈Pp1,p1〉 + O(‖P‖2). (A.10)
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